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ABSTRACT
Switching cells in parallel is a common approach to build
switches with very high external line rate and a large num-
ber of ports. A prime example is the parallel packet switch
(in short, PPS) in which a demultiplexing algorithm sends
cells, arriving at rate R on N input-ports, through one of K
intermediate slower switches, operating at rate r < R.
This paper presents lower bounds on the average queuing

delay introduced by the PPS relative to an optimal work-
conserving FCFS switch, for demultiplexing algorithms that
does not have full and immediate information about the
switch status. The bounds hold even if the algorithm is
randomized.
These lower bounds are shown to be asymptotically opti-

mal through a new methodology for analyzing the maximal
relative queuing delay; this clearly upper bounds their aver-
age relative queuing delay. The methodology is used to de-
vise a new algorithm that relies on slightly out-dated global
information on the switch status. It is also used to provide,
for the first time, a complete proof of the maximum relative
queuing delay provided by the fractional traffic dispatch [19,
22] algorithm.
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stems Organization]: COMPUTER-COMMUNICATION
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1. INTRODUCTION
Parallelism often increases the throughput of a system, by

distributing tasks among several processing entities. Careful
load balancing is required to ensure even distribution and
guarantee small delay for each task. Randomization is an
attractive paradigm for balancing load on the average [4, 26]:
even a very simple strategy ensures with high probability
maximum load close to the optimal distribution [17].
Load balancing has recently been employed in packet

switching architectures with high line-rates and large num-
ber of ports [6, 20]. A successful example of such a switch
is the parallel packet switch (PPS) [18], which is the core of
several contemporary switches (e.g., [1, 11, 25, 28]). Like
inverse multiplexing systems [2, 9, 14, 15], an N × N PPS
demultiplexes cells, arriving at rate R, through K slower
switches (planes) operating at rate r < R (see Figure 1).
The PPS is evaluated by the queuing delay it introduces

relative to an optimal work-conserving shadow switch that
receives the same incoming traffic.1 This comparison is not
burdened by unsubstantiated probabilistic assumptions on
the incoming traffic [13] and reveals inherent strengths and
weaknesses of the PPS. As we shall prove, the relative queu-
ing delay is determined by the balancing of cells among the
planes. Given the successful application of randomization
in traditional load balancing settings (discussed above) and
in other high-bandwidth switches [16, 32], it is tempting to
employ randomization to reduce the average imbalance be-
tween planes and by that reduce the average relative queuing
delay.
This paper shows that randomization does not help to

decrease the average relative queuing delay. This surprising
result holds because of the per-flow FCFS property required
in most switches; switches must respect the arrival order of
cells with the same input-port and the same output-port,
since the common practice is that switches should not mis-
sequence cells [21]. This property allows an adaptive ad-
versary [27] to exploit a transient increase of the relative
queuing delay and perpetuate it sufficiently long to increase
the average relative queuing delay.
Specifically, we devise traffic that exhibits with high prob-

ability a large average relative queuing delay. The exact
bounds depend on the locality of information used for cell

1A work-conserving switch guarantees that an output-port
is never idle unnecessarily, and by that, maximizes the
switch throughput and minimizes its average cell delay [10,
23, 24]. This generalizes the common practice of comparing
with an output-queued switch [8, 18, 19, 22, 24, 29, 30, 31].



Figure 1: A 5 × 5 PPS with 2 planes in its center
stage, without buffers in the input-ports

demultiplexing and are equal to the lower bounds known for
maximum relative queuing delay [3]. The lower bound is
Ω(min{u, R

r
} · N) time-slots for algorithms that use global

information older than u time-slots (namely, u real-time
distributed algorithms [3]), and Ω(R

r
N) time-slots for al-

gorithms that only use local information.
The second lower bound holds also with an oblivious ad-

versary [5], if the PPS obeys a global FCFS policy (that is,
all cells to the same destination should leave the switch in
their arrival order).
To prove that these bounds are tight, we present a new

methodology for evaluating the relative queuing delay under
global FCFS policies. We show a general upper bound that
depends on the difference between the number of cells with
the same destination that are sent through a specific plane,
and the total number of cells with this destination.
We devise a new algorithm that uses global information

that is 1 time-slot old, and show that its maximum relative
queuing delay is O(N) time-slots. This bound asymptoti-
cally matches the lower bound on the average relative queu-
ing delay for this class of demultiplexing algorithms (even
with randomization).
Finally, we employ our new methodology to prove that

the relative queuing delay of the fractional traffic dispatch
(FTD) algorithm [19, 22] is O(N R

r
) time-slots. (Previous

attempts to bound the relative queuing delay of FTD [19,
22] turned out to be flawed.) This matches the lower bound
on the average relative queuing delay introduced by fully-
distributed demultiplexing algorithms (even with random-
ization).

2. THE BUFFERLESS PPS MODEL
A switch handles fixed-size cells that arrive and leave at

rate R, in discrete time-slots: Each cell c arrives at time
ta(c) to input-port orig(c), and it is destined for output-
port dest(c). We assume the switch does not drop cells.
A traffic T is a finite collection of cells, and a flow (i, j) is

the collection of cells sent from input-port i to output-port
j. The projection of a traffic T on a set of input-ports I,
denoted by T |I , is {c ∈ T | orig(c) ∈ I}. A traffic T is legal
if for any input-port i, there are no two cells c1, c2 ∈ T |i
such that ta(c1) = ta(c2); in this case, the arrival times of
cells in T |i induce a total order on them. It is sometime
necessary to compose in parallel two traffics, T1 and T2,

from disjoint sets of input-ports: Namely, if I1∩ I2 = ∅ then
T1|I1 ‖ T2|I2 = T1 ∪ T2.
For any cell c, shift(c, t) is a cell with the same origin and

destination such that ta(shift(c, t)) = ta(c) + t. The shift
operation is used for concatenating two traffics, T1 and T2,
so that T2 starts after the last cell of traffic T1. Formally,
T1 ◦ T2 is the traffic T1 ∪ {shift(c, t) | c ∈ T2}, where t =
1 +max{ta(c) | c ∈ T1|I1}.
An N × N PPS is a three-stage Clos network [12], with

K < N planes. Each plane is an N × N switch operating
at rate r < R, and is connected to all the input-ports on
one side, and to all the output-ports on the other side (see
Figure 1). The speedup S = Kr

R
captures the switch over-

capacity.
A bufferless PPS has no buffers at its input-ports but

can store pending cells in its planes and in its output-ports.
Each cell arriving at input-port i is immediately sent to one
of the planes; the plane through which the cell is sent is
determined by a randomized state machine with state set
Si, following some algorithm.

