Counting-Based Impossibility Proofs for
Renaming and Set Agreement*

Hagit Attiya and Ami Paz

Department of Computer Science, Technion

Abstract. Renaming and set agreement are two fundamental sub-
consensus tasks. In the M-renaming task, processes start with names
from a large domain and must decide on distinct names in a range of
size M; in the k-set agreement task, processes must decide on at most
k of their input values. Renaming and set agreement are representatives
of the classes of colored and colorless tasks, respectively.

This paper presents simple proofs for key impossibility results for wait-
free computation using only read and write operations: n processes can-
not solve (n — 1)-set agreement, and, if n is a prime power, n processes
cannot solve (2n — 2)-renaming.

Both proofs consider a restricted set of executions, and combine sim-
ple operational properties of these executions with elementary counting
arguments, to show the existence of an execution violating the task’s
requirements. This makes the proofs easier to understand, verify, and
hopefully, extend.

1 Introduction

In a basic shared-memory system, n asynchronous processes communicate with
each other by writing and reading from the memory. Solving a distributed task
requires processes, each starting with an input, to decide on outputs that satisfy
certain requirements. A wait-free algorithm for a task ensures that each process
decides within a finite number of its own steps. In this model, we can only solve
sub-consensus tasks, which are weaker than consensus but still provide some
nontrivial coordination among processes. Two prime examples of sub-consensus
tasks are renaming and set agreement.

In M -renaming [2], processes start with names from a large domain and must
choose distinct names in a range of size M > n. The range of new names, i.e.,
the value of M, determines the efficiency of algorithms that rely on the new
names [4], and hence, it is important to minimize M. Clearly, n-renaming is
trivial if processes may use their identifiers, such that process p; chooses name
i; to rule out such solutions, the algorithm is required to be symmetric [10,29].
There are wait-free algorithms for (2n — 1)-renaming [2,4,9,21], and it has been
argued that there is no wait-free algorithm for (2n — 2)-renaming [5, 26-28].

* This research is supported in part by Yad-HaNadiv fund and the Israel Science
Foundation (grant number 1227/10).

In k-set agreement [16], processes must decide on at most k of their input
values. Clearly, n processes can solve n-set agreement, by each deciding on its
input value; it has been proved that (n — 1)-set agreement cannot be solved by
a wait-free algorithm [8,27,32].

Our contribution: This paper presents simple proofs of the lower bounds for
renaming and set agreement; the proofs consider a restricted set of executions
and use counting arguments to show the existence of an execution violating
the task’s requirements. While there are several simple proofs for set agreement
[1,3,5], such proofs for renaming have eluded researchers for many years.

Our main result is a proof for the impossibility of (2n — 2)-renaming, when n
is a power of a prime number. The proof goes by considering the weak symmetry
breaking (WSB) task: in WSB, each process outputs a single bit, so that when all
processes participate, not all of them output the same bit. A (2n — 2)-renaming
algorithm easily implies a solution to WSB, by deciding 1 if the new name
decided by the process is strictly smaller than n, and 0 otherwise; therefore,
the impossibility of (2n — 2)-renaming follows from the impossibility of WSB.
(There is also a reduction in the opposite direction [22], but it is not needed for
the lower bound.)

We prove that WSB is unsolvable when n, the number of processes, is a
power of a prime number, by showing that every WSB algorithm for this num-
ber of processes has an execution in which all processes output the same value.
Since we are proving a lower bound, it suffices to consider a restricted set of ex-
ecutions (corresponding to immediate atomic snapshot executions [8,9] or block
executions [5]). The existence of a “bad” execution, violating the task’s require-
ments, is proved by assigning a sign to each execution, counting the number of
bad executions by sign, and concluding that a “bad” execution exists.

Prior lower bound proofs for renaming [11-13] rely on concepts and results
from combinatorial and algebraic topology. Although our proof draws on ideas
from topology (see the discussion), it uses only elementary counting arguments
and simple operational properties of block executions. This makes the proof
easier to understand, verify, and hopefully, extend.

As a warm-up and to familiarize the reader with counting-based arguments,
we prove the impossibility of wait-free solutions for (n — 1)-set agreement, by
counting the bad executions in two complementary ways. We believe this proof
is interesting on its own due to its extreme simplicity.

Another intermediate result shows the impossibility of solving strong symme-
try breaking (SSB)—an adaptive variant of WSB, in which at least one process
outputs 1 in every execution. The impossibility proof for SSB is similar to the
proof for WSB, although it is simpler—it holds for non-symmetric algorithms
and for every value of n. SSB is closely related to an adaptive variant of re-
naming, in which M, the range of new names, depends only on the number of

processes participating in the execution. Specifically, in (2p — (%]) -adaptive
renaming, if p < n processes participate in an execution, they choose distinct
names in 1,...,2p — 1, and if all n processes participate they choose distinct

names in 1,...,2n — 2. This task solves SSB, by deciding on 1 if the output of
(2p - [#Dﬂdaptive renaming is strictly smaller than n.

