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Abstract

The article explores the concept of simulating the abstraction of a shared
memory in message passing systems, despite the existence of failures. This
abstraction provides an atomic register accessed with read and write opera-
tions. This article describes the Attiya, Bar-Noy and Dolev simulation, its
origins and generalizations, as well as its applications in theory and practice.

Dedicated to the 60th birthday of Danny Dolev

1 Introduction
In the summer of 1989, I spent a week in the bay area, visiting Danny Dolev,
who was at IBM Almaden at that time, and Amotz Bar-Noy, who was a post-
doc at Stanford, before going to PODC in Edmonton.1 Danny and Amotz have
already done some work on equivalence between shared memory and message-
passing communication primitives [14]. Their goal was to port specific renaming
algorithms from message-passing systems [10] to shared-memory systems, and
therefore, their simulation was tailored for the specific construct—stable vectors–
used in these algorithms.

Register constructions were a big fad at the time, and motivated by them, we
were looking for a more generic simulation of shared-memory in message passing
systems.

∗This article is based on my invited talk at SPAA 2008.
1 During the same visit, Danny and I also worked on the first snapshot algorithm with bounded

memory; these ideas, tremendously simplified and improved by our coauthors later, lead to the
atomic snapshots paper [2].
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In PODC 1990, we have published the fruits of this study in an extended ab-
stract of a paper [8] describing a simulation of a single-writer multi-reader reg-
ister in a message-passing system. Inspired by concepts from several areas, the
paper presented a simple algorithm, later nicknamed the ABD simulation, that
supports porting of shared-memory algorithms to message-passing systems. The
ABD simulation allowed to concentrate on the former model, at least for studying
computability issues.

The simulation, vastly extended to handle dynamic changes in the system and
adverse failures, served also as a conceptual basis for several storage systems, and
for universal service implementations (state-machine replication).

In this article, I describe the ABD simulation and its origins, and survey the
follow-up work that has spanned from it.

2 Inspirations

This section describes the context of our simulation, discussing specifications,
algorithms and simulations, which provided inspiration for our approach. The
section also lays down some basic terminology used later in this article.

2.1 Sharing Memory

When we started to work on this research project, we were well-aware of the
paper of Upfal and Wigderson [50]2 simulating a parallel random access machine
(PRAM) [24] on a synchronous interconnect, like the one used, for example, in
the NYU Ultracomputer [30].

Upfal and Wigderson assume a synchronous system, which does not allow
any failures. The paper further assumes a complete communication graph (clique)
or a concentrator graph and shows how to emulate a PRAM step, namely, a per-
mutation where each node reads from some memory location, or writes to some
memory location.

Because many nodes may access the same memory location, their simula-
tion replicates the values of memory locations and stores each of them in several
places, in order to reduce latency. To pick the correct value, a node accesses a
majority of the copies, and the intersection between these majority sets ensures
that the correct value is obtained.

Upfal and Wigderson concentrate mostly on avoiding communication bottle-
necks, and hence the emphasis in their paper is on spreading copies in a way that

2 Indeed, our title is a takeoff on the title of their paper.
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minimizes the load across nodes. As we shall discuss (Section 3.3), this consid-
eration will make a comeback also in the context of asynchronous, failure-prone
systems.

2.2 Handling Asynchrony

In contrast to Upfal and Wigderson, who assumed that nodes do not fail and
that communication is synchronous, we were interested in asynchronous systems
where nodes may fail. Our original simulation assumed that failed nodes sim-
ply crash and stop taking steps; later work addressed the possibility of malicious,
Byzantine failures (see Section 4.2).

The combination of failures and asynchrony poses an additional challenge of
a possible partitioning of the system. It can easily be seen that if more than a
majority of the nodes may fail, then two operations may proceed without being
aware of each other. This might cause a read operation to miss the value of a
preceding write operation. Therefore, the construction assumes that a majority of
the nodes do not fail; thus, the number of nodes n is more than twice the number
of possible failures f ; that is, n > 2 f .

