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ABSTRACT
An adaptive algorithm, whose step complexity adjusts to
the number of active processes, is attractive for situations in
which the number of participating processes is highly vari-
able. This paper studies the number and type of multi-
writer registers that are needed for adaptive algorithms.

We prove that if a collect algorithm is f -adaptive to to-
tal contention, namely, its step complexity is f(k), where
k is the number of processes that ever took a step, then it
uses Ω(f−1(n)) multi-writer registers, where n is the total
number of processes in the system.

Furthermore, we show that competition for the underly-
ing registers is inherent for adaptive collect algorithms. We
consider c-write registers, to which at most c processes can
be concurrently about to write. Special attention is given
to exclusive-write registers, the case c = 1 where no com-
petition is allowed, and concurrent-write registers, the case
c = n where any amount of competition is allowed. A collect
algorithm is f -adaptive to point contention, if its step com-
plexity is f(k), where k is the maximum number of simul-
taneously active processes. Such an algorithm is shown to
require Ω(f−1(n

c
)) concurrent-write registers, even if an un-

limited number of c-write registers are available. A smaller
lower bound is also obtained in this situation for collect al-
gorithms that are f -adaptive to total contention.

The lower bounds also hold for nondeterministic imple-
mentations of sensitive objects from historyless objects.

Finally, we present lower bounds on the step complexity
in solo executions (i.e., without any contention), when only
c-write registers are used: For weak test&set objects, we
present an Ω( log n

log c+log log n
) lower bound. Our lower bound

for collect and sensitive objects is Ω(n−1
c

).
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1. INTRODUCTION
To solve certain problems, processes need to collect up-

to-date information about the other participating processes.
For example, in the renaming problem, the participating
processes need to choose distinct names from a small name
space. To ensure that it chooses a different name, a process
needs information about which names other processes have
chosen.

One way information about other processes can be com-
municated is to use an array of registers indexed by process
identifiers. An active process can update information about
itself by writing into its register. A process can collect the
information it wants about other participating processes by
reading the entire array of registers.

When there are only a few participating processes, it would
be nice to be able to collect the required information more
quickly. An adaptive algorithm is one whose step complex-
ity is a function of the number of participating processes.
Specifically, if it performs at most f(k) steps when there are
k participating processes, we say that it is f -adaptive. There
are three common ways to count the number of participating
processes. An algorithm is adaptive to point contention if
the number of steps taken by a process while performing this
algorithm is a function of the maximum number of processes
that were simultaneously active at some point in time dur-
ing that period of time. It is adaptive to interval contention
if this number of steps is a function of the total number of
different processes that were active during that period of
time. Finally, it is adaptive to total contention if this num-
ber of steps is a function of the total number of different
processes that were active before or during that period of
time (i.e., since the beginning of the execution). Note that
an algorithm that is f -adaptive to point contention is also
f -adaptive to interval contention and an algorithm that is
f -adaptive to interval contention is also f -adaptive to total
contention.



A number of different adaptive collect algorithms have
been presented [2, 8, 9, 11]. In particular, there is an
algorithm that features an asymptotically optimal O(k)-
adaptive collect, but its memory consumption is exponential
in n, the total number of processes in the system [9]. Ap-
plying ideas from this algorithm with the matrix structure
of Moir and Anderson’s adaptive renaming algorithm [25]
leads to a collect algorithm with polynomial (in n) memory
complexity, but Θ(k2) step complexity.

A simple adversary argument shows that at least one
multi-writer register is needed by an adaptive collect al-
gorithm, even if every process can write to a single-writer
register.

Afek, Boxer, and Touitou [1] improve this lower bound
by proving that any constant number of multi-writer regis-
ters is not sufficient. They actually prove that any long-lived
weak test&set adaptive to interval contention requires a non-
constant number of multi-writer registers. The lower bound
for collect is obtained by a simple reduction, since long-
lived weak test&set can easily be implemented using collect.
Their proof is complicated, using Ramsey-theoretic argu-
ments, and achieves only a small non-constant lower bound,
because concurrency grows rapidly. Their lower bound does
not apply to adaptive one-shot weak test&set, which can be
implemented using only two multi-writer registers.

Aguilera, Englert and Gafni [4] specially construct a gen-
eralized weak-test&set object, and show that a one-shot im-
plementation of this object adaptive to total contention re-
quires a small non-constant number of multi-writer registers.
Their proof also relies on Ramsey-theoretic arguments. A
lower bound for adaptive one-shot collect is obtained by re-
duction, since one-shot generalized test&set is also easily
implemented using collect.

Here, we significantly improve these space lower bounds.
We prove (in Section 3.1) that any f -adaptive one-shot col-
lect algorithm requires Ω(f−1(n)) multi-writer registers. By
focusing directly on collect, our proof is significantly simpler
and, by careful management of concurrency in the execu-
tions we construct, our proof yields a higher bound.

A multi-writer register can be written to by all processes,
whereas a single-writer register can be written to by only one
specific process. We refine this classification by considering
the amount of competition multi-writer registers allow.

An exclusive-write register is not owned by a single pro-
cess and, in principle, all processes may write to it. However,
at any point, no more than one process can be about to write
to it. In contrast, any number of processes may be simulta-
neously about to write to the same concurrent-write register.
This distinction is analogous to the well-known distinction
between exclusive-write and concurrent-write registers used
in synchronous parallel computing [17, 24].