Previous research: The impossibility of (2n — 2)-renaming was proved by consid-
ering WSB [5,26-28]. All these papers claim that no algorithm solves WSB for
any number of processes, using the same topological lemma. A few years ago,
however, Castafieda and Rajsbaum [12,13] proved that this lemma is incorrect,
and gave a different proof for the impossibility of WSB, which holds only if the
binomial coefficients (7),..., (") are not relatively prime (see also [11]). It can
be shown that these values of n are precisely the prime powers, indicating that
the lower bound holds for a small fraction of the possible values of n.! For the
other values of n, Castafieda and Rajsbaum gave a non-constructive proof, using
a subdivision algorithm, for the existence of a WSB algorithm [12,15]. The upper
and lower bound proofs use non-trivial topological tools on oriented manifolds.

The k-set agreement task is colorless, which intuitively means that the out-
put of one process can be adopted by another process. Colorless tasks have
been extensively studied: there is a complete characterization of their wait-free
solvability by simple topological conditions [27,28], which implies that wait-free
(n—1)-set agreement is impossible. Wait-free (n—1)-set agreement is also proved
impossible by topological methods [5,8,26,32], or graph theory [1,3]. Set agree-
ment and its variants have been studied in many other models as well, see, e.g.,
the survey in [31].

Clearly, renaming is not colorless, since the new name chosen by one process
cannot be adopted by another one; such tasks are called colored. Little is known
about colored tasks and only a few tasks were studied (e.g., [19,29]). A good
survey of renaming can be found in [14]. We hope that our more direct treatment
will encourage the investigation of colored tasks.

2 Preliminaries

We use a standard model of an asynchronous shared-memory system [6]. There
is a set of n processes P = {po,...,pn—1}, each of which is a (possibly infinite)
state machine. Processes communicate with each other by applying read and
write operations to shared registers. Each process p; has an unbounded single-
writer multi-reader register R; it can write to, which can be read by all processes.
An execution of an algorithm is a finite sequence of read and write opera-
tions by the processes. Each process p; starts the execution with an input value,
denoted In;, performs a computation and then terminates with an output value,
also called a decided value. Without loss of generality, assume that in the algo-
rithm, a process alternates between writing its complete state to its register and
reading all the registers (performing a scan).
_N
Tog N
with exponent e > 2 [23, pp. 27-28] in the interval [1, N]. Hence, the portion of

! Asymptotically, there are © () primes, and © (\/Nlog N) powers of primes

prime powers is © loglN + 1%\1)’ which tends to 0 as IV goes to co.

For a set of processes P, we say « is an execution of P if all processes in P
take steps in «, and only them; P is the participating set of . Although any
process may fail during the execution, we restrict our attention to executions
where every participating process terminates (possibly by taking steps after all
other processes terminated).

For a process p; that terminates in an execution «, the output of p; in « is
denoted dec(a, p;). For a set of processes P, dec(c, P) is the set of outputs of
the processes in P that terminate in «, and dec(«) is the set of all outputs in a.

Two executions a, o’ are indistinguishable to process p;, denoted 2o, if

the state of p; after both executions is identical. We write « L o, if a R o for
every process p; € P.

A block execution [5], or immediate atomic snapshot execution [8,9], is in-
duced by blocks, i.e., nonempty sets of processes. A block execution « is induced
by a sequence of blocks By By - - - By, if it begins with all processes in By writing
in an increasing order of identifiers and then performing a scan in the same or-
der, followed by all processes of By writing and then performing a scan, and so
on. Since we prove impossibility results, we can restrict our attention to block
executions. Note that given a block execution as a sequence of read and write
operations, there is a unique sequence of blocks inducing the execution: each
consecutive set of write operations determines a block.

We consider wait-free algorithms, in which each process terminates in a finite
number of its own steps, regardless of the steps taken by other processes. Since
only executions with a bounded set of inputs are considered, there is a common
upper bound on the number of steps taken in all these executions.?

3 Impossibility of (n — 1)-Set Agreement

The k-set agreement task is an extension of the consensus task, where processes
have to decide on at most k values. Process p; has an input value (not necessarily
binary), and it has to produce an output value satisfying:

k-Agreement: At most k different values are decided.
Validity: Every decided value is an input value of a participating process.

A process p; is unseen in an execution « if it takes steps in « only after
all other processes terminate. In this case, a is induced by Bj - - Bp{p; }H{pi }*,
where p; ¢ B;,1 < j < h, and {p;}* stands for a finite, nonnegative number of
blocks of the form {p;}.

