Tight Bounds for Asynchronous Randomized Consensus

Hagit Attiya & Keren Censor
Department of Computer Science
Technion
Consensus

Alice and Bob want to meet for dinner. They write and read notes on the bulletin board.

Deterministic asynchronous consensus is impossible

[Fischer, Lynch & Paterson 1985]
Consensus

Each process p_i has an input value $x_i \in \{0, 1\}$ and should produce an output value $y_i \in \{0, 1\}$

- **Agreement**: all the outputs are equal
 - for every y_i, y_j that are assigned, $y_i = y_j$

- **Validity**: the output is the input of some process
 - for every y_i that is assigned, $y_i = x_j$ for some j

- **Termination**: every nonfaulty process eventually decides
 - every nonfaulty process p_i eventually assigns y_i
Randomized Consensus

Each process p_i has an input value $x_i \in \{0,1\}$ and should produce an output value $y_i \in \{0,1\}$

- **Agreement**: all the outputs are equal
 - for every y_i, y_j that are assigned, $y_i = y_j$
- **Validity**: the output is the input of some process
 - for every y_i that is assigned, $y_i = x_j$ for some j
- **Termination**: with probability 1,
 - every nonfaulty process eventually decides
 - every nonfaulty process p_i eventually assigns y_i

The total step complexity is the expected total number of steps taken by all the processes
Shared Memory Multiprocessor

\(n \) asynchronous processes

Multi-writer multi-reader shared registers

- At most \textbf{f crash failures} (at some point the process stops taking steps)
 \(\Rightarrow \) Cannot tell whether a process has failed or is just slow
- The ordering of steps is determined by a \textbf{strong adversary}
 Makes the scheduling decision after observing the local coin-flips
Bounds on the Total Step Complexity

- $O(\exp(n))$ [Abrahamson 1988]
- $O(n^4)$ [Aspnes & Herlihy 1990, Aspnes 1993]
- $O(n^3)$ [Saks, Shavit & Woll 1991]
- $O(n^2 \log n)$ [Bracha & Rachman 1991]
- $O(n^2)$
- $\Theta(n^2)$
- $\Omega(n^2)$
- $\Omega(n^2 / \log^2 n)$ [Aspnes 1998]
Upper Bound: Shared Coin

Shared coin with agreement parameter δ: for $v \in \{0,1\}$, the probability that all processes return v is at least δ.

→ Randomized consensus with step complexity $\delta^{-1}T$ where T is the step complexity of the shared coin.

[Aspnes & Herlihy 1990]

Naïve shared coin: every process flips its own coin, agreement parameter is $1/2^n$.

[Abrahamson 1988]

We present a shared coin with constant agreement parameter and $O(n^2)$ total step complexity.
Shared Coin: Flipping Many Coins

Stop flipping coins when there are enough

A

\[p_1, p_2, \ldots, p_n \]
Shared Coin: How Many Coins?

Collect to check how many coins were flipped

\[p_1, p_2, \ldots, p_n \]
Shared Coin: Balancing Act

Collect to check how many coins were flipped

[Bracha & Rachman 1991]

collect costs \(n \) steps
\[\Rightarrow \text{perform fewer collects} \]
more coins written between collects
\[\Rightarrow \text{perform more collects} \]

\[p_1, p_2, \ldots, p_n \]
Shared Coin: Raising the Flag

A

checking \textit{done} costs 1 step! \quad p_1 \quad p_2 \quad \ldots \quad p_n
while not done do
 \(A[i] = \{\text{count}++, \text{sum}+\text{random}(-1,+1)\}\)
 every \(n\) coin flips
 collect \(A\)
 if \(> n^2\) coins were flipped
 then \text{done} = \text{true}
collect \(A\)
return the majority value of the coin flips
Total Step Complexity

- n^2 coins are written to A
- True is written to done
- p_i performs final collect

$\leq n^2$ coins

$\leq n-1$ extra coins

Writing $O(n^2)$ coins, and reading done $\Rightarrow O(n^2)$ operations,
Every n coins a process performs a collect (n read operations) $\Rightarrow O(n^2)$ operations
Agreement Parameter: Overview

- n^2 coins are written to A
- True is written to done
- p_i performs final collect

- $\sum \geq 3n$ with constant prob.
- $\sum \geq -2n$ with constant prob.

- The stopping time is under the control of the adversary.
- Partial sums of a stochastic process (Kolmogorov ineq.)

Central limit theorem

$$\Pr \left[\sum \geq x\sqrt{N} \right] \xrightarrow{n \to \infty} 1 - \Phi(x)$$

November 2007
Agreement Parameter: Summing Up

\(n^2 \) coins are written to A

true is written to done

\(p_i \) performs final collect

\[\leq n^2 \] coins

\[\leq n^2 \] coins

\[\leq n-1 \] extra coins

\(\sum \geq 3n \) with constant prob.

\(\sum \geq -2n \) with constant prob.