Exclusive-write registers avoid data races, allowing signif-
icant simplifications to the memory architecture, for exam-
ple, the caching protocols. A few distributed algorithms use
exclusive-write registers to improve the step complexity of
atomic snapshots [7, 10]. In these algorithms, exclusive ac-
cess is guaranteed by making sure that, in every execution,
each register is written to by only one process; however, the
identity of this process can change in different executions.
These restricted exclusive-write registers are called dynamic
single-writer registers.

Taking a broader perspective, multi-writer registers can
be parameterized by the amount of competition they allow.

All processes may write to a c-write register, but no more
than c processes may concurrently be about to write to it [14,
19]. Exclusive-write registers are the special case where c =
1. Concurrent-write registers are the special case where c =
n.

In Section 3.2, we extend our lower bound to the num-
ber of concurrent-write registers needed when an unbounded
number of c-write registers are available. Specifically, we
prove that a long-lived collect algorithm that is f -adaptive
to point contention requires Ω(f−1(n

c
)) concurrent-write reg-

isters. For long-lived collect algorithms that are f -adaptive
to total contention, we have a somewhat smaller bound.
Both of these lower bounds can be modified to hold for one-
shot collect, at the cost of reduced bounds.

These lower bounds use covering arguments, first pre-
sented by Burns and Lynch [13] to prove that Ω(n) registers
are necessary for n-process mutual exclusion. This tech-
nique has been used in many other papers to prove space
lower bounds. (For more examples, see the survey by Fich
and Ruppert [18].)

Our proofs depend on the fact that an adaptive algorithm
can only read a small number of single-writer registers. Fa-
tourou, Fich and Ruppert [15] use a similar property to
prove a tight step lower bound for space optimal implemen-
tations of multi-writer snapshot objects.

In Section 4, we consider the number of steps taken in solo
executions, when only c-write registers are available. Specif-
ically, we prove an Ω(n−1

c
) lower bound for one-shot collect

and sensitive objects. Using an information flow graph, we
also show an almost optimal bound of Ω( log n

log c+log log n
) for

one-shot weak test&set objects.
The latency of an algorithm is the maximal number of

shared variables accessed by a single process in executing
the algorithm. Hendler and Shavit [19] show that any im-
plementation of an object in the Influence(n) class, using
only read/write registers and read-modify-write objects, has
latency at least n−1

c
. Our bound for collect in Section 4 is

actually on the latency. It is stronger than the result of [19]
in that it applies to solo executions, but it does not allow
the use of read-modify-write objects.

Dwork, Herlihy and Waarts [14] show that any n-process
implementation of consensus, using only read/write registers
and read-modify-write objects must allow Ω(n) processes to
be simultaneously about to change a single register or read-
modify-write object. For randomized consensus, they give
a tradeoff between latency and the maximum amount of
competition c allowed: the latency must be at least (n −
1)/c. They also show that an n-process mutual exclusion
algorithm has latency at least log n

c
.

Anderson and Kim [6] show that Ω(log n/ log log n) re-
mote memory references are needed for n-process mutual
exclusion. Their proof inductively constructs a run in which
concurrent processes have no knowledge of each other; this
is done by choosing independent processes in the informa-
tion flow graph. The same construction was used to show an
Ω(k) lower bound on the step complexity of an adaptive mu-
tual exclusion algorithm, where k is the point contention [5].

Our bound for weak test&set does not follow from the
results on mutual exclusion in [6, 14] since those results do
not apply to solo executions. Moreover, the proof in [14]
relies heavily on the fact that some process is guaranteed
to win the mutual exclusion object, a property that is not
guaranteed for weak test&set.



Jayanti, Tan and Toueg [23] prove that any implementa-
tion of a perturbable object requires Ω(n) historyless objects
(defined in [16]) and has Ω(n) step complexity. Only a weak
liveness condition, nondeterministic solo termination [16],
is required for their proof. Their lower bound implies that,
if there is an f -adaptive implementation of such an object,
then f(k) ∈ Ω(k). Their proof does not rely on adaptiv-
ity, nor does it place any restrictions on how processes ac-
cess objects. They also show that increment, fetch&add,
modulo-b counter (for b ≥ 2n), LL/SC bit, and b-valued
compare&swap (for b ≥ n) are perturbable.

Our lower bounds for f -adaptive collect can be similarly
generalized to hold for f -adaptive implementations of sen-
sitive objects from historyless objects under the nondeter-
ministic solo termination condition. Although the set of
sensitive objects is a proper subset of perturbable objects,
it includes all the specific perturbable objects mentioned
in [23]. These results appear in the Appendix.

2. MODEL
We assume a standard asynchronous shared-memory model

of computation [20]. A system consists of n processes, p1, . . . ,
pn, communicating by accessing shared objects, Y1, . . . , Y`.

A shared object has a type that defines a domain of pos-
sible values (including a special initial value, ⊥) and a set
of operations, providing the only means to manipulate the
object. The current value of an object and the operation ap-
plied to it determine the response to the operation and the
resulting value of the object. The most common object is a
register, providing two operations: read, returning the value
of the register without changing it, and write, changing the
register value to the value of its input.

Processes are deterministic state machines, each with a
(possibly infinite) set of local states, which includes a unique
initial state. In each step, the process determines the memory-
access operation (e.g. read or write) to perform according
to its local state, and changes its local state according to
the value returned by the operation.

A configuration consists of the states of the processes and
the values of the objects, namely, it is a vector

〈s1, . . . , sn, v1, . . . , v`〉
where si is the local state of process pi and vj is the value
of the shared object Yj . In the initial configuration, every
process is in its initial state and every object has ⊥ as its
initial value.

