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Abstract. This paper presents Combine, a distributed directory pro-
tocol for shared objects, designed for large-scale distributed systems.
Directory protocols support move requests, allowing to write the object
locally, as well as lookup requests, providing a read-only copy of the ob-
ject. They have been used in distributed shared memory implementations
and in data-flow implementations of distributed software transactional
memory in large-scale systems.
The protocol runs on an overlay tree, whose leaves are the nodes of the
system; it ensures that the cost of serving a request is proportional to the
cost of the shortest path between the requesting node and the serving
node, in the overlay tree. The correctness of the protocol, including star-
vation freedom, is proved, despite asynchrony and concurrent requests.
The protocol avoids race conditions by combining requests that overtake
each other as they pass through the same node. Using an overlay tree
with a good stretch factor yields an efficient protocol, even when requests
are concurrent.

1 Introduction

Distributed applications in large-scale systems aim for good scalability, offering
proportionally better performance as the number of processing nodes increases,
by exploiting communication to access nearby data [19].

An important example is provided by a directory-based consistency proto-
col [7]; in such a protocol, a directory helps to maintain the coherence of objects
among entities sharing them. To access an object, a processor uses the directory
to obtain a copy; when the object changes, the directory either updates or in-
validates the other copies. In a large-scale system, the directory manages copies
of an object, through a communication mechanism supporting the following op-
erations: A writable copy of the object is obtained with a move request, and a
read-only copy of the object is obtained with a lookup request.

A directory-based consistency protocol is better tailored for large-scale dis-
tributed systems, in which remote accesses require expensive communication,
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several orders of magnitude slower than local ones. Reducing the cost of com-
munication with the objects and the number of remote operations is crucial
for achieving good performance in distributed shared memory and transactional
memory implementations. Several directory protocols for maintaining consis-
tency have been presented in the literature, e.g., [1, 6, 7, 9]. (They are discussed
in Section 6.)

In large-scale systems, where the communication cost dominates the latency,
directory protocols must order the potentially large number of requests that
are contending for the same object. Rather than channeling all requests to the
current location of the object, some directory protocols, e.g., [9], implement a
distributed queue, where a request from p gets enqueued until the object gets
acquired and released by some predecessor q, a node that p detects as having
requested the object before.

This paper presents Combine, a new directory protocol based on a dis-
tributed queue, which efficiently accommodates concurrent requests for the same
object, and non-fifo message delivery. Combine is particularly suited for sys-
tems in which the cost of communication is not uniform, that is, some nodes are
“closer” than others. Scalability in Combine is achieved by communicating on
an overlay tree and ensuring that the cost of performing a lookup or a move is
therefore proportional to the cost of the shortest path between the requesting
node and the serving node (its predecessor), in the overlay tree. The simplicity
of the overlay tree, and in particular, the fact that the object is held only by leaf
nodes, facilitates the proof that a node finds a previous node holding the object.

To state the communication cost more precisely, we assume that every pair
of nodes can communicate, and that the cost of communication between pairs
of nodes forms a metric, that is, there is a symmetric positive distance between
nodes, denoted by δ(., .), which satisfies the triangle inequality. The stretch of a
tree is the worst case ratio between the cost of direct communication between
two nodes p and q in the network, that is, δ(p, q), and the cost of communicating
along the shortest tree path between p and q.

The communication cost of Combine is proportional to the cost of the short-
est path between the requesting node and the serving node, times the stretch of
the overlay tree. Thus, the communication cost improves as the stretch of the
overlay tree decreases. Specifically, the cost of a lookup request by node q that is
served by node p is proportional to the cost of the shortest tree path between p
and q, that is, to δ(p, q) times the stretch of the tree. The cost of a move request
by node p is the same, with q being the node that will pass the object to p.

When communication is asynchronous and requests are concurrent, however,
bounding the communication cost does not ensure that a request is eventually
served (starvation-freedom). It remains to show that while p is waiting for the
object from a node q, a finite, acyclic waiting chain is being built between q and
the node owning the object (the head of the queue). Possibly, while the request
of p is waiting at q, many other requests are passing over it and being placed
ahead of it in the queue, so p’s request is never served. We prove that this does
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not happen, providing the first complete proof for a distributed queue protocol,
accommodating asynchrony and concurrent requests.

