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Abstract. Clock synchronization is a crucial service in many distributed
systems, including wireless ad-hoc networks. This paper studies external
clock synchronization, in which nodes should bring their clocks close to
the value of some external reference time, which is provided in the system
by one or more source clocks.
Reference broadcast synchronization (RBS) is a known approach that
exploits the broadcast nature of wireless networks for a single hop. How-
ever, when networks are large in physical extent, additional mechanisms
must be employed.
Using multi-hop algorithms that re-broadcast time information to short
distances reduces the energy consumed for clock synchronization. The
reason is that energy costs grow more than linearly with the broadcast
distance. On the other hand, the quality of the clock synchronization,
as measured in the closeness of the clocks, deteriorates as the number of
hops increases.
This paper shows how to balance these two contradictory goals, achieving
optimal clock synchronization while adhering to an energy budget at
each node. In particular, a distributed algorithm is presented that uses
multi-hop broadcasting over a shallow infrastructure to synchronize the
clocks. The closeness of clock synchronization achieved by the algorithm
is proved to be optimal for the given energy constraints.
Keywords: Clock Synchronization, Wireless Networks, Ad-hoc Net-
works, Multi-hop Broadcasts.

1 Introduction

Multi-hop ad-hoc networks consist of a collection of computing devices (called
nodes) communicating by wireless broadcast. Their simplicity and the fact they
do not require a pre-existing, wired infrastructure, have made them very popular.
A broadcast transmission reaches all nodes within a specific range of its source;
in order to reach a node outside this range, one or more intermediate broadcast
transmissions are used. The transmission range of a broadcast is determined by
the power used by the node: the power needed to broadcast to distance d is γdβ ,
where β ≥ 1 is the distance-power gradient, which depends on the environmental
conditions of the network, and γ > 0 is the transmission quality parameter.



Many applications in distributed systems need synchronized clocks to work
correctly. Such applications need to relate the local occurrence time of events to
some reference time that is provided in the system by (possibly multiple) sources,
which are perfectly synchronized with each other (e.g., by relying on UTC [32]).
Reference broadcast synchronization (RBS) [12] is a known approach for clock
synchronization in wireless ad-hoc networks, which broadcasts reference time on
a single hop. When networks are large in physical extent, RBS is extended to
use multi-hop re-broadcasting [23].

An important parameter for evaluating clock synchronization algorithms is
the clock skew it provides, namely, the maximal (absolute) difference between
the reading of a local clock and the reference time. The theory of clock synchro-
nization [3,18,25,28] indicates that clock skew depends on the uncertainty about
the accumulated delay of delivering messages between the nodes. For example, in
case the uncertainty about the delay experienced by each broadcast message is
the same, the clock skew increases as the number of intermediate hops increases.

In wireless ad-hoc networks, energy is typically a scarce resource, which
should be used sparingly. Additionally, the likelihood of interference among
transmissions increases with their transmission power [19]. In the common case,
where β > 1, the energy costs grow super-linearly with the broadcast distance,
making it more energy-economic to broadcast information in several hops, rather
than transmitting at the maximum power and reaching far away nodes in a single
broadcast hop.

This paper considers clock synchronization in multi-hop ad-hoc networks
from a new angle, relating the energy constraints on a clock synchronization
algorithm with the optimal skew it may obtain. Given individual energy budgets
indicating how much a node is willing to spend on each message transmission
for clock synchronization, we give exact bounds on the optimal skew that can
be achieved, as a function of the uncertainty in message delays.

As we show, the optimal skew is the minimal depth of a particular spanning
forest—whose trees are rooted at the time sources—of the topology graph in-
duced by respecting the energy budgets. For the upper bound, we describe how
to construct a shallow spanning forest, whose depth is minimal with respect to
the accumulated uncertainty. This is done by applying simple (centralized or dis-
tributed) algorithms for finding breath-first search trees from multiple sources.
Then, the source time is propagated down the trees. The skew attained by this
simple algorithm is the sum of the uncertainties along the path from a source to a
node. The matching lower bound is shown using well-known shifting techniques.