A schedule is a (possibly infinite) sequence pi1 , pi2 , . . . of
process identifiers. For a finite schedule α and a (possibly
infinite) schedule β, αβ denotes their concatenation. An ex-
ecution consists of the initial configuration and a schedule,
representing the interleaving of steps by processes. An exe-
cution α reaches a configuration C if C is the configuration
at the end of α.

For a set of processes P , a P -only schedule contains only
processes in P , and a P -free schedule does not contain pro-
cesses in P . These definitions extend naturally to P -only
executions and P -free executions. When P = {p}, we write
p-only and p-free instead of {p}-only and {p}-free.

For a configuration C and a process pi, Cpi denotes the
configuration that is a result of letting pi take a single step
from configuration C. If α = pi1 , pi2 , . . . , pil is a finite sched-
ule, Cα denotes the configuration that results from letting

pi1 , pi2 , . . . , pil take steps from configuration C, in order of
their appearance in α; that is, Cα = Cpi1pi2 . . . pil .

A process pi covers register r in configuration C if p is
about to write to r (according to its state in C).

When a set of processes P covers a set of registers R in
configuration C, if it is possible to perform a block write:
a sequence of |R| consecutive write operations, one to each
register in R, each by a different process in P . A block write
to R fixes the values of all the registers in R. Because the
order of steps in a block write does not change the result-
ing configuration, the configuration denoted by CP is well
defined when |P | = |R|.

It is possible to restrict access to an object to limit which
processes may apply which operations to it. For registers,
we consider the following types of restrictions:

A register Y is single-writer if it is owned by one process,
so that, in every execution, only its owner can write to Y . It
is c-write if, at any configuration, at most c processes cover
(i.e. are about to write to) Y . Note that those processes
may be different in different executions, or at different con-
figurations in the same execution. When c = 1, we say that
the register is exclusive-write. Finally, a concurrent-write
register does not restrict the way processes write to it.

We assume all registers are multi-reader, so that all pro-
cesses may read from all registers. Throughout the paper,
we assume that each process pi owns one single-writer reg-
ister, denoted ri.

An implementation of an object of type X using r objects
Y1, . . . , Y`, provides, for every operation OP of X, a set of n
procedures F1, . . . , Fn, one for each process. (Typically, the
procedures are the same for all processes.) To execute OP on
X, process pi calls procedure Fi, which specifies the steps of
pi and, thus, the operations on Y1, . . . , Y`. The worst-case
number of steps performed by some process pi executing
procedure Fi is the step complexity of implementing OP.

An operation OPi precedes operation OPj (and OPj fol-
lows operation OPi) in an execution α, if the call to the
procedure of OPj appears in α after the return from the
procedure of OPi.

Our proofs rely on a weak liveness property, called solo
termination, which guarantees for any process pi and con-
figuration C, pi returns within a finite number of steps in a
pi-only execution from C.

Let α be a finite execution. Process pi is active at the
end of α if α includes a call of an implementation procedure
without a matching return. The set of active processes at
the end of α is denoted active(α).

The point contention at the end of α is |active(α)|.
Suppose α = βγ. The point contention during the interval

γ is the maximum of |active(βγ′)| taken over all prefixes γ′

of γ. It is the maximum number of processes that are simul-
taneously active at some point during γ and is denoted by
pointCont(γ). The interval contention during γ, intCont(γ),
is the number of different processes such that each is active
at the end of βγ′ for some (possibly different) prefix γ′ of
γ. Finally, the total contention during γ, totalCont(γ), is
intCont(α), namely, the cardinality of the set of all processes
that are active before and during γ.

Let f : N → N be an increasing function. An implemen-
tation is f-adaptive to total, interval, or point contention
if the step complexity of each of its procedures is bounded
from above by f(k), where k is the total, interval, or point
contention, respectively, during the interval the procedure is
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Figure 1: Illustration for Lemma 3.1

being performed (i.e., between the call and matching return
of the procedure).

A collect algorithm provides two operations: A STORE(val)
by process pi sets val to be the latest value for pi. A COL-
LECT operation returns a view, a partial function V from
the set of processes to a set of values, where V (pi) is the
latest value stored by pi, for each process pi. A COLLECT
operation cop should not read from the future or miss a pre-
ceding STORE operation. Formally, the following validity
properties holds for every process pi:

– If V (pi) = ⊥, then no STORE operation by pi precedes
cop.

– If V (pi) = v 6= ⊥, then v is the value of a STORE
operation sop of pi that does not follow cop, and there
is no STORE operation by pi that follows sop and
precedes cop.

3. SPACE LOWER BOUNDS FOR COLLECT
We bound the number of multi-writer registers needed for

adaptive n-process collect using a covering argument. A
typical covering argument constructs an execution in which
an increasingly large set of processes cover an increasingly
large set of registers. To increase the size of these sets, we let
some process pi execute on its own, in a way that must be
observed by later operations. This is difficult when proving
lower bounds for weak test&set [1], since operations may
abort after they observe an operation being performed by
another process. This requires the effects of pi to be cleaned
up, complicating the proof and increasing the contention.
Deriving a contradiction for collect is simpler: process pi

just stores a new value, which must be observed by a later
COLLECT operation, by the second validity property. The
STORE operation by pi must write to an uncovered register;
otherwise, a block write can be used to remove all traces
of the STORE. This register must be multi-writer because
an f -adaptive COLLECT operation cannot check all single-
writer registers. This allows us to increase the size of the
set of covered multi-writer registers.

In all the executions we construct, processes p1, . . . , pn−1

invoke only STORE operations, each with a different value.
Process pn only invokes a COLLECT operation copn in a
pn-only schedule, denoted copn(C) when starting from con-
figuration C; |copn(C)| denotes the number of steps pn takes.
S(C) is the set of processes whose single-writer registers are
read by pn during copn(C).