A pleasing aspect of Combine is in not requiring fifo communication links.
Prior directory protocols [9, 12,23] assume that links preserve the order of mes-
sages; however, ensuring this property through a link-layer protocol can signif-
icantly increase message delay. Instead, as its name suggests, Combine han-
dles requests that overtake each other by combining multiple requests that pass
through the same node. Originally used to reduce contention in multistage in-
terconnection networks [16, 20], combining means piggybacking information of
distinct requests in the same message.

Organization: We start with preliminary definitions (Section 2), and then present
Combine in Section 3. The termination proof and analysis of our protocol are
given in Section 4. Section 5 discusses how to construct an overlay tree. Finally,
related work is presented in Section 6 and we conclude in Section 7.

2 Preliminaries

We consider a set of nodes V , each with a unique identifier, communicating
over a complete communication network. If two nodes p and q do not have a
direct physical link between them, then an underlying routing protocol directs
the message from p to q through the physical communication edges.

The cost of communication between nodes is non-uniform, and each edge
(p, q) has a weight which represents the cost for sending a message from p to q,
denoted δ(p, q). We assume that the weight is symmetric, that is, δ(p, q) = δ(q, p),
and it satisfies the triangle inequality, that is, δ(p, q) ≤ δ(p, u) + δ(u, q).

The diameter of the network, denoted ∆, is the maximum of δ(p, q) over all
pairs of nodes.

We assume reliable message delivery, that is, every message sent is eventually
received. A node is able to receive a message, perform a local computation, and
send a message in a single atomic step.

We assume the existence of a rooted overlay tree T , in which all physical
nodes are leaves and inner nodes are mapped to physical nodes.

Let dT (p, q) be the number of hops needed to go from a leaf node p up to
the lowest common ancestor of p and leaf node q in T , and then down to q (or
vice versa); δT (p, q) is the sum of the costs of traversing this path, that is, the
sum of δ(., .) for the edges along this path.

The stretch of an overlay tree T is the ratio between the communication cost
over T and the direct communication cost. That is, stretchT = maxp,q

δT (p,q)
δ(p,q) .

Section 5 presents ways to construct overlay trees with small stretch.
The depth of T , denoted DT , is the number of hops on the longest path from

the root of T to a leaf; the diameter of T , denoted ∆T , is the maximum of
δT (p, q), over all pairs of nodes.
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Fig. 1. A move request initialized by node q when the object is located at p.

3 The Combine Protocol

The protocol works on an overlay tree. When the algorithm starts, each node
knows its parent in the overlay tree. Some nodes, in particular, the root of the
overlay tree, also have a downward pointer towards one neighbor (other than its
parent).

The downward pointers create a path in the overlay tree, from the root to
the leaf node initially holding the object; in Figure 1(a), the arrows indicate
downward pointers towards p.

A node requesting the object x tries to find a predecessor : a nearby node
waiting for x or the node currently holding x. Initially, p, the node holding the
object is this predecessor.

We combine multiple requests, by piggybacking information of distinct re-
quests in the same message, to deal with concurrent requests.

– A node q obtains the current value of the object by executing a lookup
request. This request goes up in the overlay tree until it discovers a pointer
towards the downward path to a predecessor; the lookup records its identifier
at each visited node. When the request arrives at this predecessor, it sends
a read-only copy directly to q. Each node stores the information associated
to at most one request for any other node.

– A node q acquires an object by executing a move request. This request goes
up in the overlay tree until it discovers a pointer towards the downward path
to a predecessor. This is represented by the successive steps of a move as in-
dicated in Figure 1. The move sets downward pointers towards q while going
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up the tree, and resets the downward pointers it follows while descending
towards a predecessor. If the move discovers a stored lookup it embeds it
rather than passing over it. When the move and (possibly) its embedded
lookup reach a predecessor p, they wait until p receives the object. After p
receives the object and releases it, p sends the object to q and a read-only
copy of the object to nodes who issued the embedded lookup requests.