This paper considers external clock synchronization, in which there is at least
one node in the system with access to the reference, or source, time. Applications
sometimes require only internal (or mutual) clock synchronization, in which the
local clocks of the nodes are brought close to each other but with no necessary
relation to a reference time. Clearly, by invoking an external clock synchroniza-
tion algorithm A in which an arbitrary node plays the role of the time source,
it is possible to achieve internal clock synchronization with skew that is at most
twice the skew of A.



Theoretical study of the clock synchronization problem dates back to the
early 1980’s. In particular, Lundelius and Lynch [20], and later Halpern et al. [18],
proved tight bounds on the best skew achieved by internal clock synchronization
algorithms. Interestingly, our bound is a simple expression depending on the
(weighted) depth of the tree, no matter how complicated the topology is. This
stands in contrast to the result in [18] for internal synchronization, in which the
tight bound on clock skew is only characterized as the solution to a particular
linear program. Later work [3,25,28] considered the issue of internal and external
clock synchronization algorithms that exploit specific assumptions on message
delay. Recently, Fan and Lynch proved lower [16] and upper [15] bounds on
clock skew for the problem of gradient clock synchronization, in which the skew
between nodes’ clocks should be smaller if they are closer to each other.

Clock synchronization in wireless ad-hoc networks has been the topic of ex-
tensive research over the last few years (see the survey papers [30,31] as well as
surveys in Elson and Römer [14] and in Cao’s thesis [9]). RBS [12], mentioned
above, broke new ground by exploiting the nature of wireless broadcasts to get
improved performance. Römer’s algorithm [29] assigns timestamps to events,
which can be compared to estimate the relative times at which events occurred;
it was designed for systems with mobile nodes. The local nature of gradient clock
synchronization [15,16] makes it particularly well-suited to sensor networks.

Much of the previous work is not directly comparable to the results in this
paper, by focusing, for instance, on one-hop networks, on internal clock synchro-
nization, on how neighboring nodes estimate each other’s clock values, or by
evaluating the performance solely through experiments or simulation. Here we
discuss more related papers, in which either the approach or algorithm is similar
to ours or some notion of optimality is proved.

Several papers have addressed the issue of trading off energy and accuracy
of the clock synchronization. For instance, PalChaudhuri et al. [26] describe a
probabilistic version of RBS [12] and provide an analysis that gives the number
of messages and synchronization overhead required to achieve a certain accuracy
in the synchronization. van Greunen and Rabaey [33] have a way to devise an
algorithm with minimum number of messages to achieve a certain accuracy.
Finally, in the context of RBS-style algorithms, Elson et al. [13] show how to
achieve an optimal tradeoff between energy consumption and accuracy. In all
these papers, the energy usage is equated with the number of messages sent.

Several papers (e.g., [17, 33]) contain algorithms for clock synchronization
that work by constructing and using a spanning tree of the network, preferably
one of low depth, and propagating time information down the tree. These papers
measure the depth of the trees by hop-count, in contrast to our work, which mea-
sures depth based on the accumulated uncertainty; since we allow non-uniform
uncertainties on links, the two measures are not equivalent. Our matching lower
bound shows that uncertainties must be taken into account when construct-
ing the spanning forest to achieve optimality. Thus, our approach yields more
accurate clock synchronization when uncertainties are non-uniform.



The Network Time Protocol (NTP) [22], used to synchronize clocks in the
Internet, also uses a spanning forest rooted at time sources to broadcast syn-
chronization messages. This spanning forest is built in an ad-hoc manner, and
it minimizes the message delay, while our algorithm minimizes message uncer-
tainty.

A few papers provide lower bounds on some complexity measures, which
can be used to show that various algorithms are optimal in that regard. Blum et
al. [8] prove a lower bound on the size of the interval for algorithms in which each
node keeps an interval in which the real time should lie. Meier et al. [21] present
an algorithm for internal synchronization that uses the data in a communication
pattern optimally in order to obtain the best synchronization.

2 The System Model

Next we sketch a model of computation that captures our assumptions about
nodes and their communication. The formalism is based on that in [4, 7].

We consider a set of n nodes V = {v1, . . . , vn}, located in the Euclidean plane
R2, that communicate with each other through wireless broadcasts. We assume
that nodes are not mobile.