Suppose a process pl is not active in configurations C1

and C2, and let opl be an operation applied by pl. We say

that C1 and C2 are indistinguishable to opl, if the sequence
of state transitions by pl are the same in the application of

opl from C1 and from C2. We denote this by C1

opl≈ C2.
Lemma 3.1 is the key to the lower bounds in this section.

It shows that a process performing a STORE must write
to a multi-writer register, unless pn reads its single-writer
register during its COLLECT.

Lemma 3.1. Let αl be a pn-free execution that reaches a
configuration Cl in which a set Pl of l processes covers a set
Rl of l multi-writer registers, and Pl ⊆ active(αl). Let C =
ClPl. Then for every process p 6∈ S(C) ∪ active(αl) ∪ {pn},
there is a p-only schedule β such that, in configuration Clβ, p
covers a multi-writer register Y 6∈ Rl that is read in copn(C)

and ClPl

copn≈ ClβPl.

Proof. Consider a p-only execution of a STORE opera-
tion from Cl, and let γ be the corresponding schedule (see
Fig. 1). Let C′

l = Clγ. If p does not write to a multi-
writer register Y 6∈ Rl that is read during copn(C), then

ClPl

copn≈ C′
lPl, because the processes in Pl also cover the

registers in Rl in configuration C′
l . Therefore pn returns

the same value for V (p) in both copn(ClPl) and copn(C′
lPl).

This contradicts the validity property of collect.
Let β be the prefix of γ up to, but not including p’s first

write to a multi-writer register Y 6∈ Rl that is read during
copn(C). Then in configuration Clβ, process p covers Y and

ClPl

copn≈ ClβPl.

3.1 Lower Bound on the Number of
Multi-Writer Registers

We start with a simple proof that does not distinguish
between types of multi-writer registers. In Section 3.2, we
extend the proof to bound the number of concurrent-write
registers, even when an unlimited number of c-write registers
are available.

Lemma 3.2. Let Pl be a set of l processes. Let αl be a
Pl-only execution that reaches a configuration Cl in which
Pl covers a set Rl of l multi-writer registers and let C =
ClPl. If n > |copn(C)| + l + 1, then there exists a process
pl+1 6∈ Pl ∪ {pn} and a finite pl+1-only schedule β such that
in configuration Clβ, pl+1 covers a multi-writer register not
in Rl.

Proof. Note that |S(C)| ≤ |copn(C)|, because the num-
ber of registers accessed in an operation is bounded by the
total number of steps. Since n > |copn(C)|+ l+1, there is a
process pl+1 6∈ S(C) ∪ Pl ∪ {pn}. By Lemma 3.1, there is a
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Figure 2: Illustration for Lemma 3.5.

pl+1-only schedule, β, such that, in configuration Clβ, pl+1

covers a multi-writer register Y 6∈ Rl.

Applying Lemma 3.2 inductively yields the next lemma.
Note that the total contention increases by one in each ap-
plication of the lemma, allowing the collect operation by pn

to take more steps.

Lemma 3.3. Consider any n-process collect algorithm that
is f-adaptive to total contention. For any l such that n >
f(l) + l, there is a set Pl of l processes and a Pl-only execu-
tion αl that reaches a configuration Cl in which Pl covers a
set Rl of l multi-writer registers.

Proof. By induction on l. The lemma holds for the base
case l = 0, at the initial configuration.

Consider an f -adaptive collect algorithm. Suppose that,
as the induction hypothesis, there is a set of l processes Pl

and a Pl-only execution αl that reaches a configuration Cl in
which Pl covers a set Rl of l multi-writer registers. Because
active(αl) = Pl and the algorithm is f -adaptive to total
contention, it follows that |copn(ClPl)| ≤ f(l + 1).

If n > f(l + 1) + l + 1, Lemma 3.2 implies that there
is a process pl+1 6∈ Pl ∪ {pn} and a pl+1-only schedule β,
such that in configuration Clβ, pl+1 covers a multi-writer
register not in Rl. The lemma follows for αl+1 = αlβ and
Pl+1 = Pl ∪ {pl+1}.

Apply Lemma 3.3 with l = max{i|n > f(i) + i}. Then
any n-process collect algorithm that is f -adaptive to total
contention uses at least l multi-writer registers. The lower
bound of [23] implies that for an f -adaptive collect algo-
rithm, f(k) ∈ Ω(k). This implies that l ∈ Ω(f−1(n)), and
yields our first main result.

Theorem 3.4. An n-process collect algorithm that is f-
adaptive to total contention requires Ω(f−1(n)) multi-writer
registers.

3.2 Lower Bounds on the Number of
Concurrent-Write Registers

This section extends Theorem 3.4 to bound the number of
concurrent-write registers required for collect, even when an
unlimited number of exclusive-write registers are available.
We prove somewhat stronger results: we bound the number

of concurrent-write registers required for collect, even when
c-write registers are available. Let T (C) denote the set of
c-write registers that pn reads during copn(C). Recall that
S(C) denotes the set of single-writer registers that pn reads
during copn(C).

Lemma 3.5. Let αl be an execution that reaches a con-
figuration Cl in which a set Pl of l processes cover a set
Rl of l concurrent-write registers, and active(αl) = Pl. Let
C = ClPl. For every set Q of m = c · |T (C)| + 1 pro-
cesses disjoint from S(C) ∪ Pl ∪ {pn}, there is a Q-only
schedule γ such that, in configuration Clγ, some process
q ∈ Q covers a concurrent-write register not in Rl and
active(αlγ) = Pl ∪ {q}.