Since the downward path to the object may be changing while a lookup
(or a move) is trying to locate the object, the lookup may remain blocked at
some intermediate node u on the path towards the object. Without combining,
a move request could overtake a lookup request and remove the path of pointers,
thus, preventing it from terminating. However, the identifier stored in all the
nodes a lookup visits on its path to the predecessor allows an overtaking move
to embed the lookup. This guarantees termination of concurrent requests, even
when messages are reordered. Information stored at the nodes ensures that a
lookup is not processed multiple times.

We now present the algorithm in more detail. The state of a node appears
in Algorithm 1. Each node knows its parent in the overlay tree, except the root,
whose parent = ⊥. A node might have a pointer towards one of its children
(otherwise it is ⊥); the pointer at the root is not ⊥. Each node also maintains a
variable lookups, holding information useful for combining.

Algorithm 1 State and Message
1: State of a node u:
2: parent ∈ N ∪ {⊥}, representing the parent node in the tree
3: pointer ∈ N ∪ {⊥}, the direction towards the known predecessor, initially ⊥
4: lookups a record (initially empty) of lookup entries with fields:
5: id ∈ N, the identifier of the node initiating the request
6: ts ∈ N, the sequence number of the request
7: status ∈ {not-served, served, passed}, the request status

8: Message type:
9: message a record with fields:

10: phase ∈ {up, down}
11: type ∈ {move, lookup}
12: id ∈ N, the identifier of the request
13: ts ∈ N, the sequence number of the request
14: lookups, a record of embedded lookup entries

The lookup() operation: A lookup request r issued by a node q carries a unique
identifier including its sequence number, say ts = τ , and its initiator, id = q. Its
pseudocode appears in Algorithm 2. A lookup can be in three distinct states: it
is either running and no move overtook it (not-served), it is running and a move
request overtook and embedded it (passed), or it is over (served).

The lookup request proceeds in two subsequent phases. First, its initiator
node sends a message that traverses its ancestors up to the first ancestor whose
pointer indicates the direction towards a predecessor—this is the up phase (Lines 1–
8). Second, the lookup message follows successively all the downward pointers
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Algorithm 2 Lookup of object x at node u

1: Receiving 〈up, lookup, q, τ, ∗〉 from v: � Lookup up phase

2: if @〈q, τ1, ∗〉 ∈ u.lookups : τ1 ≥ τ then � Not a stale message?

3: if ∃rq = 〈q, τ2, ∗〉 ∈ u.lookups : τ2 < τ then � First time we hear about?

4: u.lookups ← u.lookups \ {rq} ∪ {〈q, τ, not-served〉} � Overwrite stored lookup

5: else u.lookups ← u.lookups ∪ {〈q, τ, not-served〉} � Store lookup

6: if u.pointer = ⊥ then
7: send 〈up, lookup, q, τ,⊥〉 to u.parent � Resume up phase

8: else send 〈down, lookup, q, τ,⊥〉 to u.pointer � Start down phase

9: Receiving 〈down, lookup, q, τ, ∗〉 from v: � Lookup down phase

10: if @〈q, τ1, ∗〉 ∈ u.lookups : τ1 ≥ τ then
11: if ∃rq = 〈q, τ2, ∗〉 ∈ u.lookups : τ2 < τ then
12: u.lookups ← u.lookups \ {rq} ∪ {〈q, τ, not-served〉}
13: else u.lookups ← u.lookups ∪ {〈q, τ, not-served〉}
14: if u is a leaf then
15: send xread-only to q � Blocking send (i.e., executes as soon as u releases x)

16: else send 〈down, lookup, q, τ,⊥〉 to u.pointer � Resume down phase

down to a predecessor—this is the down phase (Lines 9–16). The protocol guar-
antees that there is a downward path of pointers from the root to a predecessor,
hence, the lookup finds it (see Lemma 2).