Definition 2.1. The demultiplexing algorithm of a buff-
erless input-port i is a function

ALGi : {1, . . . , N} × Si × COINSPACE→ {1, . . . ,K} × Si

which gives a plane number and the next state, according
to the incoming cell destination, the current state, and the
result of a coin-toss that is taken out of a finite and uni-
form coin-space COINSPACE. (For a deterministic algorithm
|COINSPACE| = 1.)

EPPS(ALG, σ, T ) is the execution of the PPS using demul-
tiplexing algorithm ALG in response to incoming traffic T ,
and coin-tosses sequence σ; namely, the cells in T and the
planes they are sent through: {〈c, plane(c)〉 | c ∈ T}.
A state s ∈ Si is reachable if there is a sequence of coin

tosses σ and a traffic T , such that the state-machine reaches
state s in execution EPPS(ALG, σ, T ). A switch configuration
consists of the states of all state-machines, and the contents
of all the buffers in the switch at a given time. A config-
uration is reachable if it is reached in an execution of the
switch. Since the switch does not have a predetermined ini-
tial configuration, we assume that for every pair of reachable
configurations C1, C2, there is a finite incoming traffic that
causes the switch to transit from C1 to C2.
The internal lines of the switch operate at a lower rate

r < R. For simplicity, we assume that r′ , R
r
=

⌈
R
r

⌉
.

This lower rate r enforces an input constraint on the demul-
tiplexing algorithm [18]: For any two cells c1, c2 such that
orig(c1) = orig(c2) and plane(c1) = plane(c2), |ta(c1) −
ta(c2)| > r′. Since the PPS has no buffers in its input-
ports, cells are immediately sent to one of the planes; that
is, a cell c traverses the internal link between orig(c) and
plane(c) at time ta(c) (see Figure 2).
We assume that both the planes and output buffers are

FCFS and work-conserving. Let tp(c) be the time-slot cell c
leaves plane(c), and denote tlPPS(c) the time-slot it leaves
the PPS. The lower rate of the internal links between the
planes to the output ports induces an output-constraint [18]:
For every two cells c1, c2 ∈ T , if dest(c1) = dest(c2) and
plane(c1) = plane(c2) then |tp(c1)− tp(c2)| > r′. To neglect
delays caused by the additional stage of the PPS, a cell can
leave the PPS at the same time-slot it arrives at the output-
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Figure 2: Illustration of the time-points associated

with a cell c.

port, provided that no other cell is leaving at this time-slot,
i.e., tlPPS(c) ≥ tp(c). Note however that tp(c) ≥ ta(c) + 1.
The PPS is compared to a work-conserving shadow switch

that receives the same traffic T , and obeys per-flow FCFS
discipline. We denote the time a cell c ∈ T leaves the shadow
switch by tlS(c), and the execution of the shadow switch in
response to traffic T by ES(T ). Note that tlS(c) ≥ ta(c)+1.
The relative queuing delay of a cell c under a certain de-

multiplexing algorithm ALG and a coin-tosses sequence σ is
R(ALG, σ, c) = tlPPS(c)− tlS(c).

Definition 2.2. For traffic T , demultiplexing algorithm
ALG and coin-tosses sequence σ, the maximum relative queu-
ing delay is Rmax(ALG, σ, T ) = maxc∈T {R(ALG, σ, c)}, and
the average relative queuing delay is Ravg(ALG, σ, T ) =
1
|T |

∑
c∈T R(ALG, σ, c).

3. LOWER BOUNDS ON THE AVERAGE
RELATIVE QUEUING DELAY

In this section we prove that the average relative queuing
delay asymptotically equals the maximum relative queuing
delay, even if randomization is used.
We first show lower bounds that use an adaptive adver-

sary, which sends cells to the switch at each time-slot based
on the algorithm actions at previous slots. Then, we show
that under certain assumptions the lower bounds can be
extended to hold with an oblivious adversary, which must
choose the entire traffic in advance, knowing only the de-
multiplexing algorithm [5].
The maximum and average relative queuing delay of al-

gorithm ALG against an adaptive adversary are denoted
Rmax(ALG) and Ravg(ALG), respectively.
We prove yet stronger results, and show that the lower

bounds hold even for traffics that are restricted by the
(R,B)-leaky-bucket model. This model restricts the traffic
from flooding the switches by requiring that the combined
rate of flows sharing the same input-port or the same output-
port does not exceed the external rateR of that port by more
than a fixed bound B, which is independent of time [7].
A key observation is that if the last cell of a traffic attains

a relative queuing delayR, then this traffic can be continued
so that every added cell attains at least the relative queuing
delay R, regardless of the results of the coin-tosses:

Lemma 3.1. For any demultiplexing algorithm ALG, coin-
tosses sequence σ, and finite traffic T whose last cell is c1,
if c2 is a cell with origin orig(c1) and destination dest(c1)
then R(ALG, σθ, c2) ≥ R(ALG, σ, c1) for any coin-toss θ.

Proof. Since the shadow switch is per-flow FCFS and
work-conserving, and because cell c2 is in the flow from
orig(c1) to dest(c1) and arrives immediately after cell c1, cell
c2 leaves the shadow switch exactly at time-slot tlS(c1) + 1.
Since the PPS is also per-flow FCFS, cell c2 leaves the PPS
after cell c1, thus tlPPS(c2) ≥ tlPPS(c1) + 1. Hence,

R(ALG, σθ, c2) ≥ tlPPS(c2)− tlS(c2)

≥ (tlPPS(c1) + 1)− (tlS(c1) + 1)

= R(ALG, σ, c1)

An adaptive adversary can construct a traffic that ex-
hibits an average relative queuing delay that matches the
maximum relative queuing delay. It first waits for a cell c
that attainsRmax and then sends many cells (whose number
depends on the number of cells that arrived before c) from
orig(c) to dest(c), one cell at each time-slot. By repeatedly
applying Lemma 3.1 we get:

Lemma 3.2. If there is a demultiplexing algorithm ALG,
a coin-tosses sequence σ and a finite traffic T whose last
cell c has R(ALG, σ, c) = Rmax(ALG), then Ravg(ALG) =
Rmax(ALG)− ε, where ε can be made arbitrarily small.