A process p; is seen in an execution « if it is not unseen in it. A process
p; € Bj is seen in Bj if p; is not the only process in Bj, or if there is a later
block with a process other than p;. The key property of block executions that
we use is captured by the next lemma (this is Lemma 3.4 in [5]).

2 In general, wait-freedom does not necessarily imply that the executions are
bounded [25]. However, with a bounded set of inputs, wait-freedom implies that
there is a bound on the number of steps taken by a process in any execution.

Lemma 1. Let P be a set of processes, and let p; € P. If p; is seen in an
. . . . P—p;
ezecution a of P, then there is a unique execution o' of P such that o/~ ~" «

and o # a. Moreover, p; is seen in o/ .

Sketch of proof. Let a be induced by By --- By, {p;}", and let B, be the last block
in which p; is seen.

If By = {p;}, define the new execution o’ by merging B, with the successive
block Byy1. That is, {p;} Bes1 is replaced with {p;}U B4 (note that Byyq does
not include p;), and all other blocks remain the same.

Otherwise, if By # {pi}, define o’ by splitting p; before B,, with opposite
manipulation. That is, By is replaced with {p;} By \ {p;}, and all other blocks
remain the same.

In both cases, it might be necessary to add singleton steps at the end of the
execution to ensure p; terminates. O

Assume, by way of contradiction, that there is a wait-free algorithm solving
(n — 1)-set agreement. Let C.,, 1 < m < n, be the set of all executions in which
only the first m processes, po, - .., Pm—1, take steps, each process p; has an input
value 4, and all the values 0,...,m — 1 are decided. We prove that C,, # 0, i.e.,
there is an execution in which n values are decided.

Lemma 2. For every m, 1 < m < n, the size of Cy, is odd.

Proof. The proof is by induction on m. For the base case, m = 1, consider a solo
execution of pg. Since the algorithm is wait-free, pg decides in h steps, for some
integer h > 1. By the validity property, py decides on 0, so there is a unique
execution in C, induced by {po}". Hence, |C;| = 1.

Assume the lemma holds for some m, 1 < m < n. Let X,,,11 be the set of
all tuples of the form («, p;), 0 <14 < m, such that « is an execution where only
processes po, - - -, Pm take steps, and all the values 0,...,m — 1 are decided by
processes other than p;; p; decides on an arbitrary value. We show that the sizes
of X, 41 and C),41 have the same parity.

Let X/, ., be the subset of X, ;1 containing all tuples (o, p;), such that all
values 0,...,m are decided in «; we show that the size of X is equal to the
size of Cppy1. Let (o, p;) be a tuple in X, , ;, so a is in Cyy 1. Since m+-1 values
are decided by m + 1 processes in «, p; is the unique process that decides m in
@, so there is no other tuple («,p;) in X/, with the same execution «. For
the other direction, if « is an execution in C,,41, then in o, m + 1 values are
decided by m + 1 processes, and there is a unique process p; which decides m in
a. Hence, a appears in X, ,; exactly once, in the tuple (a,p;).

We next argue that there is an even number of tuples in X, 1, but not in
X1 If (o, p;) is such a tuple, then p; decides v # m in . Since (o, p;) € X1,
all values but m are decided in « by processes other then p;, so there is a unique
process p; # p; that decides v in . Thus, (o, p;) and (o, p;) are both in X, 41
but not in X/, ., and these are the only appearances of « in X,, ;1. Therefore,
there is an even number of tuples in X,, 1 but not in X7, ,, implying that the

sizes of X1 and X |, have the same parity, and hence, the sizes of X,
and C),4+1 have the same parity.

To complete the proof and show that the size of X, 11 is odd, partition the
tuples («, p;) in X,,41 into three subsets, depending on whether p; is seen in «
or not:

1. p; is seen in a: By Lemma 1, for each execution « in which only pg, ..., pm
take steps, and p; is seen, there is a unique execution o/ # o« with only
Do, - - -, Pm taking steps, p; is seen, and all processes other than p; decide
on the same values. Hence, the tuples in X,,11 in which p; is seen in the
execution can be partitioned into disjoint pairs of the form {(«, p;), (&', pi)},
which implies that there is an even number of such tuples.

2. i# m and p; is unseen in «: Since i € {0...,m — 1} and all values
{0,...,m — 1} are decided in « by processes other then p;, the value i is
decided in o by some process p;, j # i. But p; is unseen in o, so p; must
have decided on 7 before p; introduced ¢ as an input value. Considering the
same execution without the steps of p; at the end, we conclude that the
fact that p; decides on ¢ contradicts the validity property of the algorithm.
Hence, there are no such tuples in X,,41.