Armed with this assumption, it is possible to rely on Thomas’s majority con-
sensus approach [49] for preserving the consistency of a replicated database.3

The majority consensus algorithm coordinates updates to the database replica
sites, by having sites (nodes) vote on the acceptability of update requests. For a
request to be accepted and applied to all replicas, only a majority need approve
it; an update is approved only if the information upon which the request is based
is valid; validity, in turn, is determined according to version numbers associated
with data values.

This indicates that version numbers may provide the key for coping with fail-
ures in an asynchronous system.

2.3 Atomic Registers

A critical step in the simulation was deciding which abstraction to use; indeed,
Bar-Noy and Dolev simulated a very specific communication construct, which is
not sufficiently generic to use in other contexts, while Upfal and Wigderson sim-
ulated a full-fledged PRAM with the associated cost and complication. Luckily
for us, the hippest research trend at the time were register constructions, namely,
algorithms to simulate a register with certain characteristic out of registers with
weaker features.

3 This paper makes an interesting read because it deals with concurrency control prior to the
introduction of the notion of serializability [46].
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The “holy grail” of this research area was an atomic multi-writer multi-reader
register, and many papers presented algorithms for simulating it from weaker
types of registers. This is a fairly general data structure accessed by read and
write operations, allowing all processes to write to and read from the register, and
ensuring that operations appear to occur instantaneously (more on this below).

A multi-writer multi-reader atomic register is a very general and convenient to
use abstraction. However, since many of these algorithms were wrong, or at best,
complicated, we decided to simulate a slightly weaker kind of register, atomic
single-writer multi-reader register, which can be written only by a single node.
This decision turned out to simplify our algorithm considerably; a multi-writer
register could still be simulated by porting the shared-memory algorithms. Later,
it turned out that simulating an even weaker type of register, with a single writer
and a single reader, could lead to a more efficient simulation [7].

To simulate a register in a message-passing system, one must provide two
procedures: one for read and the other for write. These procedures translate the
operation into a sequence of message sending and receiving, combined with some
local computation. When these procedures are executed together by several nodes
their low-level events (message sending and receiving) are interleaved, and we
need to state their expected results.

The expected behavior in interleaved scenarios is specified through lineariz-
ability [34]. Like sequential consistency [37], linearizability requires the results of
operations to be as if they were executed sequentially. Furthermore, linearizabil-
ity also demands that this order respects the order of non-overlapping operations,
in which one operation completes before the other starts (we say that the early
operation precedes the later one, and that the later one follows the early one).

3 The ABD Simulation in a Nutshell
One reason the ABD simulation is well-known is due to its simplicity, at least in
the unbounded version. This section explains the basic behavior of the algorithm.

We consider a simple system with one node being the writer of a register; all
other nodes are readers. All n nodes also store a copy of the current value of the
register; this is done in a separate thread from their roles as a writer or reader.

Each value written is associated with an unbounded version number, an integer
denoted version#.

To write a value, the writer sends a message write(val,version#), with the new
value and an incremented version number, to all nodes and waits for n − f ac-
knowledgments. Figure 1(a) shows an example of the communication pattern: the
writer sends the message to all seven nodes, one node does not receive the mes-
sage (indicated by a dashed line); of the nodes that receive the message, one does
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Figure 1: Execution examples for the ABD simulation; dark nodes have acknowl-
edged the message.

not respond at all, another responds but the message is delayed (indicated by a
dashed line), so the writer receives acknowledgments from four nodes (a majority
out of seven).

To read a value, a reader queries all nodes, and, after receiving at least n − f
responses, picks the value with the highest version number. Figure 1(b) shows an
example of the communication pattern: the reader sends the message to all seven
nodes; all nodes receive the message, two do not respond at all, while another
responds but the message is delayed (indicated by a dashed line), so the reader
receives values from four nodes (a majority out of seven).