Associated with each broadcast is a distance d; we define the recipients of a
broadcast performed by node vi to be the set of nodes whose Euclidean distance
from vi is at most d. The power required for broadcasting to distance d is γdβ ,
where β ≥ 1 is the distance-power gradient, which depends on the environmental
conditions of the network, and γ > 0 is the transmission quality parameter ; typ-
ically, 1 ≤ β ≤ 8 and γ is normalized to one. We assume messages are of a fixed
size, therefore γdβ is proportional to the energy consumed when broadcasting
to distance d.

Various events can occur at a node, including the arrival of a message as well
as internal happenings, e.g., internal timers going off.

Each node vi has a hardware clock, denoted HCi, which is a function from real
time to hardware clock time of the form HCi(t) = t+oi, where oi is the offset of
the hardware clock from real time. This form of the hardware clock corresponds
to the situation when hardware clocks have no drift, i.e., these clocks run at the
same rate as real time.

Each node is modelled as a deterministic state machine, with a set of states,
including subsets of initial and final states, and a transition function. The tran-
sition function takes as input the current state of the node, the current value of
the hardware clock, and the current event, and produces as output a new state
and possibly a message to be broadcast to a certain distance (equivalently, with
a certain power). The hardware clock cannot be modified by the node. The state
machine encodes the local algorithm executed by the node.

A history of a node is an infinite sequence of alternating states and pairs,
where each pair consists of an event φ and a hardware clock value T . The first
state must be an initial state of the node and each subsequent state must follow
correctly, according to the node’s transition function, from the previous state



and pair. Furthermore, the hardware clock values must form a strictly increasing
sequence that is unbounded.

A timed history of a node vi is a history together with an assignment of a
real time to each pair such that for each pair (φ, T ), the time t assigned to it
satisfies HCi(t) = T . The value of a node’s variable at real time t is the value
of the variable in the latest state whose preceding pair is assigned a real time
at most t. If t is less than the real time assigned to the first pair in the history,
then the value of the variable is that in the first state of the history.

An execution is a set of n timed histories, one for each node. For each pair
appearing in one timed history, say that of vi, which causes a message to be
broadcast, there must be exactly one pair appearing in the timed history of each
broadcast recipient vj whose event is the receipt of vi’s broadcast. Furthermore,
for each pair appearing in a timed history whose event is the receipt of a broad-
cast, there must be a pair containing the corresponding broadcast. Here we are
modelling reliable communication via the broadcasts.

The delay of a message (received by a node in an execution) is the differ-
ence between the real time when the message is received by the node and the
real time when the message is broadcast. Specific instances of the model restrict
the admissible executions, by making assumptions on message delay. These as-
sumptions can vary from one node to another or even from one broadcast to
another.

3 Problem Statement

Our goal is to synchronize the clocks of the non-source nodes as closely as possible
without using too much energy.

We start by explaining how nodes adjust their clocks. Each node vi has an
adjustment variable adji as part of its state whose value it adds to its hardware
clock to produce its logical clock, denoted LCi. That is, LCi(t) = HCi(t)+adji(t)
for all real times t.

There is a set S ⊆ V of distinguished source nodes that have perfectly syn-
chronized clocks; call this source time, denoted ST(t). Thus, LCi(t) = ST(t) = t
for all vi ∈ S and all real times t, i.e., the source time is the real time.

The non-source nodes have arbitrary logical and hardware clock values ini-
tially.

Informally, every node should set the value of its logical clock so as to min-
imize the difference between its clock and the source time. More formally, we
say a system solves the external clock synchronization problem if there exists a
value ε such that in every admissible execution there exists a real time tf such
that for each node vi and every real time t ≥ tf , vi is in a final state at time t
and |ST(t)− LCi(t)| ≤ ε. We call the quantity |ST(t)− LCi(t)| the skew of vi’s
logical clock.

The way we model energy constraints and how they affect the clock synchro-
nization problem is explained next.



Each node vi has a value, denoted energyi, which bounds the amount of
energy it is allowed to use for each transmission. This constraint translates to a
bound on the power with which each node is allowed to broadcast. We denote
this bound by poweri; note that for fixed-size messages, poweri = c · energyi, for
some constant c. For a node vi, let its neighborhood, denoted N(vi), be the set
of nodes that can correctly receive a message sent from vi and send a message
to vi without violating the energy constraints, that is, the set of nodes within
Euclidean distance 1

γβ

(
min{poweri, powerj}

) 1
β from vi.