3. ¢ = m and p,, is unseen in a: We show a bijection between this subset of
X1 and Cyy,. Since p,, is unseen in «, in the beginning of « all processes but
Pm take steps and decide on all values 0, ..., m — 1, and then p,, takes steps
alone. Consider the execution & induced by the same blocks, but excluding
the steps of p,, at the end, and note that & is in C,,. On the other hand,
every & in C), can be extended to an execution « by adding singleton steps
of p,, the its end, (o, py,) is in X, 41 and p,, is unseen in .

By the induction hypothesis, the size of C), is odd, so the bijection implies
that X,,+1 has an odd number of tuples («, p,,) in which p,, is unseen in «.

Since the sizes of C),+1 and X,,, 11 have the same parity, and the latter size
is odd, then so is the former. a

Taking m = n, we get that the size of C), is odd, and hence, non-zero, im-
plying that there is an execution in which all n values are decided, contradicting
the (n — 1)-agreement property.

Theorem 1. There is no wait-free algorithm solving the (n — 1)-set agreement
task in an asynchronous shared memory system with n processes.

4 Impossibility of Symmetry Breaking (SSB and WSB)

In weak symmetry breaking (WSB), n inputless processes should each output a
single bit, satisfying:

Symmetry Breaking: If all processes output, then not all of them output the
same value.

WSB is easily solvable when using the processes’ identifiers: pg, .. ., pp—2 out-
put 1, and p,,—1 outputs 0. To prevent such solutions, we assume processes does
not use their identifiers, and they all run the same algorithm. This restriction is
enforced by demanding that WSB algorithm is symmetric [5,18,29], formalized
as follows.

Let a be an execution prefix induced by a sequence of blocks By - -+ By, and
let 7:{0,...,n—1} = {0,...,n—1} be a permutation. For a block B;, let 7(B;)
be the block {pﬂ(i)}p and denote by m(«) the execution prefix induced by
7T(B1) ce F(Bh).

A permutation 7 : {0,...,n — 1} — {0,...,n — 1} is order preserving on a
set of processes P, if for every p;,p; € P, if i < i’ then w(i) < 7 (i).

iEB;’

Definition 1. An algorithm A is symmetric if, for every execution prefix o of
A by a set of processes P, and for every permutation = : {0,...,n — 1} —
{0,...,n — 1} that is order preserving on P, if a process p; decides in «, then
Pr(iy decides in m(a), and on the same value.

A adaptive version of WSB is the strong symmetry breaking (SSB) task,
where n inputless processes should each output a single bit, satisfying the sym-
metry breaking property, and the following property:

1-decision: In every execution, at least one participating process outputs 1.

SSB is unsolvable even if the processes are allowed to use their identifiers, so
we do not assume that algorithms are symmetric.

We can now explain the arguments used to prove the impossibility of both
symmetry breaking tasks. As in the set agreement proof, we analyze the set
of executions using counting arguments. Assume, towards a contradiction, that
there is an algorithm A solving the relevant task—SSB or WSB. We associate
A with a wnivalued signed count, a quantity that counts the executions of A
in which all processes output the same value; if the univalued signed count is
nonzero, then there is an illegal execution of A. We prove that for SSB, the
univalued signed count is always nonzero, whereas for WSB, it is nonzero if n is
a prime power.

To show that the univalued signed count is nonzero, we derive a trimmed
version of A, with the same univalued signed count. Counting the univalued
signed count is easier in the trimmed version: for SSB, it is immediate from the
1-decision property, and for WSB, the symmetric nature of the algorithm implies
that the same values are output in different partial executions. Together with
the fact that n is a prime power, this is used to show that the univalued signed
count of the trimmed algorithm is nonzero, which completes the proof.

Section 4.1 defines the sign of an execution and presents a way to measure the
size of a set of executions. Section 4.2 shows how to trim an algorithm in a way
the preserves the univalued signed count. These tools are used in Sections 4.3
and 4.4 to prove the impossibility results for SSB and WSB, respectively.

4.1 Counting Executions by Signs
The sign of a sequence of blocks By --- By is sign(By - -+ By) = H?:I(—1)|Bi|+1;
it is positive if and only if there is an even number of even-sized blocks. The
definition is crafted to obtain Proposition 1 and Lemma 3.

The sign of an execution o induced by By - - - By, is sign(a) = sign(By - - - By,).
If two executions (possibly of different algorithms) differ only in singleton steps
of a process at their end, then the difference is only in odd-sized blocks, which
do not change the sign, implying their signs are equal:

Proposition 1. If « is an execution induced by By - -- By, and & is an execution
induced by By - -+ Bp{p;}™, then sign(«) = sign(&).

Since the indistinguishable execution constructed in the proof of Lemma 1 is
created by either pulling out or merging a singleton set, it must have an opposite
sign. This is stated in the next lemma, extending Lemma 1 to argue about signs.

Lemma 3. Let P be a set of processes, and let p; € P. If p; is seen in an
. . . . P—p;
ezecution o of P, then there is a unique execution o of P such that o '

and o # . Moreover, p; is seen in o, and sign(a’) = — sign(a).