\(\Rightarrow \) sum \(\geq n \) with constant prob.

\(\Rightarrow \) extra coins cannot make sum negative

\(\Rightarrow \) every output is 1 with constant prob. (same for -1)
Partial Sums of Random Variables

A sequence of independent random variables X_1, X_2, \ldots, X_m with $E[X_i]=0$ and $Var[X_i]=1$

Yields a sequence of partial sums $S_j = X_1 + \ldots + X_j$

$E[S_j] = E[X_1 + \ldots + X_j] = E[X_1] + \ldots + E[X_j] = 0$

$Var[S_j] = Var[X_1 + \ldots + X_j] = Var[X_1] + \ldots + Var[X_j] = j$

Kolmogorov's Inequality:

$$\Pr\left[\max_{1 \leq j \leq m} |S_j| \geq \lambda \right] \leq \frac{1}{\lambda^2} Var[|S_m|]$$

$m = n^2$, $\lambda = 2n$:

$$\Pr\left[\max_{1 \leq j \leq n^2} |S_j| \geq 2n \right] \leq \frac{1}{4n^2} n^2 = \frac{1}{4}$$

$\Rightarrow S_j \geq -2n$ for every $1 \leq j \leq n^2$, with prob. $3/4$
So...

- The total step complexity of randomized consensus can be improved.

... but only so much
Lower Bounds: A Brief History

History repeats itself. Historians repeat each other computer scientists

- $\Omega(n^2/\log^2 n)$ coin flips (asynchronous sm) [Aspnes 1998]
- $\Omega(\sqrt{n/\log n})$ rounds (synchronous mp) [Bar-Joseph & Ben-Or 1998]
 - $\Rightarrow \Omega(n^{\sqrt{n/\log n}})$ total step complexity (asynchronous mp/sm)
 - \Rightarrow Worse than previous bound
FLP: Valency

0-valent: only deciding 0
1-valent: only deciding 1
bivalent: deciding 0 and deciding 1
Valency w/ Randomization

0-valent: high probability for deciding 0
1-valent: high probability for deciding 1
bivalent: high probability for deciding 0
and high probability for deciding 1
null-valent: not high probability for deciding 0
and not high probability for deciding 1

[Aspnes 1998]
The Synchronous Lower Bound

Executions proceed in rounds

May need to hide $O(\log n \sqrt{n})$ processes in a round

⇒ cannot go for more than $\Omega(\sqrt{(n/\log n)})$ rounds

★ An asynchronous process can be delayed without failing

★ Synchronous model w/ mobile failures

⇔ asynchronous model [Santoro, Widmayer 1989]
Our Asynchronous Lower Bound

Executions proceed in layers (sequence of $\geq n-f$ distinct processes) [Moses & Rajsbaum 1998]

An asynchronous process can be hidden, by delaying, without failing f layers, each with at least $n-f$ steps $\Rightarrow f(n-f)$ steps
Strong Adversary, In More Detail

Two sources of non-determinism: coin-flips & scheduling

configuration

possibilities for next configuration

p_1, p_2, ..., p_n
Valency, In More Detail

0-valent: high probability for deciding 0
1-valent: high probability for deciding 1
bivalent: high probability for deciding 0 and high probability for deciding 1
null-valent: not high probability for deciding 0 and not high probability for deciding 1

\[\epsilon_k = \frac{1}{n\sqrt{n}} - \frac{k}{(n-f)^3} \]
where \(k \) is the layer number
Remaining Null-Valent

\[g: \{X_1 \cup \bot\} \times \{X_2 \cup \bot\} \times \ldots \times \{X_n \cup \bot\} \rightarrow \{1, 2, 3\} \]

3-valued one-round coin-flipping game, \(X_i \) is a random variable

Theorem: one outcome has high probability
One Outcome has High Probability

The probability space $X = X_1 \times X_2 \times \ldots \times X_n$

$W^1 = \{\text{points where hiding } \leq t \text{ coordinates does not give outcome 1}\}$

We want to prove that for some u, $Pr[W^u] < 1/n^3$

$x = \begin{bmatrix} x_1 & \cdots & \cdots & x_n \end{bmatrix} \quad g(x) \neq 1$

$|I| \leq t \quad x_i = \begin{bmatrix} x_1 & \cdots & \perp & \cdots & \perp & \perp & x_n \end{bmatrix} \quad g(x_i) \neq 1$
One Outcome has High Probability

The probability space \(X = X_1 \times X_2 \times \ldots \times X_n \)

\(W^1, W^2, W^3 \)

\(B(W^1, t/3) \)

\(B(W^2, t/3) \)

\(B(W^3, t/3) \)

\(W^u \) – adversary cannot reach outcome \(u \). Assume \(\Pr[W^u] \geq 1/n^3 \)

Isoperimetric inequality: if \(\Pr[W^u] \geq 1/n^3 \) then \(\Pr[B(W^u, t/3)] \geq 1 - 1/n^3 \)