Proof. Suppose Q = {pi1 , . . . , pim}. Let R′ be the set
of multi-writer registers not in Rl that are read by pn in
copn(ClPl).

Let j ∈ {0, . . . , m} and let P ′
j = {pi1 , . . . , pij}. We claim

there is a P ′
j-only schedule βj such that ClPl

copn≈ ClβjPl

and, in configuration Clβj , the processes in P ′
j all cover

multi-writer registers in R′.
This is vacuously true for j = 0, taking β0 to be the empty

schedule. So suppose that j > 0 and βj−1 is a P ′
j−1-only

schedule such that ClPl

copn≈ Clβj−1Pl and, in configuration
Clβj−1, the processes in P ′

j−1 all cover multi-writer registers
in R′.

Let β be the pij -only schedule guaranteed by Lemma 3.1
such that, in the execution of β starting from configuration
Clβj−1, process pij covers a multi-writer register R′ and

Clβj−1Pl

copn≈ Clβj−1βPl. Thus pn reads the same registers
when performing copn starting from configuration ClPl or
from configuration ClβjPl. Hence the claim is true for j,
taking βj = βj−1β. (See Fig. 2.)

Since at most c processes may concurrently cover a reg-
ister in T (C) and |Q| = c · |T (C)| + 1, there exists j ∈
{1, . . . , m} such that pij does not cover a c-write register
at Clβm. Thus pij covers a concurrent-write register in R′.
Let k be the minimum such j. Let γ denote the schedule
βkγ1 · · · γk−1, where γj is a pij -only schedule that ends when
pij first becomes inactive in the execution starting from Cl.
Then, at configuration Cγ, process pik covers a concurrent-
write register not in Rl and active(αlγ) = Pl ∪ {pik}.



We use this lemma to derive a space lower bound for col-
lect algorithms that are adaptive to point contention.

Lemma 3.6. Consider an n-process collect algorithm that
is f-adaptive to point contention. For any l such that n >
c·f(l)+l there is an execution αl that reaches a configuration
Cl in which a set Pl of l processes cover a set of l concurrent-
write registers Rl and active(αl) = Pl.

Proof. The proof is by induction on l, with a simple base
case l = 0 at the initial configuration.

Consider a collect algorithm that is f -adaptive to point
contention. By the induction hypothesis there is an execu-
tion αl−1 that reaches a configuration Cl−1, in which a set
Pl−1 of l−1 processes cover a set of l−1 concurrent-write reg-
isters Rl−1 and active(αl−1) = Pl−1. Because the algorithm
is f -adaptive to point contention, |copn(Cl−1Pl−1)| ≤ f(l).

If n > c · f(l) + l ≥ c · |copn(Cl−1Pl−1)| + (l − 1) + 1,
Lemma 3.5 implies that there is a schedule γ such that at the
end of Cl−1γ, some process pl 6∈ Pl−1 covers a concurrent-
write register r 6∈ Rl−1 and active(αl−1γ) = Pl−1 ∪ {pl}.
Then the claim is true for l, since αl = αl−1γ reaches a con-
figuration Cl, in which a set Pl = Pl−1 ∪ {pl} of l processes
cover a set of l concurrent-write registers Rl = Rl−1 ∪ {r}
and active(αl) = Pl.

Applying Lemma 3.6 with l = max{i|n > c · f(i) + i} and
solving the inequality yields the next theorem.

Theorem 3.7. An n-process collect algorithm that is f-
adaptive to point contention requires Ω(f−1(n

c
)) concurrent-

write registers, even if it uses an unlimited number of c-write
registers.

When c = 1, Theorem 3.7 implies that an n-process col-
lect algorithm that is f -adaptive to point contention requires
Ω(f−1(n)) concurrent-write registers, even if it uses an un-
limited number of exclusive-write registers.

The point contention at the end of execution αl (con-
structed in the proof of Lemma 3.6) is l. Unfortunately, the
total contention during αl is much higher. We bound it us-
ing the function g : N → N which grows much more quickly
than f and is defined as follows:

g(l) =

{
0 if l = 0
c · f(g(l − 1) + 1) + l if l > 0.

Lemma 3.8. Consider a collect algorithm that is
f-adaptive to total contention. For any l such that n > g(l)
there exists a {p1 . . . pg(l)}-only execution αl that reaches a
configuration Cl, in which a set Rl of l processes cover a set
Rl of l concurrent-write registers, and active(αl) = Pl.

Proof. The proof is by induction on l, with a simple base
case l = 0 at the initial configuration.

By the induction hypothesis, there is a {p1 . . . pg(l−1)}-
only execution αl−1 that reaches a configuration Cl−1 in
which a set Pl−1 of l − 1 processes cover a set Rl−1 of
l − 1 concurrent-write registers and active(αl−1) = Pl−1.
Because the algorithm is f -adaptive to total contention,
|copn(Cl−1Pl−1)| ≤ f(g(l − 1) + 1).

Since n > g(l) = c·f(g(l − 1)+1)+l ≥ c·|copn(Cl−1Pl−1)|+
(l−1)+1, Lemma 3.5 implies that there is a ({p1 . . . pg(l)}\
Pl−1)-only schedule β, such that in configuration Cl−1β,
some process pl covers a concurrent-write register not in
Rl−1 and active(αl−1β) = Pl−1 ∪ {pl}. Thus, the lemma

holds since αl = αl−1β is a {p1 . . . pg(l)}-only execution that
reaches a configuration Cl, in which a set Pl = Pl−1 ∪ {pl}
of l processes cover a set Rl of l concurrent-write registers,
and active(αl−1β) = Pl.