The neighborhoods induce a topology graph, TG = 〈V,E〉, such that 〈vi, vj〉 ∈
E if and only if vj ∈ N(vi). Since the neighborhoods are bidirectional, the
topology graph is in fact undirected (i.e., 〈vi, vj〉 ∈ E if and only if 〈vj , vi〉 ∈ E).

We also assume that the energy constraints are “feasible”, in particular, that
they allow each node to communicate (perhaps indirectly) with every other node.
This means that TG is strongly-connected.

We assume that for each pair of neighboring nodes vi and vj , the behavior
of the link from vi to vj is the same as that of the link from vj to vi regarding
the median message delay and the uncertainty in the message delays. Therefore,
we associate with each link e in the topology graph, real numbers δe and ue,
with δe > ue ≥ 0, such that each message on the link e has delay in the range
[δe − ue, δe + ue], regardless of its direction.

The relationship to the definition of external clock synchronization is that
we now consider admissible executions to be executions in which the recipients
of a broadcast by node vi are all the neighbors of vi in TG, and every message
on link e has delay within the range [δe − ue, δe + ue].

Crucial to our analysis of clock synchronization algorithms is the weighted
variant of TG, denoted WTG, in which the weight of each edge e is ue. Consider
any path Π in WTG. Let the uncertainty of Π, denoted u(Π), be Σe∈Πue, that
is, the sum of the weights on all the edges in Π. Let ui,j be the minimum, over
all paths Π in WTG between vi and vj , of the uncertainty u(Π) of the path.
A path between vi and vj that achieves the minimum uncertainty is called a
minimum-uncertainty path. We define umin

i to be the minimum, over all source
nodes vs, of us,i, i.e., the shortest (weighted) distance from vi to any source.

We conclude this section with a few observations about our problem state-
ment.

Since the clocks do not drift, we are considering a “one-shot” problem: the
nodes execute some algorithm during which they can reset their adjustment
variables. Eventually each node finishes the algorithm and makes no further
changes to its adjustment variable. After this point, the relative values of their
logical clocks stay the same, no further resynchronization takes place, and the
skew of a node is unchanged thereafter.

As we have defined the problem, the goal of a clock synchronization algorithm
is to minimize the maximum, over all nodes vi, of the skew of vi’s clock. In fact,
in this paper we introduce clock synchronization algorithms that achieve even
stronger property: Not only do they minimize the maximum clock skew over all
nodes, but in addition they minimize the clock skew for each node vi separately.



The assumption of bidirectional links in the topology graph is common in
protocols for ad-hoc networks, e.g., the temporally-ordered routing algorithm
(TORA) [27]. The IEEE 802.11 specification also requires bidirectional signaling.
The justification for the assumption that the message delays and uncertainties
are symmetric is that variation in the delay is mostly due to processing in the
nodes and contention in the physical layer. We assume that nodes are roughly
the same and running the same software. Since the number of neighbors affects
the level of contention and the number of neighbors of a node vi is approximately
the same as the number of neighbors of any neighbor vj of vi, we expect the un-
certainty of messages from vi to vj to be about the same as that of messages
from vj to vi.

Note that we measure the delay of a specific message as the time elapsing
from when the transmitting node starts broadcasting until the time the recipi-
ent finishes its processing. Therefore, this quantity includes processing time in
both transmitting and recipient nodes, and the accumulated delays of any re-
transmissions of the message necessary in case the message is not successfully
transmitted at first. This implies that the delay of messages corresponding to the
same broadcast may be significantly different, and therefore, receiver-to-receiver
synchronization [12, 31], which exploits the fact that the propagation delay of
such correlated messages is about the same, cannot be applied in our model.

4 Multi-Hop Broadcast-Based Clock Synchronization

In this section, we present algorithms for clock synchronization in the presence of
multiple sources. First, we describe a generic algorithm for clock synchronization
which assumes that there is a spanning forest of the topology graph TG, with
each source being the root of a tree in the spanning forest. We prove that the
clock skew achieved by the generic algorithm, depends linearly on the depth of
the forest, namely, the maximum weighted distance of a path from a leaf to a
root. (Recall that edge weights are their uncertainties.) Then, we discuss simple
methods to construct a shallow spanning forest. Finally, we present an algorithm
that synchronizes clocks while constructing the spanning forest.