This lemma is used in an analogous way to the parity argument in the proof
of Lemma 2, except that here, we sum signs instead of checking the parity of a
size; as in Lemma 2, pairs of executions from Lemma 3 cancel each other.

From now on, we consider only executions by all processes. For an algorithm
A and for v = 0, 1, the set of executions of A in which only v is decided is C* =
{a | dec(a) = {v}}. These sets are defined for any algorithm, but the symmetry
breaking property implies that both sets are empty, since the executions in which
all processes decide on the same value, either 0 or 1, are prohibited. To prove that
no algorithm solves SSB, or solves WSB when n is a prime power, we measure
Cg' and Cf! and show they cannot both be empty.

The signed count of a set of executions S is p (S) = > cgsign(a). Clearly,
p(0) =0, and for any two disjoint sets S, T, u (SUT) = p (S) + pu (T).

The univalued signed count of an algorithm A is pu (Cg') + (=1)" 71 - p (CF).
Note that if the univalued signed count is nonzero, then A has an execution
with a single output value. (The converse is not necessarily true, but this does
not matter for the impossibility result.) We next define a trimmed version of A,
T(A), and show how this way of measuring C§' and C{* allows to prove that the
univalued signed counts of A and T(A) are equal (Lemma 4).

4.2 A Trimmed Algorithm

Let A be a wait-free algorithm which produces binary outputs. By assumption,
process p; alternates between write and scan operations:

write(i) to R;
while (1) do
v < Scan (Ro,...,R,—1)
Localy(v): [calculation on v
if cond then return x
else write(v) to R; |

We derive from A a trimmed algorithm, T(A), that does not claim to solve
any symmetry breaking task. The code of T(A) for a process p; is:

boolean simulated = 0

write(i) to R;

while (1) do
v < Scan (Ry,...,R,_1)
if v contains all processes then return simulated
compute Local 4 (v)
if A returns r then return the same value x
stmulated < 1

In every execution of T(A), the last process to take a first step sees all
other processes in its first scan, takes no simulation steps and outputs 0; hence,
crA =g,

Every execution of A with an unseen process p; is also an execution of T(A),
up to the number of singleton steps of p; at the end of the execution. By Propo-
sition 1, changing the number of singleton steps does not affect the sign, so
counting executions with an unseen process by sign is the same for both algo-
rithms. This is used in the proof of the next lemma:

Lemma 4. A and T(A) have the same univalued signed count.

Proof. For each of the algorithms, we define an intermediate set of tuples in a
way similar to the one used in the proof of the (n—1)-set agreement impossibility
result (Lemma 1). These tuples contain executions spanning from the univalued
0 executions to the univalued 1 executions. More precisely, consider tuples of the
form (a, p;) such that in «, all processes with identifier smaller than i decide on
1, and all processes with identifier greater than ¢ decide on 0. As in the proof of
Lemma 1, the output of p; does not matter. For an algorithm A, let:

XA = {(avpi) | dec(aa {p07 s 7pi71}) = {1}7 dec(a7 {pi+17 s 7pn*1}) = {0}} .

We abuse notation and define the signed count of the set of pairs X4 to be
A(XA) = Z?;OI(—l)iu({a | (a,p;) € X*}). Again, A (0) = 0, and for any two
disjoint sets S, T, A (SUT) = A (S) + A (T). Similar notations are used for T(A).

The (—1)* element in A (X*) is used to cancel out pairs of tuples in X with
the same execution and processes with consecutive identifiers. This is used in
the first case of the next claim:

Claim. The univalued signed count of an algorithm A equals A (X4).

Proof of claim. For every tuple (o, p;) € X there are three possibilities:

1. dec(a) = {0,1}. If dec(ar, p;) = 1 then

dec(a, {p07 o 7pi717pi}) = {1}7 dec(a7 {pi+17 s 7pn71}) = {0}7

5o (a,piq1) is also in X4, In A (XA), « appears exactly twice, for («,p;)
and for (a, p;4+1), and the corresponding summands cancel each other, since
(—1)*sign(a) = —(—1)"*!sign(a).
If dec(ar, p;) = 0 then, by a similar argument, (o, p;_1) is also in X“ and the
appropriate summands cancel each other.

2. dec(a) = {0}. Then i = 0, a appears in X* once, as (a, pg), and its sign in
A (X4) is sign(a), as in p (C§).

3. dec(a) = {1}. Then i = n — 1, a appears in X* once, as (a,p,_1), and its
sign in A (X4) is (—1)" ! sign(a), as in (=1)""1p (C7Y).