A node keeps track of the lookups that visited it by recording their identifier in
the field lookups, containing some lookup identifiers (i.e., their initiator identifier
id and their sequence number ts) and their status. The information stored by
the lookup at each visited node ensures that a lookup is embedded at most once
by a move. When a new lookup is received by a node u, u records the request
identifier of this freshly discovered lookup. If u had already stored a previous
lookup from the same initiator, then it overwrites it by the more recent lookup,
thus keeping the amount of stored information bounded (Lines 3–4).

Due to combining, the lookup may reach its predecessor either by itself or
embedded in a move request. If the lookup request r arrives at its predecessor
by itself, then the lookup sends a read-only copy of the object directly to the
requesting node q (Line 15 of Algorithm 2).

The move() operation: The move request, described in Algorithm 3, proceeds in
two phases to find its predecessor, as for the lookup. In the up phase (Lines 1–11),
the message goes up in the tree to the first node whose downward pointer is set.
In the down phase (Lines 12–26), it follows the pointers down to its predecessor.
The difference in the up phase of a move request is that an intermediate node u
receiving the move message from its child v sets its u.pointer down to v (Line 8).
The difference in the down phase of a move request is that each intermediary
node u receiving the message from its parent v resets its u.pointer to ⊥ (Line 16).

For each visited node u, the move request embeds all the lookup requests
stored at u that need to be served and marks them as served in u (Lines 3–6,
17–20 of Algorithm 3).
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Algorithm 3 Move of object x at node u

1: Receiving m = 〈up, move, q, τ, lookups〉 from v: � Move up phase

2: clean(m)
3: for all ra = 〈a, τ, not-served〉 ∈ u.lookups do
4: if @〈a, τ ′, ∗〉 ∈ m.lookups : τ ′ ≥ τ then
5: m.lookups ← m.lookups ∪ {ra} � Embed non-served lookups

6: u.lookups ← u.lookups \ {ra} ∪ {〈a, τ, served〉} � Mark lookups as served

7: oldpointer ← u.pointer
8: u.pointer ← v � Set downward pointer

9: if oldpointer = ⊥ then
10: send 〈up, move, q, τ,m.lookups〉 to u.parent � Resume up phase

11: else send 〈down, move, q, τ,m.lookups〉 to oldpointer � Start down phase

12: Receiving m = 〈down, move, q, τ, lookups〉 from v: � Move down phase

13: clean(m)
14: if u is not a leaf then � Is predecessor not reached yet?

15: oldpointer ← u.pointer
16: u.pointer ← ⊥ � Unset downward pointer

17: for all ra = 〈a, τ, not-served〉 ∈ u.lookups do
18: if @〈a, τ ′, ∗〉 ∈ m.lookups : τ ′ ≥ τ then
19: m.lookups ← m.lookups ∪ {ra}
20: u.lookups ← u.lookups \ {ra} ∪ {〈a, τ, served〉}
21: send m to oldpointer � Resume down phase

22: else � Predecessor is reached

23: for all 〈a, τ, status〉 ∈ m.lookups : @〈a, τ ′, ∗〉 ∈ u.lookups with τ ′ ≥ τ do
24: send xread-only to a � Blocking send of read-only copy

25: send x to q � Blocking send of object

26: delete(x) � Remove object local copy

27: clean(m): � Clean-up the unused information

28: for all 〈a, τ, not-served〉 ∈ m.lookups do
29: if ∃〈a, τ ′, status〉 ∈ u.lookups : (status = served ∧ τ ′ = τ) ∨ (τ ′ > τ) then
30: m.lookups ← m.lookups \ {〈a, τ, not-served〉}
31: if 〈a, τ, ∗〉 /∈ u.lookups then
32: m.lookups ← m.lookups \ {〈a, τ, not-served〉} ∪ {〈a, τ, passed〉}
33: u.lookups ← u.lookups ∪ {〈a, τ, passed〉}

Along its path, the move may discover that either some lookup r it embeds
has been already served or that it overtakes some embedded lookup r′ (Line 29
or Line 31, respectively, of Algorithm 3). In the first case, the move just erases
r from the lookups it embeds, while in the second case the move marks, both in
the tuple it carries and locally at the node, that the lookup r′ has been passed
(Line 30 or Lines 32–33, respectively, of Algorithm 3).