The key to the correctness of the algorithm is to notice that each operation
communicates with a majority of the nodes: since n > 2 f it follows that n − f >
n/2. Thus, there is a common node communicating with each pair of write and
read operations. (As illustrated by Figure 1.) This node ensures that the value
of the latest preceding (non-overlapping) write operation is forwarded to the later
read operation; the read will pick this value, unless it receives an even later value
(with a higher version number).

A formal proof can be found in the original paper or in [13, Chapter 10].
A slight complication happens because two non-overlapping reads, both over-

lapping a write, might obtain out-of-order values. This can happen if the writer
sends a new value (with a higher version number) to all nodes, and node p gets it
first. The early read operation might already obtain the new value from p (among
the n − f it waits for), while the later read operation does not wait to hear from p
and returns the old value. (See Figure 2.)

This behavior is avoided by having a reader write back the value it is going to
return, in order to ensure atomicity of reads.

An argument based on communication with a majority of nodes shows that the
value returned by a read operation is available to each following read operation,
which returns it unless it has obtained an even later value. (See more details in [8]
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Figure 2: Old-new inversion between read operations; the dark nodes holds the
new value of a write operation. In (a), process p already stores the new value of
the register; in (b), the first read operation receives the new value, while in (c), a
later read operation does receive the new value. Note that the write operation does
not complete.

or [13].)

3.1 Bounding the version numbers
A large part of the original paper is spent on bounding the version numbers that
are appended to each register value that is sent. The key to bounding the version
numbers is knowing which of them are currently in use in the system; once this
set is known, the writer can make sure that a newly generated sequence number
is larger than all existing ones [35]. Tracking the version numbers is complicated
by the fact that, although all version numbers are generated by a single node (the
writer), they are forwarded with the values exchanged between readers. Track-
ing the version numbers is therefore done by having a reader “record” a version
number before forwarding it with a value.

Recording is akin to writing, but it need not preserve atomicity, and hence,
can be implemented in a much simpler manner, without forwarding or having to
recursively record forwarded values. (See [8] for more details.)

A construction of a single-writer single-reader atomic register [7] avoids this
complication, since it needs only to linearize reads from the same node. This
reduces the cost of the bounded simulation, even when a multi-reader register is
then simulated on top of the single-reader register.

3.2 Immediate Implications
The simulation allowed to port many algorithms designed for shared memory to
message-passing systems. This includes atomic snapshots [2], approximate agree-
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ment [12], failure detectors [51], and condition-based consensus [44].

This has reduced the interest in the asynchronous message-passing model
with crash failures. This model has become virtually “obsolete” when studying
computability, as argued for example, by Borowsky and Gafni [16], Herlihy and
Shavit [33], as well as Mostefaoui, Rajsbaum and Raynal [44].

3.3 The Quorum Point-of-View

The consistency mechanisms of the ABD simulation can be easily decoupled from
its communication pattern. Specifically, the communication pattern of communi-
cating with a majority of the nodes can be replaced with the more general concept
of communication with a quorum. This conceptual modification appeared in a
paper of Lynch and Shvartsman [39], which extended the unbounded ABD sim-
ulation to a multi-writer register, in a more dynamic situation. A similar idea
appeared, at about the same time, in work by Malkhi and Reiter [41], dealing with
Byzantine failures. (Both works are discussed in more detail in the next section.)

A quorum system is a collection of subsets of nodes, with the property that
each pair of sets have at least one common node, that is, each pair of sets have a
nonempty intersection. It is quite obvious that the ABD simulation can be para-
phrased so that each operation must communicate with a quorum. Indeed, the
simple majority quorum system, containing all sets with a majority of nodes, is a
straightforward example of a quorum system.

Quorums have been used in the context of data and file replication [27, 29].
These works further separate between write quorums and read quorums, so that
every read quorum intersects with every write quorum. A simple example of a
read-write quorum system is when nodes are organized in a grid (two-dimensional
array), the read quorums contain all the sets of nodes in the same column, and the
write quorums contain all the sets of nodes in the same row.