Therefore, every tuple in X4 implies either two summands in A (X A) that
cancel each other, or a summand that appears in A (XA) and in p (C{;‘) +
(=1)""'p (C{') with the same sign. On the other hand, every execution o € C¢!
appearers in X4 in a pair (o, po), as discussed in the second case, and every
a € C{* appearers in X4 in a pair (o, p,_1), as discussed in the third case.
Hence, the sums are equal. O

It remains to show that A (X4) = X (XTA).

For a tuple (o, p;) € X4 such that p; is unseen in a, consider the execution
a of T(W) with the same sequence of blocks, possibly omitting singleton steps
at the end; by Proposition 1, both executions have the same sign. Moreover, all
processes but p; complete the simulation of A and output the same values as in
. Hence, (@,p;) € XT4) and the contribution of (a,p;) to A (XA) equals the
contribution of (a,p;) to A (XTA).

The sum over tuples (a,p;) in which p; is seen in « is 0 in both cases: fix a
process p;, and consider all the tuples (a,p;) € X4 in which p; is seen in o. By
Lemma 3, for each « there is a unique execution o’ # « of A such that « iy ,
hence for each p; # p;, dec(a, pj) = dec(a’,p;), and (o, p;) € X4, Moreover,
p; is also seen in «, and sign(a) = —sign(a’). Hence, we can divide all these
tuples into pairs, («, p;) and (&, p;), so that sign(a) = — sign(«’), each of which
cancels out in A (X*). The same claim holds for T(A) as well. O

4.3 Impossibility of Strong Symmetry Breaking

Let S be an SSB algorithm and consider its trimmed version, T(S). By Lemma 4,
the univalued signed count of S and T(.S) is the same, so it suffices to prove:

Lemma 5. The univalued signed count of T(S) is nonzero.

Proof. In every execution of T(S), the last process to take a first step sees all

other processes in its first step and decides on simulated = 0, hence ClT(S) = (.
There is a unique execution « of T(S) in which all processes take their first

step together, take no simulation steps and decide 0. So a € C’g (S), and we claim

there is no other execution in C’g (%) Consider another execution o’ of T(S). In
o', there is a set of processes which does not see all other processes in their first
scan operation, and all of them set simulated = 1. If one of these processes sees
all other processes in a later scan, it decides 1. Otherwise, all these processes
decide in the simulation of S, and this simulation induces a legal execution of S.
By the 1-decision property of .S, at least one of them decides 1 in .S, and hence
in T(S).

Hence, C’OT(S) = {a}, and since CIT(S) = (), the univalued signed count of
T(9) is sign(a) = (—1)"*. 0

By Lemma 4, the univalued signed count of S is also nonzero. Hence, there
is an execution of S where all processes decide, and on the same value, so the
algorithm does not satisfy the symmetry breaking property.

Theorem 2. There is no wait-free algorithm solving SSB in an asynchronous
shared memory system with any number of processes.

4.4 Impossibility of Weak Symmetry Breaking

Let W be a symmetric WSB algorithm, and consider its trimmed version T(W).

In order to compute the univalued signed count of T(WW), we use the fact
that W is symmetric to show that every execution « of T(W) where not all
processes participate has a set of executions with the same outputs as in a. This
is formalized by defining an equivalence relation on the executions of T(WW) and
considering the equivalence classes it induces.

For an execution « of T(W), induced by the blocks By - -- By, let £ be the
index of the first block after all processes have taken a step, i.e., Uj<¢B; = P
and Uj,B; # P. P, is the set of all processes that set the simulated variable
to be 1, namely, took steps before the rest of the processes appear. Formally,
P, =U;<¢Bj, and P, = (0 if B; = P; denote P, =P\ P,.

For an integer m, 0 < m < n, let S, be the set of executions a such that
|P,| = m, i.e., in which exactly m processes take steps in . Note that every
execution « is in some set S,,, since P, is defined for every «, and |P,| < n
since the last process to start does not simulate a step of W.

When m = 0, Sy is the set of executions in which all processes take steps
in the first block. In T(W), they all decide 0 and halt, so Sy contains only the
execution induced by the single block {po,...,pn—1}. Hence, |Sp| = 1.

Fix some m > 0 and consider two executions «,a’ € S,,, such that « is
induced by B --- By, and o is induced by Bj--- Bj,. Define a relation ~ on
S, such that a ~ o' if and only if h = &/, and there is a permutation = :
{0,...,n—1} = {0,...,n—1} that is order preserving on P, and on P,, such that
B} = m(B;) for every j € {1,...,h}. It is easy to check that ~ is an equivalence
relation. The equivalence class of an execution « is [a] = {/ | @ ~ o'}

Since W is symmetric, it can be verified that the equivalence classes of ~
have the following useful properties:

Proposition 2. If a € S, and & ~ «, then sign(a) = sign(’), o’ € S, and
dec(a) = dec(d).

Therefore, we can denote the sign of all the executions in [a] by sign([a]).

