
CHAPTER

SIXTEEN

BOUNDED TIMESTAMPS

In Chapter 10, we saw two simulations, one of a multi-reader register from single-

reader registers, and another of a multi-writer register from single-writer registers,

which relied on the use of unbounded timestamps. The simulations used the

unbounded timestamps to provide information about the ordering of write opera-

tions. In the first case, sequence numbers were generated by a single processor (the

unique writer) to order its writes, and in the second case, vectors of sequence num-

bers were generated by several processors (the writers) to order non-overlapping

write operations.

A closer look at these algorithms reveals that in both cases we can speak of

timestamps. In the first case, timestamps are generated by a single processor, in

a sequential manner, i.e., one after the other with no overlap, while in the second

case timestamps are generated concurrently, by several processors.

This chapter shows how to provide (most of) the semantics of unbounded

timestamps using only bounded timestamps. We first consider timestamps gen-

erated by a single processor and then consider concurrent timestamps, which can

be generated by several processors. In each case, we show how the bounded

timestamps, single-generator or concurrent, can be applied to bound the mem-

ory requirements of the simulations of multi-reader registers from single-reader

registers (Algorithm 10.2) and multi-writer registers from single-writer registers

(Algorithm 10.3), respectively.

16.1 Single-Generator Timestamp System

In order to motivate the requirements of a single-generator timestamp system,

recall the way timestamps were used in the simulation of multi-reader registers

from single-reader registers (Algorithm 10.2). In this simulation, the writer had

351



352 ADVANCED TOPICS

a way to generate a new timestamp (simply, add one to the previous timestamp);

and each reader had a way to compare some set of timestamps and identify the

one that was generated most recently (simply, the maximal one).

We conclude that a single-generator timestamp algorithm must support the

following two procedures:

NewTS: takes no parameters and returns a timestamp.

CompTS: takes two timestamps as parameters and returns one of them.

Informally speaking, CompTS should return the parameter that was produced

more recently by NewTS. More precisely, assuming only a single processor, the

generator, invokes NewTS:

Timestamp Property: Consider any CompTS execution ct on arguments T
0

and

T

1

that returns T
i

. Let nt be the NewTS execution that returns T
i

and ends

most recently before ct begins. Then T
1�i

was not returned by a NewTS that

precedes ct according to the real-time order. (Since NewTS operations are

invoked by a single processor, they are totally ordered.)

Using CompTS it is possible to provide a procedure MaxTS, which takes any

number of parameters and returns the ‘latest’ among them. In more detail, consider

a MaxTS execution mt that returns a parameter T : Let nt be the NewTS execution

that returns T and ends most recently before mt begins. Then the parameters for

mt do not include a value returned by a NewTS that begins after nt ends and ends

before mt begins.

Below we concentrate on CompTS and assume MaxTS is derived from it in

the obvious manner.

The algorithm we present is based on the following observation: For most

algorithms, at any point in the execution, only a bounded number of timestamps

are active in the system, i.e., contained in the local and shared objects; these

are the only timestamps that can be compared by processors (to determine the

relative order in which the values associated with them were written, for example).

Therefore, although the number of timestamps generated so far in the execution

is potentially unbounded, only a bounded number of them are relevant after a

particular prefix of the execution. In our example, the simulation of multi-reader

registers with single-reader registers, the relevant timestamps are those included

in the values written by the writer for the readers and the values written by the

readers for each other.

Assume that the generator has some set A which is a superset of the set of the

active timestamps. Then the generator can produce a new timestamp by taking

some value T not in A, and indicating in the shared memory that T is to be

considered larger than all values in A. If we guarantee that in any configuration,

jAj < M , for some positive integer M , then a set T of M integers suffices to

represent all timestamps.



BOUNDED TIMESTAMPS 353

The key for this algorithm is the ability to trace the active timestamps existing

in the system, or at least a bounded superset that includes them. Although in most

cases, an outside observer of the system can identify the exact set of active times-

tamps, it is not easy to trace them inside the system. A close study of algorithms

using timestamps indicates that this problem stems from a key limitation of shared

memory algorithms: When a processor writes a value to a register, it does not

know which processors, if any, read the value.