Clearly, the ABD simulation can be modified so that each write operation
(all by the same node) communicates with some write quorum, while each read
operation communicates with some read quorum.

This refactoring admits a separation of concerns and paves the way to opti-
mizing the communication pattern without changing the overall workings of the
algorithm. For example, it is possible to choose a different quorum system when
fewer processes may fail, or so as to optimize the performance features of the
quorums, e.g., their load and availability [45].
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4 Making the Simulation More Robust

Concentrating on the communication pattern, through a quorum system, allowed
to make the register simulation more robust, and most notably, to handle dynamic
system changes and tolerate more malicious, Byzantine failures.

4.1 Dynamic Changes

Lynch and Shvartsman [39, 40] address dynamic systems, where nodes can join
and leave the system, in their reconfigurable atomic memory service for dynamic
networks.

A key concept in these simulations is the notion of a configuration, which
includes the set of nodes participating in the simulation, together with the set of
read and write quorums. Clearly, when a configuration is fixed, a register can
be simulated by running the ABD simulation with the read and write quorums,
essentially as described before. Therefore, the core challenge of the algorithm is
in reconfiguring the system when changes happen.

Reconfiguration modifies the set of participating nodes, and installs a new quo-
rum system appropriate for the new set. Originally [39], Lynch and Shvartsman
relied on a special node to manage reconfiguration. In a later paper [40], they
presented a decentralized algorithm, nicknamed RAMBO, in which nodes propose
new configurations and use a safe consensus protocol to decide on an agreed new
configuration. Safe consensus ensures that nodes agree on the same configuration,
which was proposed by one of them, but it does not guarantee termination. (This
is necessary since full-fledged consensus cannot be solved in an asynchronous
system [23].) A neat feature of the algorithm is that the safe consensus algo-
rithm is implemented from shared registers, which, in turn, are simulated over the
message-passing system.

At certain points during the execution of the algorithm, several configurations
exist: Some configuration might already be agreed on by some nodes, while other
nodes might still hold to previous configurations. A key idea in RAMBO is to
communicate with a representative quorum from every known configuration. This
leads to a component that needs to “garbage collect" old configurations, so as to
reduce the amount of communication after transitional periods.

Improvements to RAMBO have appeared in several works, for example, [17,
21, 28].

Very recently, Aguilera et al. [5] presented a variant of RAMBO that side-
steps the need to reach consensus during reconfiguration, assuming the number of
reconfigurations is finite.
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4.2 Byzantine Failures

Another interesting research thread deals with Byzantine failures. These failures
model the erroneous behavior that is caused by non-deterministic software errors
or even malicious attacks.

Malkhi and Rieter [41] considered the behavior of the simulation when some
nodes may experience Byzantine failures. When f Byzantine failures may occur,
we need to assume that n > 3 f ; otherwise, it is possible to violate the known
lower bound on the ratio of Byzantine failures that can be tolerated [22].

In the simplest case, we can take quorums in which any set of 2 f + 1 nodes is
a quorum; this ensures that each pair has a large (> f ) intersection, containing at
least one nonfaulty node. When information from correct nodes is self-verifying
(e.g., values are digitally signed), this dissemination quorum system suffices for
simulating a shared register since this nonfaulty node will forward the correct
value.

Malkhi and Rieter also define opaque masking quorum systems, which allow
to simulate a shared register without assuming that data values are self-verifying.
Such quorum systems assure that a node gets many copies of the current value
of the register, all with the same version number. This requires a higher ratio of
nonfaulty nodes.

Abraham, Chockler, Keidar and Malkhi [1] present two simulations that only
assume n > 3 f , but provide weaker properties: one simulates only a safe register,
while the other simulates a regular register, and is guaranteed to terminate only
if the number of writes is finite. Aiyer, Alvisi and Bazzi [6] simulate an atomic
register, with Byzantine readers and (up to one-third of) Byzantine servers; their
protocol relies on a secret sharing scheme.