4.1 A Generic Synchronization Algorithm

We assume there is a spanning forest of TG such that each source is the root
of a separate tree, called its broadcast tree. Each source wakes up at some time
and sends its current clock value over its broadcast tree. When a node gets the
message, it adopts that clock value, after adding D to account for the message
delay, where D is the sum of the median delays along the path the message has
travelled so far. The detailed pseudocode is omitted from this version due to
space limitations.

Specifically, the spanning forest is represented by storing in each node vi an
indication of its parent, parenti; if vi is a source node, we have parenti = ⊥. Non-
source nodes also keep in a local variable delayi the sum of the median delays on



all the edges in the path in the broadcast tree between the node and the source.
Broadcasts received from a non-parent node are ignored. All broadcasts by node
vi are performed with power level poweri.

It is easy to see that the largest error that a neighbor vi of a source can
make is ue, where e is the edge between vi and the source. The largest error
occurs if the message from the source took the minimum time δe − ue, or the
maximum time δe + ue, to arrive. This maximum error propagates linearly with
the (weighted) distance, as the wave of messages moves down the tree away from
the source.

Clearly, the clock skew of the algorithm is minimized when the spanning
forest is shallow, namely, when the maximum (weighted) depth over all the trees
is minimized. It is straightforward to prove the next theorem:

Theorem 1. In every admissible execution of the generic algorithm over a shal-
low spanning forest, the clock skew of each node vi is eventually at most umin

i .

4.2 Pre-Computing a BFS Forest

It is simple to construct a shallow spanning forest of the topology graph TG,
needed for the generic clock synchronization algorithm. The spanning forest
complies with the energy constraints, since it is a subgraph of TG.

One option is to use a centralized algorithm to compute the topology graph
TG, and then run a generalization of Dijkstra’s algorithm [10,11] to construct a
shortest paths forest from the sources.

Another option is to use a distributed algorithm to compute the spanning
forest. Here we describe a two-step process. A simple distributed algorithm
constructs the topology graph TG, by computing the neighborhood N(vi) of
each node vi; the latter task is achieved by broadcasting a message and waiting
for acknowledgments. Once the neighborhoods are computed, we can construct
the spanning forest by invoking well-known distributed algorithms for finding
a Breadth-First Search (BFS) forest rooted at multiple sources (e.g., [1, 5] or
OSPF [24]). These algorithms require a node to send messages using its maximal
power under the energy restrictions. The reason is to ensure that the calculated
communication links actually “exist”.

4.3 Computing the BFS Forest On-the-Fly

In this section, we describe an algorithm that does not rely on pre-processing
for constructing the broadcast forest. Instead, the forest is built on the fly, while
doing the clock synchronization for the first time. The broadcast forest con-
structed by the algorithm can be used in future computations, including, for
instance, clock resynchronizations to handle clock drift.

The code is presented in Algorithm 1. Each node has a local variable
uncertainty which keeps track of the uncertainty associated with the path to
a source that has the smallest uncertainty discovered so far. Each node keeps
a local variable parent indicating which neighbor is its parent in the spanning



Algorithm 1 Clock synchronization without a predefined spanning forest;
code for node vi.

Initialization
parenti ← ⊥
updatedi ← false
if vi ∈ S then uncertaintyi ← 0 // a source
else uncertaintyi ←∞

Upon beginning the algorithm: // only performed by a source
broadcast 〈sync,ST, i, 0〉

Upon receiving 〈sync,T ,j,u〉 on an edge e:
if uncertaintyi > u + ue then // ue is the uncertainty over edge e

adji ← (T + δe)−HCi // δe is the median delay on the edge e
uncertaintyi ← u + ue

parenti ← j
updatedi ← true

Upon a trigger causing a node to broadcast // depends on heuristics
if updatedi then

updatedi ← false
broadcast 〈sync,LCi,i,uncertaintyi〉

forest. The local variable updated is used to control when the node sends broad-
casts. Each node knows the median delay δe and the uncertainty ue on each edge
e adjacent to it.