We next describe a simulation of a single-reader single-writer register which

allows values to be traced, thus avoiding this problem. Afterwards, we elaborate

on the idea described above, and present the algorithm for bounded timestamps

with a single generator, followed by its application to the simulation of multi-reader

registers from single-reader registers.

16.1.1 Traceable Writing and Reading of a Single Register

Consider a register R, written by processor p
w

and read by processor p
r

. For

clarity of presentation, we concentrate on a single register, and sometimes omit

its name. We would like to provide a way for some observing processor in the

system to determine a reasonably sized superset of the values that p
r

has actually

obtained from R. To achieve this goal, we will provide a traceable version of the

register R, implemented by several shared registers and special procedures called

traceable write (twrite) and traceable read (tread) to access the traceable register.

Processors p

w

and p

r

notify each other of their intention to access R by

using the handshaking procedures of Algorithm 10.4. When p

r

wishes to read

the current value of R, it signals this by trying to handshake, i.e., calling tryHS
r

.

After p
w

writes to R, it signals this by trying to handshake, i.e., calling tryHS
w

.

Using the checkHS
r

procedure, the reader p
r

can notice if p
w

is currently

writing to R. If p
w

is not writing now (i.e., checkHS
r

returns false), then p

r

can

take the current value ofR; furthermore, p
w

will notice that p
r

has read the current

value of R, since p
r

tried to handshake. If p
w

is currently writing (i.e., checkHS
r

returns true), then it is possible that p
w

will complete without being able to notice

which value p
r

has read. But in this case, p
w

explicitly ‘sets aside’ a value for p
r

during its next write.

In addition to the two shared bits needed for the handshaking procedures, the

algorithm uses the following shared data structures:

Value: The value of the traceable register R; written by p
w

and read by p
r

.

Copy: The value set aside by p
w

for p
r

; written by p
w

and read by p
r

.

Viable: Holds a pair of values written to the traceable register, which are suspected

to have been read by p
r

; written by p
w

and read by the observing processor.

Prev: The previous value written to the traceable register; written by p
w

and read

by the observing processor.



354 ADVANCED TOPICS

Algorithm 16.1 Traceable read and write procedures for a single traceable

register: code for treader p
r

and twriter p
w

.

Initially Value = Copy = Prev = v

0

and Viable = hv

0

; v

0

i,

where v
0

is the initial value of the traceable register

procedure tread
r

():

1: tryHS
r

()

2: v := Value

3: if checkHS
r

() then v := Copy

4: return v

procedure twrite
w

(v):

1: Value := v

2: if checkHS
w

() then

3: Copy := v

4: Viable := hPrev; vi

5: tryHS
w

()

6: Prev := v // outside the if

The pseudocode for tread and twrite appears as Algorithm 16.1. In the algorithm,

we use the convention that the writer of a single-reader single-writer register can

also read it. Superficially, this implies that there are two readers of the register;

however, the writer can just ‘remember’ the previous value it has written to the

register, using a local variable. This convention cuts down on the clutter in the

pseudocode.

Viable contains the value twritten by tw, the most recent twrite whose checkHS

returned true. It also contains the value twritten by tw0, the twrite immediately

preceding tw; the checkHS of tw0 might or might not have returned true. As we

will show, since the checkHS of tw returned true, some tread happened after the

beginning of tw and before the end of tw0.

Prev keeps track of the previous value twritten; this value will end up being

written to Viable in the next twrite if its checkHS returns true.

The traceable read and write procedures guarantee a useful property. Values

that are potentially in use are stored in shared variables, either Prev or Viable.

Note that only p

w

writes to Prev and Viable, and that p
r

does not read from it.

Therefore, some other observing processor can learn which values are active by

reading Prev and Viable.

Consider any execution � that is correct for the read/write register communi-

cation system, in which p

w

makes calls to twrite, p
r

makes calls to tread, and no

other procedures write to the variables used by these two procedures.