For two sets of equal sizes, P and P’, note that there is a unique permutation
m:{0,...,n—1} = {0,...,n— 1} that maps P to P’ and P\ P to P\ P’ and is
order preserving on P and on P\ P. This is due to the fact that all identifiers are
distinct and hence, there is a single way to map P to P’ in an order-preserving
manner, and a single way to map P\ P to P\ P’ in such manner. This implies
that 7 is unique, which is used in the proof of the next lemma:

Lemma 6. For every m, 0 < m < n, and for every execution o € Sy,, the size

of [a] is (7?1)

Proof. Denote by (ji) the set of all subsets of IP of size m. Then ‘(i)’ = (")

m

For a € S,,, define f : [a] — (f;) by f(a') = P,, which is well defined by
Proposition 2. We prove that f is a bijection.

Let o, a” € [a] satistying f(o/) = f(a), and assume o/ = 7(a) and o =
¢(a), for two permutations 7, that are order preserving on P, and on P,. Since
f(a') = f(a"), we have that P, = P,», and hence, P, = P,. Since there is a
unique permutation that maps P, to Py and P, to P, in an order-preserving
manner, it follows that © = ¢, implying that o/ = o”.

Let P € (), and denote by 7 the unique permutation that maps P, to P

P
and P, to P\ P and is order preserving on both sets. Let o/ = n(a),s 0’ € S,,
and f(o/) = P, = P. O

Lemma 7. If n = ¢° for a prime number q and a positive integer e, then the
univalued signed count of T(W) is nonzero.

Proof. In every execution of T(W), at least one process sees all other processes
in its first snapshot and decides 0. Therefore, C’lT(W) = and pu (C;F(W)) =

0, implying that the univalued signed count of T(W) is equal to (Cg(W)).

To show that u (C’(r)F (W)> is nonzero, note that C’g W) is the disjoint union of

CE(W) NSy, for 0 < m < n — 1, since each execution is in some set S,,. Hence,

w () = 3 0 (% s,

Fix m > 0. By Proposition 2, if « is in CE(W) NS, then every o/ ~ « is also
in COT W) A Sin. Therefore, CSS W) A S, consists of complete equivalence classes,

and can be rewritten as U_ I Mg, [a]. Therefore,

NCA T SR SR}

m=0 (la]laccr™ns,,}

By Lemma 6, the size of each equivalence class is (Z) Also, recall that all
executions in an equivalence class have the same sign. Note that Sy contains only
the execution « induced by the block {pg, ..., pn—_1}; for this execution, P, = 0,
and its sign is (—1)"*1. Therefore,

NGO NS SRS (1) -sien(.

m=1 {la]laccy™NS,.}
The following basic result of number theory follows from Lucas’ Theorem.

Claim. If ¢ is a prime number and e, m are positive integers such that 0 < m <
q%, then () =0 (mod q).

Therefore, all summands, except the first one, are 0 mod ¢, and hence,
p(C0™) = ()" £0 (mod g),

hence, p (Cg(W)> # 0 and the univalued signed count of T(W) is nonzero. O

Consider a WSB algorithm W for n processes, where n is a prime power.
By Lemma 7, the univalued signed count of T(W) is nonzero, and by Lemma 4,
the same holds for W. This implies that at least one of C}V and C}" is not
empty. Thus, there is an execution of W in which only 0 or only 1 is decided,
contradicting the symmetry breaking property of W.

Theorem 3. There is no wait-free algorithm solving WSB in an asynchronous
shared memory system if the number of processes is a prime power.

5 Discussion

Understanding wait-free solvable tasks is at the heart of distributed computing.
This paper suggests a new approach for studying wait-free solvability of sub-
consensus tasks. The novel ingredient in our approach is in counting (sometimes
by sign) the number of executions that violate the task’s requirements, as a way
to show that such executions exist. This yields simple impossibility proofs for
wait-free computation using only read and write operations: n processes cannot
solve (n — 1)-set agreement or SSB, and, if n is a prime power, they cannot
solve (2n — 2)-renaming. The simplicity of the proofs, and in particular, the
fact they use only elementary mathematics, should make them accessible to a
wider audience and increase confidence in their correctness. We hope this better
understanding of colored tasks will promote further investigation of them.
Prior approaches [3,5,12,28] also consider a restricted subset of executions
in which all processes decide. Additionally, some parts of our proofs are anal-
ogous to known topological proofs [13,28]. In these proofs, simplexes represent
executions, where each node represents the local view of a process. These papers

use variants of Lemma 1 to prove that the set of simplexes representing block
executions induces a manifold.

An execution a with the view of a process p; factored out is represented by
the pair (a,p;) in our proofs; this is the analogue of the face of the simplex
of a that is opposite to the node of p;. Thus, counting pairs is analogous to
counting faces of a simplex, as used in a classical proof of Sperner’s Lemma, and
in the proof of the Index lemma [24]. Indeed, Lemma 2 is analogous to Sperner’s
Lemma, and Lemma 4 corresponds to the use of the Index lemma in [12,13].