Proof. Let ` be the number of cells in traffic T . Ap-

plying Lemma 3.1
⌈
`
Rmax(ALG)−ε

ε

⌉
times constructs a traffic

T ◦ T ′ such that for every cell b in T ′ and any coin-tosses
sequence σb, R(ALG, σσb, b) = R(ALG, σ, c) = Rmax(ALG).
Hence,

Ravg(ALG)≥
1

`+
⌈
`
Rmax(ALG)−ε

ε

⌉
⌈
`
Rmax(ALG)−ε

ε

⌉
Rmax(ALG)

≥Rmax(ALG)− ε

High relative queuing delay is exhibited when cells that
are supposed to leave the shadow switch one after the
other, are concentrated in a single plane. An execution
EPPS(ALG, σ, T ) is (f, s)-concentrating if there is a time-slot
t and output-port j such that:

1. Output-port j’s buffer of the shadow switch is empty
at time-slot t;

2. At least f cells destined for output-port j arrive to the
switch during time-interval [t, t+s), and f out of these
cells are sent through the same plane; and

3. Traffic T ends at time-slot t+ s.

The following lemma bounds the relative queuing delay ex-
hibited in these executions, extending [3, Lemma 4]:

Lemma 3.3. For any (R,B) leaky-bucket traffic T ,
coin-tosses sequence σ, and (f, s)-concentrating execution
EPPS(ALG, σ, T ) for output-port j and plane k, the last cell c
that is sent from plane k to output-port j in EPPS(ALG, σ, T )
attains R(ALG, σ, c) ≥ f · r′ − (s+B).

Proof. We compare the queuing delay of the cells in the
PPS and in the shadow switch. Since the shadow switch is
work-conserving, all f cells leave the switch exactly f time-
slots after the first cell is dispatched. On the other hand, a
PPS completes this execution after at least fr′ time-slots,



because f cells are sent to the same plane, and only one cell
can be sent from this plane to the output-port every r′ time-
slots. Let c be the last of these cells sent from the plane to
the output-port. Hence, the relative queuing delay c attains
is at least fr′ − f time-slots. Since the incoming traffic is
(R,B) leaky-bucket, f ≤ s+B, and therefore R(ALG, σ, c) ≥
fr′ − f ≥ fr′ − (s+B) time-slots.

For every traffic T we examine the probability
Prσ [EPPS(ALG, σ, T ) is (f, s)-concentrating], taken over all
coin-tosses sequences σ, that the execution of ALG given T

and σ is (f, s) concentrating.
The second observation is that if there is traffic T such

that its execution is (f, s)-concentrating with small but non-
negligible probability, an adaptive adversary can construct
another execution that is almost always (f, s)-concentrating:

Lemma 3.4. If from every configuration C there is an
(R,B) leaky-bucket traffic T such that Prσ [EPPS(ALG, σ, T )
is (f, s)-concentrating ] ≥ p̃ > 0, then an adaptive adversary
can construct an (R,B) leaky-bucket traffic T ′ from C such
that Pr σ [EPPS(ALG, σ, T

′) is (f, s)-concentrating] ≥ 1 − δ,
where δ can be made arbitrarily small.

Proof. Fix a configuration C; the adaptive adversary
constructs the executions from C iteratively: Denote C0 ,

C. Let Ci be the configuration just before iteration i ≥ 0,
and denote by T i the traffic such that from configuration
Ci, Prσ

[
EPPS(ALG, σ, T

i) is (f, s)-concentrating
]
≥ p̃. The

adversary stops if the last execution is indeed an (f, s)-
concentrating. Otherwise, it concatenates an empty traf-
fic of B time-slots (denoted Te) and continues to the next
iteration.
Since in each iteration the adversary stops with proba-

bility of at least p̃ independently of previous iterations, it
stops with (f, s) concentrating execution before iteration⌈
log1−p̃ δ

⌉
with probability 1 − δ. Let ` be the iteration

the adversary stops. Since there are B empty time-slots be-
tween the arrival of the last cell of traffic T i and the arrival
of the first cell in T i+1, T ′ = T 0 ◦Te ◦ . . .◦Te ◦T

` has bursti-
ness factor B, and its corresponding execution starting from
C is (f, s)-concentrating with probability 1− δ.

The next corollary follows immediately from Lemmas 3.1–
3.4:

Corollary 3.5. If from every configuration C

there is an (R,B) leaky-bucket traffic T such that
Prσ [EPPS(ALG, σ, T ) is (f, s)-concentrating] ≥ p̃ > 0,
then with probability 1− δ, Ravg(ALG) ≥ f · r′− (s+B)− ε,
where ε > 0 and δ > 0 can be made arbitrarily small

A fully-distributed demultiplexing algorithm [3] demulti-
plexes a cell, arriving at time-slot t, according to the input-
port’s local information in time interval [0, t]. The relative
queuing delay of a PPS with fully-distributed demultiplex-
ing algorithm strongly depends on the number of input-ports
that can send a cell, destined for the same output-port,
through the same plane:

Definition 3.1. A demultiplexing algorithm is d-parti-
tioned if there is a plane k, an output-port j, and a set of
input-ports I, such that |I| ≥ d and the following property
holds: For every input-port i ∈ I and state si ∈ Si, if at
least ni cells destined for output-port j arrive at input-port
i after it is in state si, then with probability pi > 0, i sends
at least one cell destined for output-port j through plane k.

It is possible to construct a traffic with no bursts that
causes a deterministic d-partitioned fully distributed demul-
tiplexing algorithm to concentrate d cells in a single plane
during a time-interval of d time-slots [3, Theorem 6]. Under
the randomized generalization of d-partitioning, it is clear
that the same traffic results in a (d, d)-concentrating execu-

tion with probability of at least
∏N

i=1 pi > 0, and therefore
Corollary 3.5 implies the following lower bound:

Theorem 3.6. Any randomized d-partitioned fully distri-
buted demultiplexing algorithm ALG has, with probability
1 − δ, Rmax(ALG) ≥ d(r′ − 1) time-slots and Ravg(ALG) ≥
d(r′ − 1)− ε time-slots, where ε > 0 and δ > 0 can be made
arbitrarily small.

The FTD algorithm (Section 5) can easily be made d-
partitioned to provide a matching upper bound.
Another interesting class includes u real-time distributed

(u-RT) demultiplexing algorithms [3], which demultiplex a
cell arriving at time-slot t, according to the input-port’s local
information in time interval [0, t], and to the switch’s global
information in time interval [0, t − u]. An input-port state
transition may depend on other input-ports’ state transi-
tions, and on incoming flows to other input-ports, as long
as they occurred more than u time-slots earlier.

Let u = min{u, r
′

2
}, the minimum between the lag in gath-

ering global information, and the rate of the planes relative
to the external rate. The next theorem, which is based on
Corollary 3.5 and some observations from [3], gives a lower
bound on the average relative queuing delay of u-RT demul-
tiplexing algorithms:

Theorem 3.7. Any randomized u-RT demultiplexing al-
gorithm ALG has, with probability 1−δ, Rmax(ALG) ≥

uN
S
(1−

u
r′
) time-slots and Ravg(ALG) ≥

uN
S
(1 − u

r′
) − ε time-slots,

where ε > 0 and δ > 0 can be made arbitrarily small.