The algorithm uses a 〈sync〉 message with the following fields:

time: the logical time at the sender when the message is sent.
sender: the originator of the message.
uncertainty: the value of the uncertainty variable of the sender.

The algorithm is initiated by having each source s ∈ S send 〈sync,ST(t),s,0〉,
at some time t. Each time a node vi receives a 〈sync〉 message m with uncertainty
u on edge e such that u + ue is smaller than vi’s current uncertainty, vi has
discovered a shorter path to one of the sources. In this case, vi updates its
adjustment variable based on the time in the message m and the median delay
for that link, its current parent to be the originator of message m, and its current
uncertainty to be u + ue. At some later time, controlled by the update variable,
vi broadcasts a new 〈sync〉 message with the current value of its logical clock.

We show that the algorithm achieves the same properties as the generic clock
synchronization scheme. Namely, every node vi ultimately adopts the clock value
t + D, where t is the real time at which the message is sent from some source s,
and D is the median delay on a path with minimum weight from s to vi.

The next lemma says that the uncertainty variable of a node is the uncertainty
of some path to that node from a source and the clock skew is the same value.



Lemma 1. For all admissible executions, all nodes vi, and all times t, if
uncertaintyi(t) < ∞, then there exists a path Π from some source node vs to vi

such that uncertaintyi(t) = u(Π), parenti(t) is the predecessor of vi in Π, and
|ST(t)− LCi(t)| ≤ u(Π).

Proof. Choose any admissible execution. We consider an alternative representa-
tion of the execution, called a “merged execution”, in which the separate node
history sequences are merged into a single sequence in order of real time, break-
ing ties by node id.

We proceed by induction on prefixes of the merged execution.
Initially, only source nodes have finite values for their uncertainty variables.

Each source node vi has uncertaintyi equal to 0 and parenti equal to ⊥, so the
lemma is true with Π being the 0-edge path that starts and ends at vi.

Suppose the lemma is true up to some point in the merged execution. We
show that for all choices of the next (event, hardware clock time) pair, the lemma
is still true after the event occurs. The only interesting case is when the event
is the delivery of a message that causes the recipient to update its uncertainty
and parent variables. Suppose node vi receives 〈sync,T ,j,u〉 from node vj over
edge e and u + ue is smaller than uncertaintyi. The message was broadcast
at some previous time t′ that is less than t, and by the construction of the
merged execution, the event that caused the message to be broadcast precedes
the current event. Thus by the inductive hypothesis, the invariant is true at real
time t′ with respect to vj , meaning that there is a path Π ′ from a source vs to
vj whose uncertainty is u, and |ST(t′)− LCj(t′)| ≤ u(Π ′).

Consider the path Π obtained by appending the edge e between vj and vi

to Π ′. By the code, uncertaintyi(t) is set to u + ue, which is u(Π), and parenti
is set to vj , which is vi’s predecessor in Π. We now show that vi’s clock skew
is within the stated bound. Since the value T that vi receives in the message is
equal to LCj(t′) and the code executed by vi causes LCi to be set to T + δe, we
have:

|ST(t)− LCi(t)| = |ST(t)− LCj(t′)− δe|
= |t− LCj(t′)− δe| source time is real time
≤ |(t− t′)− δe|+ |t′ − LCj(t′)|
≤ |(t− t′)− δe|+ u(Π ′) by the inductive hypothesis
≤ ue + u(Π ′) actual delay differs from δe by at most ue

= u(Π) �

The next lemma says that the uncertainty variable of each node continues to
decrease until reaching the uncertainty of a minimum-uncertainty path.

Lemma 2. For every admissible execution, each source node vs, and each node
vi, eventually uncertaintyi ≤ us,i.

Proof. Fix an admissible execution and a source node vs. For each node vi,
consider all the minimum-uncertainty paths between vs and vi and let `s,i be
the length of the shortest such path with respect to the number of edges.



We will show by induction on ` that the lemma is true for all nodes vi with
`s,i = `.

Basis: ` = 0. Then vi is vs and the lemma is obviously true.
Induction: Suppose the lemma is true for all nodes vi such that `s,i is at most

`− 1. We will show the lemma is true for all nodes vi with `s,i = `.
Consider any node vi with `s,i = `. Pick any one of the shortest-length

minimum-uncertainty paths between vs and vi and let vj be the predecessor of
vi on this path. By properties of shortest paths, `s,j = `− 1.