Applying Lemma 3.8 with l = max{i|n > g(i)} implies
that an n-process collect algorithm that is f -adaptive to
total contention, requires at least g−1(n) − 1 concurrent-
write registers.

Theorem 3.9. An n-process collect algorithm that is f-
adaptive to total contention, requires at least g−1(n) − 1
concurrent-write registers, even if it uses an unlimited num-
ber of c-write registers.

4. THE CONTENTION-FREE STEP COM-
PLEXITY OF WEAK TEST&SET AND
COLLECT

This section studies the contention-free step complexity
of one-shot collect and weak test&set objects, implemented
using only c-write registers. The contention-free step com-
plexity of an algorithm is the maximum step complexity of
a single process p running in a p-only execution from the
initial configuration.

A one-shot weak test&set object supports a test&set op-
eration that can either succeed (in which case we say the
operation wins the object or that it owns the object) or fail.
In every execution, at most one test&set operation succeeds.
A test&set operation by pi must succeed in a pi-only execu-
tion.

A long-lived weak test&set object also supports a reset
operation, which can be invoked by a process owning the
object to release it. As for one-shot weak test&set, at most
one process can own the object at any configuration. If no
process owns the test&set object and there are no pending
operations on the object at a configuration C, then a pi-
only execution of a test&set operation starting from C must
succeed.

It is easy to implement (long-lived) weak test&set using
collect: a test&set operation by p executes STORE(1), and
then executes COLLECT to obtain a view V . If, for some
process q 6= p, V (q) 6= ⊥, then the operation fails and p
executes STORE(⊥); otherwise, the operation succeeds. A
reset operation executes STORE(⊥).

4.1 Weak Test&Set Algorithms
There is a one-shot weak test&set implementation with

O(logc n) step complexity, using O(n/c) c-write registers.
The algorithm uses a complete c-ary tree of depth dlogc ne
as a tournament tree. Every process is assigned to a different
leaf and there is a splitter [25, 7] assigned to each internal
node. To perform a weak test&set operation, a process tra-
verses the nodes on the path from its leaf to the root. Only
if pi wins a node, does it continue to the node’s parent. The
operation succeeds if pi wins at the root of the tree; oth-
erwise, the operation fails. Note that since the number of
processes trying to win the splitter at any node is bounded
by c, the splitter implemention [25] uses only two c-write
registers.

There is a similar one-shot weak test&set implementation
with O(log n) step complexity, using O(n) dynamic single-
writer registers. We use a complete binary tree of depth
dlog2 ne as a tournament tree, but replace the splitter at



each internal node with two Boolean flags, one for each child.
These flags are initially false. When a process comes to a
node from a child, it sets the flag for that child to true and
reads the other flag. If the other flag is false, the process
wins this node and proceeds to its parent. Otherwise, the
process fails.

A long-lived version of this algorithm uses exclusive-write
instead of dynamic single-writer registers; if a process fails
to win some node, it undoes all its writes in reverse order
(i.e. writes false to all the registers it wrote true to, in
reverse order). A reset operation also writes false to all the
registers to which it wrote true, in reverse order.

4.2 Lower Bounds
We now give lower bounds on the contention-free step

complexity of one-shot collect and weak test&set.
Lemma 3.5 can be used to derive a lower bound on the la-

tency and, hence, the contention-free step complexity of one-
shot collect, when concurrent-write registers are not used.

Theorem 4.1. An n-process collect which uses only c-
write registers has latency Ω(n

c
).

Proof. Let C be the initial configuration. To obtain
a contradiction, suppose that pn accesses fewer than n−1

c

different registers in copn(C). Then |S(C)|+ |T (C)| < n−1
c

.
Thus, there is a set Q of c · |T (C)| + 1 processes disjoint
from S(C) ∪ {pn}. By Lemma 3.5, with l = 0, αl = ε,
Pl = ∅, and Rl = ∅, there is a Q-only schedule γ such
that, in configuration C0γ, some process q ∈ Q covers a
concurrent-write register. This is a contradiction.

Theorem 4.1 implies that c-write registers do not help
in reducing the contention-free step complexity of collect.
Recall from Section 4.1 that even exclusive-write registers
suffice for faster implementations of one-shot weak test&set.
This implies a gap in the contention-free step complexity
of one-shot collect and one-shot weak test&set, when using
only c-write registers.

Next, we prove a lower bound of Ω( log n
log c+log log n

) on the
number of steps performed in a solo execution of a weak
test&set operation when there are no concurrent-write reg-
isters.

For the proof, it is helpful to limit attention to a restricted
class of executions. A t-round execution is a P -only execu-
tion for some subset of processes P such that each process
takes at most t steps and the processes in P take steps in
rounds. This means that no process in P takes its (k +1)’st
step before any process in P takes its k’th step. We also
require that, in a given round, all reads occur before all
writes.

An execution starting from some configuration C is in-
dependent, if for every process p, each time p reads from a
register, either that register was not previously written to,
or p was the last process to write to that register. Intuitively,
a process cannot distinguish an independent execution from
a solo execution. Note that any p-only execution is indepen-
dent.

A process can be erased from an execution by removing
all its steps. Note that, in an independent execution, this
does not affect the steps of the other processes.

Lemma 4.2. Consider any algorithm for n processes that
uses only c-write registers. For every non-negative integer t,

there is a Qt-only t-round independent execution αt, where

Qt is a set of at least n2tt!
ct(2t)!

processes.