Proof. Consider an arbitrary configuration C. Denote
by t0 the time-slot in which the PPS is in configuration C,
by x0 the number of cells arrived to the PPS until time-slot
t0, and by n0 the number of cells stored in one of the PPS’
buffers at time-slot t0.
Consider now the empty traffic Te, in which no cells arrive

to the switch at all. Denote by C1 the switch configuration
at time-slot t1 = t0 + n0 +

uNx0

S
+ 1. If there are still cells

stored in one of the buffers at time-slot t1, then these cells
have relative queuing delay of at least uNx0

S
+ 1 time-slots;

therefore the average relative queuing delay is more than uN
S

time-slots, and the claim follows.
Otherwise, all the buffers are empty in configuration C1.

Fix an output-port j, and consider the traffic T in which
cells destined for j arrive simultaneously to all input-ports
at each time-slot in the interval [t1, t1 + u). Note that T is
an (R, uN − u) leaky-bucket traffic, since for any τ ≥ 1 and
time-interval [t, t+ τ), the total number of cells arriving to
the switch is bounded by τ + (uN − u).
Since u ≤ 1

2
R
r
≤ R

r
, the input constraint implies that two

cells that arrive to the same input-port are not sent through
the same plane. Hence, for every coin-tosses sequence σ,
there is a plane k used by a set I of at least u

K
N input-ports

in the execution EPPS(ALG, σ, T ); note that since the PPS
speedup is at least 1, u

K
N < R

rK
N ≤ N .

For every input-port i ∈ I, let ci ∈ T |i be the cell such
that plane(ci) = k. Consider the traffic T |i = {c|c ∈



T |i and ta(c) ≤ ta(ci)}; that is T |i is the traffic comprised
of the cells in T |i that arrived to the switch until cell ci.
Now consider traffic T |I =

⋃
i∈I T |i, which is the parallel

composition of traffics T |i. Note that both T |I and Te ◦ T |I
are (R, u2 N

K
− u) leaky-bucket traffics.

For every input-port i ∈ I, ta(ci)≤ t1+u<t1+u, which im-
plies that i does not use global information on the switch sta-
tus after time-slot t1. Hence, the executions EPPS(ALG, σ, T )
and EPPS(ALG, σ, T |I) are equivalent. Therefore, with prob-

ability of at least
∏

i∈I

(
1

|COINSPACE|

|T |i|
)
≥
(

1
|COINSPACE|

u
)|I|
≥

(
1

|COINSPACE|

u
) uN

K

= p̃ > 0, taken over the coin-tosses se-

quences σ, all the input-ports i ∈ I send their last cell to
plane k in EPPS(ALG, σ, Te◦T |I) starting at configuration C.
Hence, configuration C holds the conditions of Corollary 3.5
and the claim follows.

We now consider oblivious adversaries, which must choose
the entire traffic in advance, knowing only the demultiplex-
ing algorithm ALG [5]: Robl

max(ALG) and R
obl
avg(ALG) denote

the maximum and average queuing delay of algorithm ALG

against such an adversary. We assume that the PPS and
the shadow switch obey a global FCFS policy, i.e., cells that
share the same output-port should leave the switch in the
order of their arrival (ties are broken arbitrarily). Under
this assumption, the following variant of Lemma 3.1 holds:

Lemma 3.8. If the PPS and the shadow switch obey a
global FCFS policy, for any demultiplexing algorithm ALG,
coin-tosses sequence σ, and finite traffic T whose last cell is
c1, if c2 is a cell with destination dest(c1) then in execution
EPPS(ALG, σθ, T ◦ {c2}), R(ALG, σθ, c2) ≥ R(ALG, σ, c1) for
any coin-toss θ.

Note that unlike Lemma 3.1, in Lemma 3.8 the cells c1

and c2 are required to share only the same destination and
not the same origin.
We next extend the lower bound presented in Theorem 3.6

to hold against oblivious adversaries if global FCFS disci-
pline must be provided.

Theorem 3.9. Any randomized d-partitioned fully distri-
buted demultiplexing algorithm ALG has, with probability
1 − δ, Robl

max(ALG) ≥ d(r′ − 1) time-slots and Robl
avg(ALG) ≥

d(r′ − 1)− ε time-slots, where ε > 0 and δ > 0 can be made
arbitrarily small.

Proof. Given ALG, the adversary pre-computes the set
I = {i1, . . . , id} of d input ports, the output-port j and the
plane k, and for each input port i ∈ I the values ni and pi,
for which the conditions presented in Definition 3.1 hold.
For any input port i ∈ I, let xi be a value chosen uniformly

at random from {1, . . . , ni}. Let Ti be a traffic comprised
of xi cells from input port i to outpout port j, and let ci
be the last cell of Ti. Traffic T ′ is defined as follows: T ′ =
(Ti1 \{ci1})◦. . .◦(Tid \{cid})◦{ci1} . . .◦{cid} (see Figure 3).
We first prove that with non-negligible probability, taken

over all coin-tosses sequences σ, the execution of ALG on
traffic T ′ is (d, d)-concentrating:

Claim. Prσ [EPPS(ALG, σ, T
′) sends the last d cells throu-

gh plane k] ≥
∏d

a=1

pia

nia

, p̃ > 0.

i2 idi1

Cells ci1 , . . . , cid

xi2 − 1 cells

Figure 3: Illustration of traffic T ′ in the proof of

Theorem 3.9.

Proof. Denote by T̃i the traffic comprised of ni cells
from input port i to output port j. By the definition of

ni, with probability pi at least one cell in T̃i is sent through
plane k. Since xi is chosen uniformly at random from the
values {1, . . . , ni}, this cell is the xi-th cell (that is, the cell
ci) with probability of at least

1
ni
. Note that traffic Ti is a

prefix of traffic T̃i; since the demultiplexor is bufferless, the
decision through which plane to send the cell ci is based only
on cells arriving at the switch prior to ci, which implies that
cell ci is sent through k with probability of at least 1

ni
· pi.

In traffic T ′, for each input port i ∈ I, no cells arrive
to input port i between (Ti \ {ci}) and ci. Thus, for each
input port i ∈ I and coin-tosses sequence σ, the cells ci are
sent through the same plane in executions EPPS(ALG, σ, T

′)
and EPPS(ALG, σ, Ti1 ◦ . . . ◦ Tid}). Since the demultiplexors
are independent, the probablity, taken over all coin-tosses
sequences σ, that execution EPPS(ALG, σ, T

′) sends the last

d cells through plane k is at least
∏d

a=1

pia

nia

, p̃ > 0.