By the inductive hypothesis, eventually uncertaintyj ≤ us,j . Consider the
first time that vj sets uncertaintyj to a value u′ that is at most us,j . At some
later time, vj broadcasts a 〈sync〉 message containing a value u that is at most
u′, i.e., at most us,j . Let e be the edge between vi and vj . When vi receives this
broadcast, vi sets uncertaintyi to u + ue if it is not already at most that value.
Since vj is a predecessor of vi on a minimum-uncertainty path, us,i = us,j + ue.
Thus u + ue ≤ us,i, which proves the inductive case. �

Theorem 2. For each admissible execution of Algorithm 1 and each node vi,
eventually the clock skew of vi is umin

i , and parenti is the predecessor of vi in
the (weighted) path to the closest source.

Proof. Lemma 2 implies that eventually vi’s uncertainty variable is at most that
of a minimum-uncertainty path to a closest source. Let vs be this closest source.
Lemma 1 states that vi’s uncertainty always corresponds to some path to a
source, so once vi’s uncertainty is at most us,i, it actually is exactly us,i, never
gets any smaller, and the clock skew is us,i = umin

i . Lemma 1 also implies that
parenti is the predecessor of vi in the (weighted) path to vs. �

The worst-case message complexity of Algorithm 1 depends on the frequency
with which 〈sync〉 messages are transmitted. It is possible to apply heuristics
proposed by Banerjee and Khuller [6], and delay sending 〈sync〉 messages for a
certain time; this creates the effect of waiting for messages on paths with less
uncertainty that encounter higher total delay. A careful inspection of our correct-
ness proof reveals that doing so does not compromise the eventual convergence
of the tree. As Banerjee and Khuller show, careful choice of parameters in this
heuristic can significantly reduce the message complexity.

5 Optimality

We prove that the synchronization achieved over a shallow spanning forest is
optimal for the topology graph. This implies that our algorithms achieve optimal
clock skew for the given energy budget. More specifically, we prove a lower bound
of umin

i on the skew of a node vi. Recall that in our model, nodes may “overhear”
any message that is broadcast within their reception distance, namely, by their
neighbors in the topology graph. Potentially, overhearing may yield algorithms
that provide lower skew than our spanning-forest-based algorithm, in which a



broadcast by a node is only used by its children; our lower bound shows that
this is not the case.

The intuition for this result is to think of lifting up a piece of cloth from
the table, holding the sources pinned to the table. The node of interest is some
point on the cloth. We pinch the cloth at that location and lift it up by umin

i .
The nodes in the neighborhood of the node of interest correspond to points on
the cloth that will be lifted by smaller amounts; these amounts form a gradient.
Using the fact that umin

i is the shortest distance from a source, we can show that
the cloth will not tear, namely, the timing at adjacent nodes remains consistent.

The detailed proof relies on a well-known shifting argument [20]: Given an
execution α and an n-vector x of real numbers, we define a new execution,
denoted α′ = shift(α,x), by adding xi to the real time associated with each
event of node vi’s history in α, for all i. Shifting an execution affects the hardware
clocks and the message delays, in ways that are quantified in the next lemma.

Lemma 3 (Shifting [4,20]). Let α be an execution with hardware clocks HCi,
and let x be an n-vector of real numbers. Then α′ = shift(α,x) is an execution
with hardware clocks HC′

i, where
(a) HC′

i(t) = HCi(t)− xi for all t, and
(b) if the delay of a message in α from vi to vj is d, then the delay of this
message in α′ is d− xi + xj.

Theorem 3. For any external clock synchronization algorithm that complies
with the energy constraints and every node vi, there exists an admissible execu-
tion in which the final skew of vi’s clock is at least umin

i .

Proof. Fix an arbitrary external clock synchronization algorithm. Consider the
admissible execution α of the algorithm in which the delay of each broadcast on
each edge e of TG is the median delay δe. Choose any node vi and let tf be the
real time when vi has finished the algorithm.