The sign of an execution is used here instead of the topological notion of
defining an orientation on a manifold and comparing it with the orientation
of each simplex; univalued signed count is the counterpart of the topological
content. The trimmed algorithm T(W) is an algorithmic way to look at the cone
construction of [13]. Proposition 2 is proved there in a relatively complicated
manner, using i-corners or flip operations and paths in a subdivided simplex.

Simulations, like [7,17,20], can be used to translate the lower bounds to other
models, e.g., message-passing systems or models with fewer failures. More inter-
estingly, it should be possible to derive analogous lower bounds for other models,
by showing properties similar to Lemma 3. For example, in the message-passing
model, we can consider layered executions [30] and take the sign according to
the number of messages sent in the layers.

Finally, and perhaps most importantly, our simpler proofs may lead to the
discovery of matching upper bounds, for example, an explicit (2n — 2)-renaming
algorithm when n is not a prime power.

Acknowledgements: We would like to thank Maurice Herlihy for collaboration in
earlier stages of this research, Armando Castaneda, Keren Censor-Hillel, Faith
Ellen, Tal Horesh, Petr Kuznetsov, Sergio Rajsbaum, Mor Weiss and the referees
for valuable comments, and Amir Shpilka for discussions on number theory.

References

1. Attiya, H.: A direct lower bound for k-set consensus. PODC ’98, 314

2. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an
asynchronous environment. J. ACM 37 (July 1990) 524-548

3. Attiya, H., Castafieda, A.: A non-topological proof for the impossibility of k-set
agreement. SSS ’11, 108-119

4. Attiya, H., Fouren, A.: Polynomial and adaptive long-lived (2k-1)-renaming.
DISC ’00, 149-163

5. Attiya, H., Rajsbaum, S.: The combinatorial structure of wait-free solvable tasks.
SIAM J. Comput. 31 (April 2002) 1286-1313

6. Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations, and ad-
vanced topics. Wiley series on parallel and distributed computing. Wiley (2004)

7. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation
algorithm. Distributed Computing 14 (2001) 127-146

8. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. STOC ’93, 91-100

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming.
PODC 93, 41-51

Castaneda, A.: A Study of the Wait-free Solvability of Weak Symmetry Breaking
and Renaming. PhD thesis, Universidad Nacional Autonoma de Mexico (2010)
Castaneda, A., Herlihy, M., Rajsbaum, S.: An equivariance theorem with applica-
tions to renaming. LATIN ’12, 133144

Castaneda, A., Rajsbaum, S.: New combinatorial topology upper and lower bounds
for renaming. PODC ’08, 295-304

Castaneda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming;:
the lower bound. Distributed Computing 22 (2010) 287-301

Castaneda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared mem-
ory systems: An introduction. Computer Science Review 5(3) (2011) 229-251
Castanieda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming:
the upper bound. J. ACM 59(1) (2012)

Chaudhuri, S.: More choices allow more faults: set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1) (July 1993) 132-158

Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony.
PODC 98, 143-152

Gafni, E.: Read-write reductions. ICDCN ’06, 349-354

Gafni, E.: The 0-1-exclusion families of tasks. OPODIS 08, 246258

Gafni, E.: The extended BG-simulation and the characterization of t-resiliency.
STOC ’09, 85-92

Gafni, E., Rajsbaum, S.: Recursion in distributed computing. SSS '10, 362—-376
Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus tasks: Renaming is weaker
than set agreement. DISC ’06, 329-338

Hardy, G.: Ramanujan: Twelve Lectures on Subjects Suggested by His Life and
Work. AMS Chelsea Publishing Series. AMS Chelsea Pub. (1999)

Henle, M.: A Combinatorial Introduction to Topology. Dover Books on Mathe-
matics Series. Dover (1994)

Herlihy, M.: Impossibility results for asynchronous PRAM. SPAA 91, 327-336
Herlihy, M., Rajsbaum, S.: Algebraic spans. Math. Struct. in Comp. Sci. 10
(August 2000) 549-573

Herlihy, M., Shavit, N.: The asynchronous computability theorem for t¢-resilient
tasks. STOC ’93, 111-120

Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46 (November 1999) 858-923

Imbs, D., Rajsbaum, S., Raynal, M.: The universe of symmetry breaking tasks.
SIROCCO 11, 66-77

Moses, Y., Rajsbaum, S.: A layered analysis of consensus. SIAM J. Comput. 31(4)
(2002) 989-1021

Raynal, M., Travers, C.: Synchronous set agreement: a concise guided tour
PRDC ’06, 267274

Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology
of public knowledge. SIAM J. Comput. 29(5) (2000) 1449-1483