Let T ′′ be a concatenation of
⌈
log1−p̃ δ

⌉
such instances

of traffic T ′ (each with different and independent random
choices of the values xi1 , . . . xid). Each instance is (d, d)-
concentrating with probability p̃ regardless of the first con-
figuration at the beginning of the instance. Therefore, a
(d, d)-concentration occurs in traffic T ′′ with probability of
at least 1−δ. Denote the last d cells of the instance in which
a concentration occurs by cm

′

i1
, . . . , cm

′

id
. Since all these cells

are sent through plane k, R(ALG, σ, cm
′

id
) ≥ d(r′ − 1), by

Lemma 3.3.
Let ` = |T ′′|, and `′ = `

⌈
d(r′−1)−ε

ε

⌉
. Consider the traffic

T̃ = {c1}◦. . .◦{c`′}, such that each cell ci is sent from an ar-
bitrary input port i to output port j, and the traffic T = T ′′◦

T̃ . During each interval [ta(cm
′

id
), ta(cm

′

id
) + t], t > 0, exactly

t cells arrive at the PPS and destined for the same output-
port j (i.e., there are no stalls between the cells comprising
traffic T ). Therefore, Lemma 3.8 implies that for each cell

c such that ta(c) > ta(cm
′

id
), R(ALG, σ, c) ≥ R(ALG, σ, cm

′

id
) ≥

d(r′− 1). Similar to the proof of Lemma 3.2, with probabil-
ity 1− δ, Robl

avg(ALG) ≥ Ravg(ALG, σ, T ) ≥ d(r′ − 1)− ε, and

Robl
max(ALG) ≥ Rmax(ALG, σ, T ) ≥ d(r′ − 1).



4. BOUNDING THE RELATIVE QUEUING
DELAY

This section presents a methodology for bounding
Rmax(ALG, σ, T ) for an arbitrary traffic T and coin-tosses
sequence σ. We fix some traffic T and omit the notations
ALG, σ and T . For simplicity assume T begins after time-slot
0, and that at time-slot 0 (i.e., at “the beginning of time”),
no cells arrive at the switch, and therefore all the queues are
empty. We also assume the PPS is global FCFS.
Cells are queued in a bufferless PPS either within the

planes or within the multiplexors residing at the output-
ports. A simple situation in which queuing in a multiplexor
happens is when the output-port is flooded, but in this
case cells also suffer from high queuing delay in the shadow
switch, and the relative queuing delay is small. A more com-
plicated situation is when a cell arrives at the multiplexor
out of order, and should wait for previous cells to arrive from
their planes. In this case, the relative queuing delay is an
indirect result of queuing within the other planes (of some
preceding cell), as we prove in the following lemma:

Lemma 4.1. There is a cell c such that tlPPS(c) = tp(c)
and R(c) = Rmax.

Proof. Let c be the first cell to leave the PPS such
that R(c) = Rmax. Assume that tlPPS(c) > tp(c);
since the multiplexor buffer is work-conserving, in time-slot
tlPPS(c) − 1 another cell c

′ leaves the PPS from output-
port dest(c). Hence tlPPS(c

′) = tlPPS(c)− 1, and therefore
R(c′) = tlPPS(c

′) − tlS(c
′) = tlPPS(c) − 1 − tlS(c

′). Since
c′ leaves the PPS before c and the shadow switch is FCFS,
tlS(c

′) ≤ tlS(c) − 1. Hence the relative queuing delay of c
′

is R(c′) ≥ tlPPS(c) − tlS(c) = R(c) = Rmax, contradicting
the minimality of c.

By the lemma, the maximal relative queuing delay is due
to queuing in the planes and not in the multiplexors. This
points to the weakness of a previous attempt [19] to bound
the relative queuing delay, which calculated only queuing in
the multiplexors.
Consider a single cell c, and focus on the queuing within

plane(c), caused by the lower rate on the link between
plane(c) and dest(c). Since both the PPS and the shadow
switch are FCFS, cells arriving at the switch after cell c can-
not prohibit c from being transmitted on time. We present
an upper bound that depends only on the disproportion of
the number of cells sent through plane(c) to dest(c). Relat-
ing this quantity and the queue lengths at time-slot ta(c) is
not immediate, since it is possible that the shadow switch is
busy while the plane is idle, and vice versa.
Let Aj(t1, t2) be the number of cells destined for output-

port j that arrive at the switch during time interval [t1, t2],
and Ak

j (t1, t2) be the number of these cells that are sent
through plane k. The following definition captures the im-
balance between planes:

Definition 4.1. For a plane k, output-port j and time-
slots 0 ≤ t1 ≤ t2:

1. The imbalance factor during time interval [t1, t2] is
∆k
j (t1, t2) = Ak

j (t1, t2)−
1
r′
Aj(t1, t2).

2. The imbalance factor by time-slot t2 is ∆
k
j (t2) =

maxt1≤t2{∆
k
j (t1, t2)}.

3. The maximum imbalance factor is ∆k
j =

maxt2{∆
k
j (t2)}.

It can be shown that the imbalance factor is superadditive;
that is, for every output-port j, plane k and time-slots t1, t2:
∆k
j (t2) ≥ ∆

k
j (t1 − 1) + ∆

k
j (t1, t2).

Let Qj(t) be the size of the j
th buffer in the shadow switch

after time-slot t; similarly, Qk
j (t) is the size of jth buffer

of plane k of the PPS after time-slot t. Let Lk
j (t1, t2) be

the number of cells destined for output-port j that leave
plane k during time interval [t1, t2]. Note that Qk

j (t) =

Ak
j (0, t)− Lkj (0, t).
Time-slot t1 is the beginning of a (k, j) busy period for

time-slot t2 ≥ t1, if it is the last time-slot before t2, such
that Qk

j (t1 − 1) = 0. Since Qk
j (t1) > Qk

j (t1 − 1), a cell c
arrives at the switch at time-slot t1, and therefore exactly
one cell destined for j leaves plane k in time-interval (t1 +
1− r′, t1+1]. This is either cell c itself, or another cell that
prohibits c from using the link, and therefore is sent at most
r′ time-slot before time-slot t1+1. Since the queue is never
empty until time-slot t2, one cell is sent to j exactly every r′

time-slots after the first cell. This implies that the number

of cells sent from k, Lkj (t1, t2) ≥
⌊

(t2−t1)+1
r′

⌋
.

The following lemma bounds how badly a plane can per-
form relative to the shadow switch, by comparing their busy
periods:

Lemma 4.2. If Qj(t − 1) = 0 then for every plane k,
Qk
j (t− 1) ≤ max{0,

⌈
∆k
j (t− 1)

⌉
}.