Proof. The proof is by induction on t. The base case
t = 0 holds with Q0 being the set of all processes and α0

being the empty execution. Furthermore, if ct(2t)!/2tt! ≥ n,
then αt can be any solo execution of length t.

Let t ≥ 0 and suppose ct+1(2(t + 1))!/2t+1(t + 1)! < n.
Assume that, as an induction hypothesis, there is a Qt-only
t-round independent execution, αt, where Qt is a set of at

least n2tt!
ct(2t)!

processes. Consider the next step performed by

each process in Qt (immediately after αt).
Let G(Qt, E) be the undirected graph, where {p, q} ∈ E if

and only if p 6= q and the next step by one of these processes
reads a register written by the other during αt. Since at
most c processes may write to a register concurrently, each
register is written to by at most ct different processes during
αt.

Thus, |E| ≤ ct|Qt|. By Turan’s Theorem [12], there exists
an independent set Qt+1 in G(Qt, E) such that |Qt+1| ≥

|Qt|2
|Qt|+2|E| ≥ |Qt|

1+2ct
≥ |Qt|

c(1+2t)
≥ n2tt!

ct(2t)!c(2t+1)
= n 2t+1(t+1)!

ct+1(2(t+1))!
.

Let α′
t be obtained from αt by erasing all processes in

Qt \ Qt+1. Let αt+1 be any Qt+1-only execution obtained
by extending α′

t with the next step of each process in Qt+1

(if it exists), so that all reads in the last round precede all
writes.

By the induction hypothesis, each read in α′
t is from a

register that either was not previously written or was last
written by the same process. By construction, each read in
the last round of of αt+1 has the same property. Thus αt+1

is a (t + 1)-round independent execution.

Consider any positive integer t such that ct(2t)!/2tt! < n
and suppose there is a weak test&set algorithm that halts
within t steps in every solo execution. By Lemma 4.2, there
is a Qt-only t-round independent execution αt, where Qt

contains at least two processes. Say pi, pj ∈ Qt. Since pi

wins the weak test&set in a t-step pi-only execution, and
pj wins in a t-step pj-only execution, both win in αt. This
contradicts the correctness of the weak test&set algorithm.

By Stirling’s approximation, if ct(2t)!/2tt! ≥ n, then t ∈
Ω( log n

log c+log log n
).

Theorem 4.3. An n-process one-shot weak test&set ob-
ject, which does not use concurrent-write registers, has a
solo execution with Ω( log n

log c+log log n
) steps.

When only dynamic single-writer registers are used for
implementing a one-shot weak test&set object, the proof
can be modified to show the following lower bound, which
implies that the algorithm in Section 4.1 is optimal:

Theorem 4.4. An n-process weak test&set object, which
uses only dynamic single-writer registers, has a solo execu-
tion with Ω(log n) steps.

5. DISCUSSION
This paper proves lower bounds on the memory require-

ments and the contention-free step complexity of collect and
related problems. The lower bounds indicate that significant
contention for the memory is needed in order to achieve
adaptivity.

Our lower bounds are on the number of multi-writer or
concurrent-write registers used in a single execution of a



collect algorithm. They match, for example, the number of
multi-writer registers used by the linear time collect algo-
rithm in [9]. Observe, however, that algorithms typically
allocate the registers used in all possible executions. For ex-
ample, the algorithm in [9] allocates an exponential number
of multi-writer registers. Lower bounds on the number of
registers used, as proved in this paper, clearly imply lower
bounds on the number of allocated registers. Unfortunately,
lower bounds derived in this manner are far away from the
number of registers allocated by known algorithms, and new
techniques seem to be needed in order to derive optimal
bounds.

Several variants of the collect problem have appeared in
the literature [2, 3, 8]. Our proofs do not require a reg-
ularity property among collect operations, and our lower
bounds hold for a weak variant of the collect problem called
gather [2].

Implementing weak test&set can be significantly easier
than implementing one-shot collect. For example, a splitter
implements one-shot weak test&set in a constant number
of steps, using only two concurrent-write registers. Thus,
the space lower bounds in Section 3 do not extend to one-
shot weak test&set. Furthermore, the memory lower bounds
do not apply to weak test&set nor do they apply to the
renaming problem. Extending our proofs to derive lower
bounds on the number of multi-writer and concurrent-write
registers needed for these problems is an interesting research
direction.

The contention-free step lower bounds obviously apply to
obstruction free [21, 22] implementations of such objects.
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APPENDIX

A. LOWER BOUNDS FOR SENSITIVE OB-
JECTS

The key for the lower bounds proved in Section 3 and for
the proof of Theorem 4.1 is the fact that just before the block
write, it is possible to let a process store a new value, so that
pn must collect this new value. Here, we generalize the result
in three ways. First, the algorithm can be nondeterministic,
for example, randomized, provided it has the nondetermin-
istic solo termination property [16]. Second, the algorithm
can use historyless objects [16], not just registers. Finally,
the lower bounds holds for any sensitive object, in partic-
ular, increment, fetch&add, modulo-b counter (for b ≥ 2n),
LL/SC bit, and b-valued compare&swap (for b ≥ n).

Modelling Nondeterministic Algorithms.The state ma-
chine of a process can be nondeterministic, so there may be
more than one possible p-only execution from a configura-
tion C. We require the nondeterministic solo termination
property [16, 23]: for every process p and every configu-
ration C, there is a p-only execution from C in which p
completes its procedure within a finite number of steps. A
nondeterministic algorithm is f-adaptive if there is a p-only
execution from C in which p completes its procedure within
f(k) steps.