Let σ be the skew of vi at time tf in α, i.e., |ST(tf )−LCi(tf )| = σ. We first
assume that ST(tf )− LCi(tf ) ≥ 0.

We build execution α′ by shifting execution α such that every node vj is
shifted by umin

j , that is, α′ = shift(α,x) where xj = umin
j for every j. Since

the sources are at distance 0 (from themselves), they are not shifted (and they
should not be, since they must have the real time).

We must verify that message delays are within the bounds so that α′ is
admissible. Consider a message m sent from node vj to node vk on an edge e in
the topology graph TG. We distinguish between three cases:

If umin
j = umin

k , then the delay of m is are unaffected, since sender and
receiver are shifted by the same amount.

If umin
j < umin

k , then since there is an edge between vj and vk, the fact that
umin

k is a shortest path distance implies that umin
k ≤ umin

j + ue (recall that ue

is the uncertainty in message delay over the edge e). In α, the delay of m is
δe; hence, by part (b) of Lemma 3, the delay of m in α′ is δe + umin

k − umin
j .

This implies that the delay of m in α′ is between δe and δe + ue, since 0 <
umin

k − umin
j ≤ ue.



If umin
j > umin

k , then since the weighted graph WTG is undirected, we have
that umin

j ≤ umin
k + ue, and a similar argument shows that the delay of m in α′

is between δe − ue and δe.
We conclude that α′ is admissible.
Consider what happens to vi’s skew in α′. At real time t′f = tf + umin

i in α′,
vi has finished the algorithm. In α′ we have:

|ST′(t′f )− LC′
i(t

′
f )| = |ST(t′f )− LC′

i(t
′
f )| source clocks do not change

= |ST(t′f )− (LCi(t′f )− umin
i )| by part (a) of Lemma 3

= |ST(tf )− LCi(tf ) + umin
i |

skew does not change after tf < t′f

≥ umin
i ST(tf )− LCi(tf ) and umin

i are positive

In the symmetric case where ST(tf ) − LCi(tf ) in α is negative, we shift
execution α by negative amounts instead of positive to produce α′. Namely,
α′ = shift(α,x), where xj = −umin

j for each j. The skew of node vi in execution
α′ is |ST(tf )− LCi(tf )− umin

i |. Since ST(tf )− LCi(tf ) is negative and umin
i is

positive, the skew is at least umin
i . �

6 Discussion

In this section we discuss generalizations of our approach, especially to make it
more practical, as well as alternative approaches.

Our algorithm proposes a specific way to estimate clock readings over one
hop (in a single broadcast), and a simple method to combine the estimations over
several hops (re-broadcasts). However, we consider our key contribution to be the
approach of picking the multi-hop broadcasts in a way that minimizes the worst-
case accumulated uncertainty, while complying with the energy constraints. It
is reasonable to apply other estimation and combination methods over shallow
spanning forests of the topology, for example, methods that are geared towards
optimizing the expected skew [26]. It would be interesting to prove that shallow
energy-constrained spanning forests are optimal under these measures as well,
as experimentally observed by van Greunen and Rabaey [33]. It would also be
interesting to extend our results to deal with the more theoretical approach of
optimizing the skew on a per-execution basis [3, 25,28].

In this paper, we fixed the energy constraints and found algorithms that
achieve optimal skew, under this budget. A complementary approach is to fix
the desired skew and look for the minimal-energy algorithm achieving this skew.
With uniform uncertainties, our techniques easily translate the desired skew into
a desired number of hops, reducing the problem to the task of constructing a
minimal-energy forest with this depth. For a constant depth and a single source,
the tree can be approximated using an algorithm of Ambühl et al. [2]. It would
be interesting to handle multiple sources and arbitrary depths.



Our approach can also be extended to apply when the sources are only ap-
proximately synchronized, as is the case when sources are in a wired network and
run a separate algorithm to synchronize with each other. The approach can also
accommodate clock drift ; this requires clock synchronization to be invoked re-
peatedly and not only once. Once a shallow spanning forest is constructed, later
resynchronization can use the same infrastructure. We leave the development of
these ideas, and their analysis, as a topic for future research.

Finally, it is interesting to remove (at least some of) the assumptions we have
made, most notably, the immobility of nodes and the reliability of communication
links as well as their bidirectionality.
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