Proof. The claim follows immediately if Qk
j is empty

after time-slot t− 1. Otherwise, let t′ be the beginning of a
(k, j) busy period for time-slot t − 1. During time interval
[t′, t− 1] plane k sends a cell to output j every r′ time-slots,
therefore:

L
k
j (t
′
, t− 1) ≥

⌊
t− t′

r′

⌋
(1)

Qj(t − 1) = 0 implies that for every time-slot ` ≤ t − 1,
Aj(`, t − 1) ≤ t − ` (otherwise the jth buffer of the shadow
switch is not empty after time-slot t− 1). In particular:

Aj(t
′
, t− 1) ≤ t− t

′ (2)

Using these inequalities we bound Qk
j (t− 1):

Q
k
j (t−1) = A

k
j (0, t− 1)− L

k
j (0, t− 1)

=
(
A
k
j (0, t

′ − 1) +A
k
j (t
′
, t− 1)

)
−

(
L
k
j (0, t

′ − 1) + L
k
j (t
′
, t− 1)

)

= A
k
j (t
′
, t− 1)− L

k
j (t
′
, t− 1)

sinceAk
j (0, t

′−1)−L
k
j (0, t

′−1)=

Q
k
j (t
′−1)=0

≤ A
k
j (t
′
, t− 1)−

⌈
t− t′

r′

⌉
by (1)

≤ A
k
j (t
′
, t− 1)−

⌈
Aj(t

′, t− 1)

r′

⌉
by (2)

= A
k
j (t
′
, t− 1) +

⌈
∆k
j (t
′
, t−1)−A

k
j (t
′
, t−1)

⌉

≤
⌈
∆k
j (t− 1)

⌉



Case 2: cell c arrives

t1 +∆
k
j (t1 − 1)r

′
after time-slot

t1 +∆
k
j (t1 − 1)r

′
before time-slot
Case 1: cell c arrives

t1 +∆
k
j (t1 − 1)r

′
t (time-slots)

⌈
∆k
j (t1 − 1)

⌉

t1

−Lkj (0, t)

Ak
j (0, min{t, t1 − 1})

Figure 4: Illustration for the different cases in the

proof of Theorem 4.3

We complete the proof by bounding the lag between the
time a cell leaves its plane and the time it should leave the
shadow switch:

Theorem 4.3. The maximum relative queuing delay of
cells destined for output-port j and sent through plane k is
bounded by max{0, r′(∆k

j + 1) +Bj}, where Bj is the maxi-
mum number of cells destined for output-port j that arrived
at the switch in the same time-slot.

Proof. By Lemma 4.1, it suffices to bound tp(c)− tlS(c)
for every cell c. Since tp(c) − tlS(c) = (tp(c)− ta(c)) −
((tlS(c)− ta(c)), it suffices to bound only the difference be-
tween the time a cell spends in the plane (i.e., tp(c) −
ta(c)) and the time it spends in the shadow switch (i.e.,
tlS(c)−ta(c)). Since both switches operate under FCFS pol-
icy, these values solely depend on the corresponding queues
lengths when cell c arrives.
Let t1 be the earliest time-slot, such that the buffer of

output-port j in the shadow switch is never empty during
time-interval [t1, ta(c)]; if no such time-slot exists let t1 =
ta(c).
First, we bound tlS(c) − ta(c) from below. The buffer in

the shadow switch is empty at time-slot t1−1, and then the
switch is continuously busy during time-interval [t1, ta(c)−1],
transmitting exactly one cell at each time-slot to output-
port j. This implies that Qj(ta(c)−1) = Aj(t1, ta(c)−1) −
(ta(c) − t1). All the cells in the queue, should leave the
switch after time-slot ta(c) and before tlS(c), therefore:

tlS(c)− ta(c) > Aj(t1, ta(c)− 1)− (ta(c)− t1)

Since Aj(ta(c), ta(c)) ≤ Bj , and tlS(c)− ta(c) is an integer,
it follows that:

tlS(c)− ta(c) ≥ Aj(t1, ta(c))−Bj + t1 − ta(c) + 1 (3)

Recall that by Lemma 4.2, Qk
j (t1−1)≤max{0,

⌈
∆k
j (t1−1)

⌉
}.

There are two cases to consider, depending on whether the
queue in plane k was or was not drained before cell c’s ar-
rival, ignoring cells that arrive to plane k after cell c (see
Figure 4):

Case 1. ta(c) ≤ t1 + ∆
k
j (t1 − 1)r

′. Since plane k is FCFS
and work-conserving, it transfers every cell in its queue in
exactly r′ time-slots, except cell c which is considered as

transfered in the first time-slot of its transmission:

tp(c)− ta(c) ≤ r
′
Q
k
j (ta(c)) + 1

≤ r
′

(
Q
k
j (t1 − 1)−

(⌊
ta(c)− t1

r′

⌋
−

A
k
j (t1, ta(c))

))
+ 1

since Qk
j is not drained

≤ r
′

(⌈
∆k
j (t1 − 1)

⌉
−

⌊
ta(c)− t1

r′

⌋
+

A
k
j (t1, ta(c))

)
+ 1 by Lemma 4.2

≤ r
′∆k

j (t1 − 1)− ta(c) + t1 + 2r
′ +

Aj(t1, ta(c)) + r
′∆k

j (t1, ta(c)) + 1

≤ Aj(t1, ta(c)) + r
′
(
∆k
j (ta(c)) + 2

)
−

ta(c) + t1 + 1

since ∆ is superadditive (4)

By (4) and (3), tp(c)−tlS(c) ≤ r′(∆k
j (ta(c))+2)+Bj . More

fine-grained calculations, which are omitted for brevity, yield
that tp(c)−tlS(c) ≤ r′(∆k

j (ta(c))+1)+Bj , since in this case⌈
∆k
j (t1 − 1)

⌉
−
⌊
ta(c)−t1

r′

⌋
is at most ∆k

j (t1−1)−
ta(c)−t1

r′
+1.

Case 2. ta(c) > t1+∆
k
j (t1−1)r

′. If Qk
j (ta(c)) = 0 then cell

c is immediately delivered to the output-port, i.e., tp(c) =
ta(c)+1 ≤ tlS(c) and the claim holds since tp(c)−tlS(c) ≤ 0.
IfQk

j (ta(c)) > 0, let t2 be the beginning of a (k, j) busy pe-

riod for ta(c). Note that by the choice of t2, L
k
j (t2, ta(c)) ≥⌊

ta(c)−t2+1
r′

⌋
. Hence, we have:

tp(c)− ta(c) ≤ r
′
Q
k
j (ta(c)) + 1

= r
′
(
A
k
j (t2, ta(c))− L

k
j (t2, ta(c))

)
+ 1

since Qk
j (t2 − 1) = 0

≤ r
′

(
A
k
j (t2, ta(c))−

⌈
ta(c)−(t2−1)

r′

⌉)
+1

since plane k is continuously busy

≤ Aj(t2, ta(c)) + r
′∆k

j (t2, ta(c))−

r
′

⌈
ta(c)− (t2 − 1)

r′

⌉
+ 1

≤ Aj(t1, ta(c)) + r
′
(
∆k
j (t2, ta(c))+1

)
+

t1−ta(c)+(t2 − t1)−Aj(t1, t2−1)+1 (5)

By the choice of t1, the output-buffer of the shadow switch
is empty at time-slot t1 − 1, and not during time-interval
[t1, t2 − 1]. This implies that (t2 − t1) ≤ Aj(t1, t2 − 1), and
therefore (5) implies:

tp(c)−ta(c) ≤ Aj(t1, ta(c))+r
′(∆k

j (ta(c))+1)+t1−ta(c)+1
(6)

By (6) and (3), tp(c)− tlS(c) ≤ r′(∆k
j (ta(c)) + 1) +Bj .