Once obtaining the object at its predecessor, the move request first serves all
the lookup requests that it embeds (Lines 23, 24), then sends the object to the
node that issued the move (Line 25) and finally deletes the object at the current
node (Line 26).
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If the object is not at its predecessor when the request arrives, the request is
enqueued and its initiator node will receive the object as soon as the predecessor
releases the object (after having obtained it).

Concurrent request considerations: Note that a lookup may not arrive at its
predecessor because a concurrent move request overtook it and embeds it, that
is, the lookup r found at a node u that u.pointer equals v, later, a move m follows
the same downward pointer to v, but arrives at v before r. The lookup detects
the overtaking by m and stops at node v (Line 13 of Algorithm 3, and Lines 2
and 10 of Algorithm 2). Finally, the move m embeds the lookup r and serves it
once it reaches its predecessor (Lines 23, 24 of Algorithm 3 and Lines 31, 32 of
Algorithm 3).

Additionally, note that no multiple move requests can arrive at the same pre-
decessor node, as a move follows a path of pointers that it immediately removes.
Similarly, no lookup arrives at a node where a move already arrived, unless em-
bedded in it. Finally, observe that no move is issued from a node that is waiting
for the object or that stores the object.

4 Analysis of Combine

A request initiated by node p is served when p receives a copy of the object,
which is read-only in case of a lookup request. This section shows that every
request is eventually served, and analyzes the communication cost. We start by
considering only move requests, and then extend the analysis to lookup requests.

Inspecting the pseudocode of the up phase shows that, for every ` > 1, a
move request m sets a downward pointer from a node u at level ` to a node u′

at level `− 1 only if it has previously set a downward pointer from u′ to a node
at level `− 2. Thus, assuming no other move request modifies these links, there
is a downward path from u to a leaf node. The proof of the next lemma shows
that this path from u to a leaf exists even if another move request redirects a
pointer set by m at some level `′ ≤ `.

Lemma 1. If there is a downward pointer at a node u, then there is a downward
path from u to a leaf node.

Proof. We prove that if there is a downward pointer at node u at level `, then
there is a path from u to a leaf node. We prove that this path exists even when
move requests may redirect links on this path from u to a leaf node.

The proof is by induction on the highest level `′ such that no pointer is
redirected between levels `′ and `. The base case, `′ = 1, is obvious.

For the inductive step, `′ > 1, assume that there is always a path from u to
a leaf node, even if move requests change any of the pointers set by m at some
level below `′−1. Let m′ be a move request that redirects the downward pointer
at level `′, that is, m′ redirects the link at node u′ to a node v at level `′ − 1.
(Note that the link redirection is done atomically by assumption, so that two
nodes can not redirect the same link in two different directions.) However, by the
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inductive hypothesis (applied to m′), this means that there is a downward path
from v to a leaf node. Hence, there is a downward path from u′ to a leaf node,
and since no pointer is redirected at the levels between `′ and `, the inductive
claim follows. ut

Lemma 2. At any configuration, there is a path of downward pointers from the
root to a leaf node.

Proof. Initially, the invariant is true by assumption. The claim follows from
Lemma 1, since there is always a downward pointer at the root. ut

Observation 1 A move request is not passed by another move request, since
setting of the link and sending the same request in the next step of the path
(upon receiving a move request) happen in an atomic step.

We next argue that a request never backtracks its path towards the object.

Lemma 3. A move request m does not visit the same node twice.

Proof. Assume, by way of contradiction, that m visits some node twice. Clearly,
a move request does not backtrack during its down phase. Then, let u be the
first node that m visits twice during its up phase.

Since m does not visits the same node twice during the down phase, m does
not find a downward link at u, when visiting u for the first time. Thus, m
continues to u′, the parent of u.