Like vanilla quorum systems, it is possible to design more sophisticated dis-
semination and opaque masking quorum systems, so as to optimize various pa-
rameters, e.g., [42].

5 Application: Replicated Services

Many systems cannot afford to guarantee a majority of nonfaulty processing nodes,
seemingly implying that fault-tolerance cannot be obtained. However, systems
contain other types of components, for example, independent disk drives. Be-
cause these components are cheaper than computers, it is feasible to replicate
them in order to achieve fault tolerance. Disk drivers are not programmable, but
they can respond to client requests; clients may stop taking steps, and disks may
stop responding to requests.

Disk Paxos [26] implements an arbitrary fault-tolerant service on such a stor-
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age area network containing processing nodes and disks; it provides consistency
with any number of asynchronous non-Byzantine node failures.

Disk Paxos is based on a shared-memory version of the classic Paxos algo-
rithm [38]; this algorithm is then ported to a storage area network using an op-
timized version of the ABD simulation: To write a value, a processor writes the
value to a majority of the disks. To read, a processor reads a majority of the disks.
(This provides a somewhat weaker register, called regular, which however, suf-
fices for their shared-memory Paxos algorithm.) The algorithm avoids the version
numbers used in the ABD simulation by piggybacking on the version numbers of
the Paxos algorithm.

A somewhat similar approach was taken with erasure-coded disks [48], where
redundancy is used beyond simple replication to tolerate (non-malicious) disk
errors, in addition to partitioning and non-responding disks. It incorporates a
quorum reconfiguration algorithm, which allows client requests to proceed unim-
peded. This algorithm is, in some sense, obstruction-free, since a request may
abort when it encounters a concurrent request, yielding an efficient read opera-
tion (within a single communication round). This concept was later abstracted by
Aguilera et al. to define an abortable object [4], which may abort an operation
when there are concurrent operations.

A service can be replicated even when servers are Byzantine, by relying on
the register simulation tolerating Byzantine failures, see for example, [47].

6 Closing Remarks
One of my goals in this article was to show how picking the right abstraction
can bring forth many applications. Finding the right abstraction is in many ways
a key for designing good systems: it should hide enough capabilities “under its
hood” to provide good leverage in application design, yet, not too much, so the
implementation is efficient (or easily admits optimizations).

The are several other research directions that were not discussed in detail here;
many of them still pose significant challenges.

Many papers studied the response time or the message complexity of the sim-
ulation and improved it, especially in the best case, i.e., where the system is well-
behaved, by having few failures or maintaining synchronization [19, 32], or by
reducing the amount of storage it requires [31]. While there are many pieces of
information about the complexity of the simulation [20], it is still open to charac-
terize the exact conditions and scenarios that admit a “fast read” (within a single-
communication round) or a “fast write”.

The exact bounds for a simulation tolerating Byzantine failures are also not
clear yet: What is the highest ratio of failures that can be tolerated with a constant
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number of communication rounds, while still providing linearizability and always
terminating.

Several papers, e.g., [15, 18, 25], attempt to port the simulation to modern
network technologies, which are more ad-hoc and contain mobile nodes, and to
sensor networks. The dynamic nature of these systems means these algorithms
have to rely on the more robust simulations described in Section 4.1, increasing the
importance of developing better understanding of the storage and communication
requirements in these systems. These might be traded off with the ratio of faulty
nodes that can be tolerated. A related question is to handle a more uniform model,
where the number of nodes is unknown in advance.

Needless to say, it is generally unknown how to tolerate Byzantine failures in
dynamic systems.

We have described, in brief, how the ABD simulation contributes to service
and storage replication, assuming servers might fail. We did not address the prob-
lem of dealing with client failures, which may lead to incorrect operations applied
to the register; one approach was to consider this as a faulty shared memory [3,36],
and to apply concepts from there [11]. Other approaches deal with faulty clients
in a more direct manner, e.g., [43], but this aspect deserves further study.

Acknowledgements: I would to thank Keren Censor and Seth Gilbert for help-
ful comments.
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