5. DEMULTIPLEXING ALGORITHMS
WITH OPTIMAL RQD

The fractional traffic dispatch algorithm (FTD) [19, 22] is
an example of a fully-distributed demultiplexing algorithm.
In FTD, there is a window of size r′ time-slots that slides
over the sequence of cells in each flow (i, j). The algorithm
maintains window constraint that ensures that two cells,
which are in the same window, are not sent through the
same plane. An equivalent variation of the algorithm divides
each flow to static blocks of size r′ [19, 22].
The demultiplexing algorithm chooses the plane to which

a cell is sent through arbitrarily from the set of planes that
do not violate the window constraint and the input-constrai-
nt described at Section 2. A speedup of S ≥ 2 suffices for
the algorithm to work correctly [19].
A simple use of Theorem 4.3 and the fact that always

Bj ≤ N shows:

Theorem 5.1. Ravg(FTD) ≤ Rmax(FTD) ≤ (N+1)r′.

Proof. Let Ai→j(t1, t2) be the number of cells in flow
(i, j) that arrive at the switch during time-interval [t1, t2],
and Ak

i→j(t1, t2) be the number of these cells that are sent
through plane k.
Due to the window constraint on each flow and because

Ai→j , r
′ are integers, for every output-port j plane k and

time-slots t1, t2:

∆k
j (t1, t2) = A

k
j (t1, t2)−

Aj(t1, t2)

r′

=
N∑

i=1

A
k
i→j(t1, t2)−

Aj(t1, t2)

r′

≤
N∑

i=1

⌈
Ai→j(t1, t2)

r′

⌉
−

Aj(t1, t2)

r′

≤
N∑

i=1

(
Ai→j(t1, t2)

r′
+

r′ − 1

r′

)
−

Aj(t1, t2)

r′

= N
r′ − 1

r′

By Theorem 4.3, Rmax(FTD) ≤ (N + 1)r′, since always
Bj ≤ N .

We now show a 1-RT demultiplexing algorithm that
matches the lower bounds presented in Section 3. Infor-
mally, Algorithm 1 divides the set of planes into two equal-
size sets (V0, V1), and its operations with respect to cells
destined for a specific output-port into two phases. In
each phase, the algorithm sends cells destined for a spe-
cific output-port through different set of planes (i.e., V0 or
V1). After every time-slot each input-port collects the global
information of the switch, and uses it to calculate the imbal-
ance factor for each plane k and each output-port j. Then,
in the next time-slot each input-port sends a cell to output-
port j only through planes with low (or zero) imbalance
factor. A phase ends when there are no balanced planes to
use.
To avoid situations in which all the input-ports send cells

through the same plane, we divide the input-ports into N
r′

sets of size r′, and assure that under no circumstances two
input-ports in the same set send a cell destined for the same
output-port through the same plane. This is done by calcu-
lating the actions of other input-ports in the same set as if
they indeed get a cell destined for the same output-port.

Algorithm 1 1-RT Algorithm

Constants:
V0={1, . . . ,

K
2
}; V1={

K
2
+ 1, . . . ,K}

Shared:
F [N ]: N sets of planes, initially all V0 . Cells for j
can be sent only through F [j]

R[N ][r′]: matrix of values in {1, . . . ,K,⊥}, initially
all ⊥ . holding input-constraints

t: value in {0, . . . , r′ − 1}, initially 0 . Cyclic pointer
to matrix R

Q[N ], L[N ]: N sets of planes, initially all ∅
M [N ]: N sets of planes, initially all {1, . . . ,K}
phase[N]: vector of values in {0, 1}, initially all 0

At the beginning of each time-slot:
For every j ∈ {1, . . . , N}: calculate(j)
For every j ∈ {1, . . . , N}: F [j]← update(j)
Update the matrix R[N ][r′] according to global infor-
mation

t← (t+ 1) mod r′

1: int procedure dispatch(cell c) at demutliplexor i
2: j ← dest(c)
3: p←

⌊
i
r′

⌋

4: set B ← ∅
5: for x← r′p to i do
6: E←{k∈{1, . . .,K} | ∃a∈{0, . . ., r′−1},R[x][a]=k}
7: k ← min (F [j] \ (B ∪ E))
8: B ← B ∪ {k}
9: end for

10: R[i][t]← k . can be read by other input-ports only
in the next time-slot

11: return k
12: end procedure

1: set procedure update(int j)
2: set S ← F [j]
3: Q[j]← Q[j] \M [j]
4: if Q[j] = ∅ then . change phase
5: Q[j]← {1, . . . ,K} \M [j]
6: phase[j]← (1− phase[j])
7: S ← Vphase[j]
8: else

9: S ← S \ (L[j])
10: end if

11: return S
12: end procedure

1: void procedure calculate(int j)
2: set A← {k|∆k

j (t) >
N
r′
} . using global information

3: M [j]← {k|∆k
j (t) ≤ 0} . using global information

4: L[j]← (L[j] ∪A) \M [j]
5: end procedure



Before proving the correctness of Algorithm 1, we first
show two properties of this algorithm.
The first lemma shows that the imbalance factor between

each plane and each output-port is bounded under this al-
gorithm:

Lemma 5.2. In Algorithm 1, for every plane k ∈ V0 ∪ V1

and output-port j, ∆k
j < 2N

r′
.

Proof. Clearly, if ∆k
j (t3) >

N
r′
then k ∈ L[j] in the be-

ginning of time-slot t3 + 1 (procedure calculate, line 4).
Therefore k 6∈ F [j] in the beginning of time-slot t3+1 (pro-
cedure update, line 9)2, and cells are not sent through plane
k until a time-slot t3

′ > t3 + 1 in which ∆
k
j (t3

′ − 1) ≤ 0.

For every two input-ports i1, i2 if
⌊
i1
r′

⌋
=

⌊
i2
r′

⌋
, then i1

and i2 do not send cells destined for the same output-port
through the same plane in the same time-slot (procedure
dispatch). This implies that the maximum number of cells
destined for the same output-port and sent through the same
plane in a single time-slot is N

r′
.