If m finds a downward link to u at u′, then we obtain a contradiction, by
Observation 1 and since the only way for this downward link to exist is that m has
been passed by another move request. Otherwise, m does not find a downward
link at u′, and due to the tree structure, this contradicts the fact that u is the
first node that m visits twice. ut

A node p is the predecessor of node q if the move message sent by node p has
reached node q and p is waiting for q to send the object.

Lemma 4. A move request m by node p reaches its predecessor q within dT (p, q)
hops and δT (p, q) total cost.

Proof. Since there is always a downward pointer at the root, Lemma 1 and
Observation 1 imply that the request m eventually reaches its predecessor q.
Moreover, by Lemma 3 and the tree structure, the up-phase eventually com-
pletes by reaching the lowest common ancestor of p and q. Then m follows the
path towards q using only downward pointers. Thus, the total number of hops
traversed by m during both phases is dT (p, q) and the total cost is δT (p, q). ut

This means that DT is an upper bound on the number of hops for a request
to find its predecessor.

Lemma 4 already allows to bound the communication cost of a request issued
by node q, that is, the cost of reaching the node p from which a copy of the object
is sent to q. Observe that once the request reaches p, the object is sent directly
from p to q without traversing the overlay tree.
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Theorem 1. The communication cost of a request issued by node q and served
by node p is O(δT (p, q)).

Clearly, embedding lookup requests in move requests does not increase the
message complexity, but it might increase the bit complexity. In [4], we measure
the total number of bits sent on behalf of a request, and show that combining
does not increase the number of bits transmitted due to a lookup request. (The
argument is straightforward for move requests, which are never embedded.)

Note that finding a predecessor does not immediately imply that the request
of p does not starve, and must be eventually served. It is possible that although
the request reaches the predecessor q, q’s request itself is still on the path to its
own predecessor. During this time, other requests may constantly take over p’s
request and be inserted into the queue ahead of it. We next limit the effect of
this to ensure that a request is eventually served.

For a given configuration, we define a chain of requests starting from the
initiator of a request m. Let u0 be the node that initiated m; the node before u0

is its predecessor, u1. The node before u1 is u1’s predecessor, if u1 has reached
it. The chain ends at a node that does not have a predecessor (yet), or at the
node that holds the object.

The length of the chain is the number of nodes in it. So, the chain ends at a
node whose request is still on its way to its predecessor, or when the node holds
the object. In the last case, where the end of the chain holds the object, we say
that the chain is complete.

Observe that at a configuration, a node appears at most once in a chain,
since a node cannot have two outstanding requests at the same time.

For the rest of the proof, we assume that each message takes at most one
time unit, that is, d hops take at most d time units.

Lemma 5. A chain is complete within at most n · DT time units after m is
issued.

Proof. We show, by induction on k, that after k ·DT time units, the length of the
chain is either at least k, or the chain is complete. Base case, k = 0, is obvious.
For the induction step, consider the head of the chain. If it holds the object,
then the chain is complete and we are done. Otherwise, as it has already issued
a request, by Lemma 4, within at most DT hops, and hence, time units, it finds
its predecessor, implying that the length of the chain grows by one.

Since a node appears at most once in a chain, its length, k, can be at most
n, and hence, the chain is complete within n ·DT time units. ut

Once a chain is complete, the position of r in the queue is fixed, and the
requests start waiting.

Assume that the time to execute a request at a node is negligible, and that
the object is sent from one node in the chain to its successor within one hop.
Thus, within n hops the object arrives at i0, implying the next theorem.

Theorem 2 (No starvation). A request is served within n ·DT +n time units.
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We now discuss how to modify the proof to accommodate a lookup request
r. Lemma 1 (and hence, Lemma 2) does not change since only move requests
change the downward paths. For Lemma 3, the path can be changed only if r is
passed by m, so r stops once at u′. The move request m that embeds r will not
visit u twice, as argued above. Hence, the claim follows. For Lemma 4, if a lookup
request is passed at a node u, then a move request m embeds the lookup at a
node u′, that is, the parent or the child of u, respectively, if m passed the lookup
in the up or down phase. Thus, the move request will reach its predecessor, which
is also the predecessor of the lookup. A read-only copy of the object will be sent
to the lookup before the object is sent to the node that issued the move request
that embeds the lookup.