\(g(y_i) = g(x^1_i) = g(x^2_i) = g(x^3_i) = ? \)

\(y_1 \neq y_2 \neq y_3 \neq y_n \)

\(x^1_1 = \) \(\ldots \) \(x^2_1 = \) \(\ldots \) \(x^3_1 = \) \(\ldots \)
One Outcome has High Probability

The probability space \(X = X_1 \times X_2 \times \cdots \times X_n \)

\(W^u \) — adversary cannot reach outcome \(u \).
For some \(u \), \(\Pr[W^u] < 1/n^3 \).
The adversary can reach the outcome \(u \) with probability \(\geq 1 - 1/n^3 \).
Must be the null-valent category.
Remaining Null-Valent

\[g : \{X_1 \cup \bot\} \times \{X_2 \cup \bot\} \times \ldots \times \{X_n \cup \bot\} \rightarrow \{1, 2, 3\} \]

Product probability space = results of local coin-flips
\(\bot \) stands for a process not taking a step in the layer

- 0-valent or bivalent configuration \(\rightarrow \) the outcome of \(g \) is 1
- 1-valent configuration \(\rightarrow \) the outcome of \(g \) is 2
- Null-valent configuration \(\rightarrow \) the outcome of \(g \) is 3

\(\Rightarrow \) some outcome can be forced (by hiding processes) w.h.p.

Since we started from a null-valent configuration

1. not high probability of deciding 0
 \(\Rightarrow \) cannot have high probability for reaching a 0-valent configuration
2. not high probability of deciding 1
 \(\Rightarrow \) cannot have high probability for reaching a 1-valent configuration

\(\Rightarrow \) the **null-valent** category must be the one with high probability
Must Remain Null-Valent

- Null-valent configuration has probability for deciding 0 at most $1-\varepsilon_k$
- Assume 0-valent or bivalent configuration can be reached with probability $1-1/m^3$
- New configuration has probability for deciding 0 at least $1-\varepsilon_{k+1}$
- Together, the probability for deciding 0 from the null-valent configuration is:

$$\geq \left(1 - \frac{1}{(n-f)^3}\right)(1-\varepsilon_{k+1}) = \left(1 - \frac{1}{(n-f)^3}\right)\left(1 - \frac{1}{n\sqrt{n}} + \frac{k+1}{(n-f)^3}\right)
= 1 - \frac{1}{n\sqrt{n}} + \frac{k}{(n-f)^3} + \frac{1}{n\sqrt{n}} - \frac{k+1}{(n-f)^6}
> 1 - \frac{1}{n\sqrt{n}} + \frac{k}{(n-f)^3} = 1 - \varepsilon_k$$

Cannot have high probability for reaching a 0-valent or bivalent configuration
Big Picture: Bivalent Configurations

Initially

- bivalent
- null-valent

Deciding

- 0-valent
- 1-valent
Bivalent Configurations: Connectivity

One layer

- 0-valent
- 1-valent

high probability for deciding 0

only p_i
distinguishes

only p_j
distinguishes

fail p_i \Rightarrow must have same valence \Rightarrow null-valent
Connectivity in Shared Memory

0-valent by a full layer

0-valent and 1-valent configurations which are distinguishable only to p_i

1-valent by a layer without p_3 and p_{n-1}

only p_3 distinguishes

only p_{n-1} distinguishes

both p_{n-1} and p_n distinguish
Bivalent Configurations Revisited

One layer

- **bivalent**
 - high probability for deciding 0
 - high probability for deciding 1

- **0-valent**
 - Adversary with high probability for deciding 0 \rightarrow 0-valent configuration

- **1-valent**
 - Cannot even guarantee it with high probability
v-Switching Configurations

The above 0-valent configuration exists with high probability (at least $1-\varepsilon_k$)

And now continue as from a bivalent configuration
Individual Step Complexity

The expected number of steps taken by a single process

- \(O(n \log^2 n)\) using single-writer registers \([\text{Aspnes & Waarts 1996}]\)
- In our algorithm, a process running solo must generate all \(n^2\) coins alone

A multi-writer register allows randomized consensus with \(O(n \log n)\) individual step complexity

- The coins of a process have increasing weights
- A process that runs alone flips only \(O(n \log n)\) coins
- But now the coins are not independent – weights of flipped coins can be different
Wrap-Up: What’s this Work About?

- At face value: Clever math…
 - Stochastic processes, martingales, Kolmogorov
- Really, confluence of models
 - Asynchronous \Leftrightarrow synchronous w/ mobile failures
 - Taking connectivity arguments from message passing to (multi-writer) shared memory
 - Multi-writer bit induces instantaneous views
- Still needs to do your math…
What’s Next?

Randomized consensus revisited…
✓ Weaker adversaries?
■ Single-writer registers?
■ Message-passing model?
■ Byzantine failures?
 □ Cryptographic requirements for BFT?

And other problems…
■ k-set consensus, renaming
■ Seems to defy existing techniques