By Definition 4.1, if a plane does not receive cells destined
for output-port j in time-slot t1 then ∆

k
j (t1) ≤ ∆

k
j (t1 − 1).

This implies that there exists a time-slot t1, in which plane
k receives cells destined for j, and ∆k

j (t1) = ∆k
j . In the

worst-case ∆k
j (t1 − 1) =

N
r′
, and k receives N

r′
cells destined

for j.
Assume towards a contradiction, that ∆k

j (t1) ≥
2N
r′
. Then

there is a time-slot t2 such that ∆
k
j (t2, t1) ≥

2N
r′
. Note

that ∆k
j (t1, t1) <

N
r′
, since Ak

j (t1, t1) ≤
N
r′
, and Aj(t1, t1) ≥

Ak
j (t1, t1). This implies that t2 < t1, and therefore by Defi-
nition 4.1:

∆k
j (t2, t1) = A

k
j (t2, t1)−

1

r′
Aj(t2, t1)

= A
k
j (t2, t1 − 1) +A

k
j (t1, t1)−

1

r′
Aj(t2, t1 − 1)−

1

r′
Aj(t1, t1)

= ∆k
j (t2, t1 − 1) + ∆

k
j (t1, t1)

<
2N

r′

This contradicts the choice of t2, and the claim follows.

The second property is a simple conclusion from Lemma 5.2:

Lemma 5.3. If a PPS is operating under Algorithm 1, 2N
cells destined for output j arrive at it during time-interval
[t1, t2], and none of them is sent through plane k, then
∆k
j (t2) ≤ 0.

Proof. By Definition 4.1, there is a time-slot t3 such that
∆k
j (t2) = ∆

k
j (t3, t2).

If t3 ≥ t1 then ∆
k
j (t3, t2) ≤ 0 since Ak

j (t3, t2) = 0. Other-
wise,

∆k
j (t3, t2) = ∆k

j (t3, t1 − 1) + ∆
k
j (t1, t2)

= ∆k
j (t3, t1 − 1) +A

k
j (t1, t2)−

1

r′
Aj(t1, t2)

By Lemma 5.2 and Definition 4.1 ∆k
j (t3, t1−1) ≤ ∆

k
j ≤

2N
r′
.

Since Ak
j (t1, t2) = 0 and Aj(t1, t2) ≥ 2N , it follows that

∆k
j (t3, t2) ≤ 0 also in this case.

2The claim holds also if the phase changes in the beginning
of time-slot t3+1 since Q[j] = ∅ at line 4 yields that Vphase ⊆
M [j] at line 7.

We conclude by showing that a speedup of 8 suffices for
this demultiplexing algorithm to achieve optimal relative
queuing delay:

Theorem 5.4. Speedup S = 8 suffices for Algorithm 1
to work correctly with maximum relative queuing delay of
3N + r′ time-slots.

Proof. In order to prove Theorem 5.4, it suffices to show
that every time line 7 of procedure dispatch is executed,
F [j] \ (B ∪ E) 6= ∅, and a plane can be chosen. Clearly, at
each step |B| ≤ r′ and |E| < r′; therefore the claim follows
if |F [j]| > 2r′. Since F [j] is changed only by procedure
update(j), it suffices to show that after any execution of
update(j), |F [j]| > 2r′.
Assume, without loss of generality, that phase = 0 after

an execution of procedure update(j) at time-slot t1. As-
sume, by way of contradiction, that |F [j]| ≤ 2r′ at time-slot
t1. Clearly, from line 7 and the fact that |V0| = |V1| =

K
2
=

Sr′

2
= 4r′ > 2r′, it follows that phase = 0 after time-slot

t1 − 1. This implies that |V0 ∩ L[j]| ≥ 2r′.
Denote by t2 the last time-slot in which phase was

changed from 1 to 0 (t2 = 0 if no such time-slot exists).
At time-slot t2, when executing line 4, Q[j] is empty and
therefore all planes k ∈ V0 are at M [j] at time-slot t2. This
implies that for every k ∈ V0, ∆

k
j (t2) ≤ 0.

Let k be a plane in V0 ∩ L[j]. By the definition of L[j]
there is a time-slot t3 ∈ [t2, t1] such that ∆

k
j (t3) >

N
r′
. Let

t4 be the last time-slot such that ∆
k
j (t3) = ∆

k
j (t4, t3). If

t4 < t2 then

∆k
j (t4, t3) = ∆k

j (t4, t2) + ∆
k
j (t2 + 1, t3)

≤ ∆k
j (t2) + ∆

k
j (t2 + 1, t3) ≤ ∆k

j (t2 + 1, t3)

and therefore t4 is not minimal. Hence t4 ≥ t2 and [t4, t3] ⊆
[t2, t1]. Since ∆

k
j (t4, t3) = Ak

j (t4, t3)−
1
r′
Aj(t4, t3) >

N
r′
, and

Aj(t4, t3) ≥ Ak
j (t4, t3), it follows that A

k
j (t4, t3) >

N
r′−1

.

Because |V0∩L[j]| ≥ 2r
′, then the number of cells arrived

at the switch and destined for j during time-interval [t2, t1]
is at least (2r′) N

r′−1
> 2N . Since during time-interval [t2, t1]

no cells are sent to any plane in V1, by Lemma 5.3 all planes
in k ∈ V1 has ∆

k
j (t1) ≤ 0, and in particular all planes in Q[j].

This yields that Q[j] becomes empty, and the phase changes
at least once during time-interval [t2, t1] which contradicts
the choice of t1 and t2.
Lemma 5.2 and Theorem 4.3 imply that the relative queu-

ing delay of the algorithm is at most 3N + r′.

6. DISCUSSION
This paper presents lower bounds on the average relative

queuing delay, which hold with high probability even if ran-
domization is used. This generally implies that unlike other
load-balancing problems, randomization is not a silver bullet
for reducing the relative queuing delay. Our lower bounds
rely on the fact that switches are FCFS, but can be gener-
alized to rely on other priority-based policies.
We show that these lower bounds are tight by present-

ing a methodology for bounding the relative queuing de-
lay. We bound the relative queuing delay of the FTD al-
gorithm [19, 22] by (N + 1)r′ time-slots, exactly matching
the lower bound for fully-distributed algorithms. We also
design a 1-RT demultiplexing algorithm with relative queu-
ing delay of 3N + r′ < 4N time-slots; for the common case



of constant speedup, this asymptotically matches the lower
bound of N

S

(
1− 1

r′

)
time-slots for 1-RT algorithms.

A natural design choice is to transmit global control in-
formation on the internal links of the PPS, at rate r. Sub-
stituting u ≈ r′ in our lower bounds for u-RT algorithms
yields relative queuing delay approximately equal to the de-
lay when no information is gathered at all. This casts a
doubt on the benefit of sharing information.
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