The lookup and move requests can be used to support read and write opera-
tions, respectively, and provide a linearizable read/write object [14], in a manner
similar to Arrow [9].

5 Constructing an Overlay Tree

Constructing an overlay tree with good stretch is the key to obtaining good
performance in Combine. One approach is a direct construction of an overlay
tree, in a manner similar to [12]. Another approach is to derive an overlay tree
T from any spanning tree ST , without deteriorating the stretch. The rest of this
section describes this approach.

Pick a center u of ST as the root of the overlay tree. (I.e., a node minimizing
the longest hop distance to a leaf node.)

Let k be the level of u in the resulting rooted tree.
By backwards induction, we augment ST with virtual nodes and virtual

links to obtain an overlay tree T where all nodes of ST are leaf nodes, without
increasing the stretch of the tree. (See Figure 2.) The depth of T , DT , is k. At
level k−1 we add to T a duplicate of the root u and create a virtual link between
this duplicate and u itself. Then, for every level ` < k − 1, we augment level `
of the spanning tree with a virtual node for each (virtual or physical) node at
level ` + 1 and create a virtual link between a node at level ` and its duplicate
at level ` + 1.

q

u2

wp u

u1w1w

u

p

v

q v

v1

Fig. 2. Deriving an overlay tree from a spanning tree.
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To see why the stretch of the overlay tree T is equal to the stretch of the
underlying spanning tree ST , note that we do not change the structure of the
spanning tree, but augment it with virtual paths consisting of the same node,
so that each becomes a leaf. Since the cost of sending a message from a node u
to itself is negligible compared with the cost of sending a message from u to any
other node in the system, the cost of these virtual paths (which have at most k
hops) is also negligible.

There are constructions of a spanning tree with low stretch, e.g., [10], which
can be used to derive an overlay tree with the same stretch.

6 Related Work

We start by discussing directory protocols that are implemented in software, and
then turn to hardware protocols.

Arrow [9] is a distributed directory protocol, maintaining a distributed
queue, using path reversal. The protocol operates on spanning tree, where all
nodes (including inner ones) may request the object. Every node holds a pointer
to one of its neighbors in the tree, indicating the direction towards the node
owning the object; the path formed by all the pointers indicates the location
of a sink node either holding the object or that is going to own the object. A
move request redirects the pointers as it follows this path to find the sink, so
the initiator of the request becomes the new sink. In this respect, Arrow and
Combine are quite similar; however, the fact that in Combine only leaf nodes
request the object, allows to provide a complete and relatively simple proof of
the protocol’s behavior, including lack of starvation.

The original paper on Arrow analyzes the protocol under the assumption
that requests are sequential. Herlihy, Tirthapura and Wattenhofer [13] analyze
Arrow assuming concurrent requests in a one-shot situation, where all requests
arrive together; starvation-freedom is obvious under this assumption. Kuhn and
Wattenhofer [17] allow requests at arbitrary times, but assume that the system
is synchronous. They provide a competitive analysis of the distance to the prede-
cessor found by a request (relative to an optimal algorithm aware of all requests,
including future ones); it seems that this analysis also applies to Combine. The
communication cost of Arrow is proportional to the stretch of the spanning
tree used. Herlihy, Kuhn, Tirthapura and Wattenhofer [11] merge these works in
a complex competitive analysis of Arrow for the asynchronous case. The dif-
ference with our analysis is twofold. First, they do not prove starvation freedom
yet they analyze latency by assuming that requests are assigned a fixed loca-
tion in the queue. In contrast, we consider worst-case scenarios where a request
finds its predecessor before its predecessor finds its own predecessor, in which
the requests order is undefined. Second, they restrict their analysis to exclusive
accesses, and it does not handle the shared read-only requests discussed in [9]—
the reason is that requests get reordered due to message asynchrony, delaying
arbitrarily read-only requests. Combine provides shared and exclusive requests
and we provide a simple proof that they do not starve despite asynchrony.
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More recently, Zhang and Ravindran [23] presented Relay, a directory pro-
tocol that also runs on a spanning tree. In Relay, pointers lead to the node
currently holding the object (rather than to a node that is already waiting for
the object), and they are changed only after the object moves from one node to
another. (This is similar to the tree-based mutual exclusion algorithm of Ray-
mond [21].) When requests are concurrent, they are not queued one after the
other, and a request may travel to a distant node currently holding the object,
while it ends up obtaining the object from a nearby node (which is going to
receive the object first). (See [4].)