Historyless Objects.Let op(σ, Y ) be the state of object
Y that results if operation op is applied to Y when it is
in state σ. An operation op is trivial if its application
does not change the state, that is, op(σ, Y ) = σ. Oper-
ation op′ overwrites operation op if applying op and then
op′ results in the same state as simply applying op′, that
is op′(op(σ, Y ), Y ) = op′(σ, Y ). An object type is history-
less [16, 23], if all its non-trivial operations overwrite one
another. Examples of historyless objects include registers,
test&set objects, and swap registers.

A process pi covers a historyless object Y in configuration
C if pi is about to apply a non-trivial operation on to Y .

A historyless object Y is owner-access if only one process
can apply non-trivial operations to Y in every execution;
otherwise, Y is multi-access. Y is c-access if at any configu-
ration, at most c processes cover Y . Y is concurrent-access
if there is no restriction on the processes that may apply
non-trivial operations to Y .

Sensitive Objects.Intuitively, an object is sensitive if ev-
ery process can always invoke a sequence of operations that
must be noticed by later operations. For example, a collect
object is sensitive since any process can invoke a STORE
operation that should be observed by a later COLLECT
operation; on the other hand, weak test&set is not sensi-
tive, since a process not owning the object cannot change
its state.

Formally, an object is sensitive if, for any pn-free exe-
cution αδ where no process appears more than once in δ,

there is an operation sopn by pn such that, for every pro-
cess pl 6= pn that does not appear in δ, there is a sequence
of operations and a corresponding schedule γ ∈ {pl}∗, such
that pn returns a different result when executing sopn after
αδ and after αγδ.

For example, increment, fetch&add, modulo-b counter (for
b ≥ 2n), LL/SC bit, and b-valued compare&swap (for b ≥ n)
are all sensitive objects.

We start by proving the analogue of Lemma 3.1:

Lemma A.1. Let αl be a pn-free execution that reaches a
configuration Cl, in which a set Pl of l processes cover a set
Rl of l multi-access historyless objects, and Pl ⊆ active(αl).
Let C = ClPl. Then for every process p 6∈ S(C)∪active(αl)∪
{pn}, there is a p-only schedule β such that, in configuration
Clβ, p covers a multi-access historyless object Y 6∈ Rl that

is accessed in sopn(C), and ClPl

sopn≈ ClβPl.

Proof. Let α = αl and let δ be a block write by the
processes in Pl. Recall that the object is sensitive and note
that each process appears at most once in δ and that p does
not appear in δ. Consider the p-only execution of opera-
tions from Cl, guaranteed by the sensitiveness of the ob-
ject, and let γ be the corresponding schedule. Let C′

l =
Clγ. If p does not apply a non-trivial operation to a multi-
access historyless object Y 6∈ Rl that is accessed during

sopn(C), then αδClPl

sopn≈ C′
lPlαγδ, because the processes

in Pl also cover the historyless objects in Rl in configuration
C′

l . Therefore pn returns the same result in both copn(ClPl)
and copn(C′

lPl), contradicting the fact that the object is sen-
sitive.

Let β be the prefix of γ up to, but not including p’s first
application of a non-trivial operation to a multi-access his-
toryless object Y 6∈ Rl that is accessed during copn(C).

Then in configuration Clβ, process p covers Y and ClPl

sopn≈
ClβPl.

Repeating the proofs in Section 3, substituting Lemma 3.1
by Lemma A.1, and copn by sopn, gives the same space
complexity lower bounds for any sensitive object.

Theorem A.2. An f-adaptive implementation of a sen-
sitive object for n processes requires Ω(f−1(n)) multi-access
historyless objects.

Theorem A.3. An f-adaptive implementation of a sen-
sitive object for n processes that adapts to point contention
requires Ω(f−1(n

c
)) concurrent-access historyless objects, even

if an unlimited number of c-access historyless objects is avail-
able.

Theorem A.4. An f-adaptive implementation of a sen-
sitive object for n processes that adapts to total contention
requires at least g−1(n)−1 concurrent-access historyless ob-
jects, even if an unlimited number of c-access historyless ob-
jects is available.

Theorem A.5. An n-process implementation of a sensi-
tive object, which does not use concurrent-write registers,
has latency Ω(n

c
).

Jayanti et al. [23] define perturbable objects. The differ-
ence between perturbable objects and sensitive objects is
that for the former, the perturbing execution (γ) has to ex-
ist for some process not in {pn} ∪ δ while for the latter,



γ has to exist for every process not in {pn} ∪ δ. Clearly,
every sensitive object is also perturbable. The increment,
fetch&add, modulo-b counter (for b ≥ 2n), LL/SC bit, and
b-valued compare&swap (for b ≥ n) objects are shown to be
perturbable [23]. Careful examination of the proofs reveal
that they show that the objects are in fact, sensitive.

To understand why a stronger definition is needed, con-
sider the prefix collect problem, which is a variant of the
collect problem. Let l be the minimum id of a process that
takes no step in a finite execution α′. If all processes par-
ticipate in α′, let l = n + 1. Then a COLLECT operation
starting after α′ has to return only the values stored by pro-
cesses p1, . . . , pl−1.

There is a simple adaptive prefix collect algorithm using
only single-writer registers: a STORE operation by pi writes
the value to ri, which is initially ⊥. A COLLECT operation
reads r1, r2, . . . until it reads ⊥, namely, until it reaches a
register of a process that has not started yet. The operation
returns the sequence of values it collected.

There is an object based on the prefix collect problem
that can be implemented in a similar manner. Because this
object is perturbable, it follows that there are perturbable
objects which have adaptive implementations without using
multi-writer registers.


