
1

Fully Adaptive Snapshots

Hagit Attiya and Idan Zach
Department of Computer Science

The Technion

DISC, October 2004Attiya and Zach
Efficient Adaptive Snapshots

2

The Collect Problem

Collect up-to-date values of active processes
A simple solution uses an array with N entries

O(N) step complexity

But …
N is large
Often only few of the processes take steps

DISC, October 2004Attiya and Zach
Efficient Adaptive Snapshots

3

Adaptive Algorithms

Step complexity depends only on the number of 
participating processes

Point contention during an operation: Max 
number of processes taking steps together

total contention = 7

point contention = 2

DISC, October 2004Attiya and Zach
Efficient Adaptive Snapshots

4

Adaptive Collect Algorithms

[Attiya, Fouren & Gafni, 1997] O(K) (total contention)
[Afek, Stupp & Touitou, 1999] O(k4)
[Attiya & Fouren, 2003] O(k2)

But local step complexity depends on the total 
contention!

[Afek, Stupp & Touitou, 2000] O(k3) local + shared
This work O(k) / O(k2) local + shared

For a generalized problem



2

DISC, October 2004Attiya and Zach
Efficient Adaptive Snapshots

5

Collect&f

Compute a function f on the 
stored values  

associative, commutative and 
idempotent
put&f(val), collect&f()

A weaker variant: gather&f
Earlier gather may be more 
up-to-date than a later gather

Collect&max

p1

put (5)put (9)

p3 p2

put (1)

5 9 1

9

p4

Collect
&max

DISC, October 2004Attiya and Zach
Efficient Adaptive Snapshots

6

Implementing Gather&f / 
Collect&f

Naïve method: Use a gather / collect object
Local step complexity is not adaptive since f is 
applied to all stored values

Better method: Incrementally calculate the result 
as values are stored, and save it for later use

Extend idea from [Afek, Stupp & Touitou, 2000]
Fit into [Attiya and Fouren, 2003] 

DISC, October 2004Attiya and Zach
Efficient Adaptive Snapshots

7

Two Examples

Pile maintains the maximum value stored
[Afek et al. 2000] O(k4)
using our gather&max O(k2)

Active set returns the current set of active 
processes
[Afek et al. 2000] O(k3)
using our gather&union O(k2)

DISC, October 2004Attiya and Zach
Efficient Adaptive Snapshots

8

Repetetive Collect&f

Many algorithms invoke many put / collect 
operations within one high-level operation
Amortize costs over all invocations

put&f a single step
collect&f O(k) steps
start and end O(k2) steps

start endput collect collect collectput



3

DISC, October 2004Attiya and Zach
Efficient Adaptive Snapshots

9

Implementing Repetetive Collect&f

start { 
sign-in (active set) }

put&f {
Ri = value }

collect&f {
get active set
read regs of active proc.
read from Pile
merge the results } 

end {put last result in pile
sign-out (active set) }

Pile

Active set

Result

R1

R2

RN

R3R3

3

Result

DISC, October 2004Attiya and Zach
Efficient Adaptive Snapshots

10

Implications

Atomic snapshots
[Afek, Stupp & Touitou, 2000] O(k4) local+shared
[Attiya & Fouren, 2003] O(k3) shared only
This work O(k2) local+shared

Immediate snapshots
[Attiya, Fouren & Gafni, 1997] O(K3) shared (total)
[Afek, Stupp & Touitou, 2000] O(k5) local+shared
This work O(k3) local+shared

Long-lived (2k-1)-renaming
[Attiya, Fouren & Gafni, 2003] O(k3) local+shared

Using our work