Ballistic [12] assumes a hierarchical overlay structure, whose leaves are the
physical nodes; this structure is similar to the overlay tree used in Combine,
but it is enriched with shortcuts, so that a node has several parents in the level
above. Requests travel up and down this overlay structure in a manner similar
to Combine; since requests might be going over parallel links, however, perfor-
mance may deteriorate due to concurrent requests. It is possible to construct
a situation where a request travels to the root of the structure, but ends up
obtaining the object from a sibling node (see [4, 22]). Sun’s thesis [22] discusses
this problem and suggests a variant that integrates a mutual exclusion protocol
in each level. The cost of this variant depends on the mutual exclusion algorithm
chosen, but it can be quite high since many nodes may participate in a level.
Sun’s thesis also includes a proof that requests do not starve, but it relies on a
strong synchrony assumption, that all messages on a link incur a fixed delay.

The next table compares the communication cost of a request by node p,
served by node q. In the table, δST (p, q) denotes the (weighted) distance be-
tween p and q on a spanning tree; while ∆ST is the (weighter) diameter of the
spanning tree. The construction of Section 5 implies that they are not better
(asymptotically) than the distance and diameter of the overlay tree (δT (p, q)
and ∆T ).

Protocol Cost Assumes FIFO

Combine O(δT (p, q)) No
Arrow O(δST (p, q)) Yes
Relay O(∆ST ) Yes
Ballistic O(∆T ) Yes

In hardware cache coherent systems, a directory is used to store the memory
addresses of all data that are present in the cache of each node. It maintains
access coherence by allowing cache hits or by (re)reading a block of data from
the memory. In [6], blocks have three states indicating whether they are shared,
exclusive or invalid. A block is either invalidated when some specific action may
violate coherence or upon receiving an invalidation broadcast message [3]. In
addition, the directory can maintain information to restrict the broadcast to
affected nodes, as suggested in [2]. Finally, the directory size can be reduced by
linking the nodes that maintain a copy of the block [15]. Upon invalidation of a
block, a message invalidates successively the caches of all linked nodes.
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The design principle of this later approach is similar to the distributed queue
that is maintained by our protocol except that we use it for passing exclusive
accesses and not for invalidating read-only copies.

7 Discussion

We have proposed Combine to efficiently solve a key challenge of a directory
protocol in highly-contended situations: ensuring that all requests eventually
get served. Some prior protocols prove that requests do not starve under the
assumption that requests execute one by one and / or that communication is
synchronous. Others have high communication complexity as they require that
conflicting requests run additional mutual exclusion algorithms or because con-
current requests may result in an unbounded number of message exchanges. Our
combining technique does not incur any communication overhead to handle con-
currency. It can be easily adapted to tolerate unreliable communication, by a
traditional retransmission technique based on timeouts and acknowledgements.

Consistency protocols play an important role in data-flow distributed imple-
mentations of software transactional memory (DTM) in large-scale distributed
memory systems [12]. The consistency protocols of existing DTMs [5,8,18] seem
less suited for large-scale systems than directory-based consistency protocols.
They follow a lazy conflict detection strategy either by acquiring a global lock [18]
or by broadcasting [5,8], at commit-time—two techniques that do not scale well
when the number of nodes grow.

We leave to future work the interesting question of integrating the directory
protocol into a full-fledged distributed transactional memory.
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