Before stating the traceable use property in more detail, we need to define



BOUNDED TIMESTAMPS 355

tr
1

p

r

tw
3

tw
1

checkHS
true

tw
2

p

w

Figure 16.1: Basic illustration for Lemma 16.1: tr
1

reads from tw
1

.

a tread reading from a twrite. Let tr be an execution of tread in �. If tr returns

the value it reads from Value, then tr is defined to read from twrite execution tw,

where tw contains the latest write to Value that is linearized before tr’s read of

Value. If tr returns the value it reads from Copy, then tr is defined to read from

twrite execution tw, where tw contains the latest write to Copy that is linearized

before tr’s read of Value. If there is no write to Value (or Copy) that is linearized

before tr’s read from Value (or Copy), meaning that tr returns the initial value of

the traceable register, then tw is defined to be an imaginary ‘initializing’ twrite that

writes the initial value and ends just before � begins.

In the proof, we talk about the relative order of occurrence of reads, writes,

and handshaking procedures. It is perhaps not immediately clear that they can be

totally ordered, since they do not happen atomically. Recall from Chapter 10 that

for each handshaking procedure, we can identify a read or write operation inside it

that corresponds to when it ‘really happens’. For a tryHS procedure, this operation

is the write of its own handshaking bit. For a checkHS procedure, this operation is

the read of the other handshaking bit. Since � is correct for the read/write register

communication system, all the reads and writes can be linearized. We use the

linearization order of these operations to linearize the handshaking procedures.

Viable and Prev contain three (possibly different) values twritten by p

w

; the

key property we wish to prove is that these values include the most recent value

tread by p
r

. This property is precisely stated and proved later, in Lemma 16.2.

But first, we prove that if the most recent value tread by p

r

is put in Viable

either by the twrite it reads from or by the next twrite, then it stays there until p
r

treads a later value.

Lemma 16.1 Let tr
1

be a tread by p
r

in � that returns v and let tw
1

be the twrite

by p
w

that tr
1

reads from. Let tr
2

be the first tread by p
r

after tr
1

that does not

read from tw
1

. Let tw
2

be the next twrite by p
w

following tw
1

. Suppose v is put in

Viable by either tw
1

or tw
2

prior to the beginning of tr
2

. Then v remains in Viable

until the beginning of tr
2

.

Proof. The value v stays in Viable until a later twrite, call it tw
3

, flushes it out.

Since tw
3

writes to Viable, its checkHS
w

returns true (see Figure 16.1). There are

two cases:



356 ADVANCED TOPICS

read

tr
1

Value

tr0

checkHS
p

r

tw
1

tw
3

tryHS
checkHS

true
checkHS

trueCopy
write

tw
2

p

w

Figure 16.2: Illustration for Lemma 16.1, Case 1: tw
2

writes to Viable.

Case 1: The checkHS
w

in tw
2

returns true; therefore, tw
2

includes a tryHS
w

.

First, we show that the checkHS
w

in tw
2

follows the tryHS
r

in tr
1

, implying

that the tryHS
w

in tw
2

follows the tryHS
r

in tr
1

. Suppose in contradiction that

the checkHS
w

in tw
2

precedes the tryHS
r

in tr
1

. If tr
1

returns from Value, then

since tw
2

’s write to Value is between tw
1

’s write to Value and tr
1

’s read of Value, it

follows that tr
1

does not read from tw
1

, a contradiction. If tr
1

returns from Copy,

implying that its checkHS
r

returns true, then tw
2

’s write to Copy, and hence its

tryHS
r

, follows tr
1

’s read of Copy, since tr
1

does not read from tw
2

. But then

there is no tryHS
w

by p

w

between the tryHS
r

and checkHS
r

of tr
1

, and thus the

checkHS
r

of tr
1

returns false, a contradiction.

Since tw
3

’s checkHS
w

returns true, there exists another tread, call it tr0, by

p

r

whose tryHS
r

is between the tryHS
w

of tw
2

and the checkHS
w

of tw
3

. (See

Figure 16.2.) Since the read of Value and, if it occurs, the read of Copy in tr0

follow the writes to Value and Copy in tw
2

, tr0 reads from tw
2

or a later twrite.

Thus by the time v is removed from Viable, there has been a tread that does not

read from tw
1

.

Case 2: The checkHS
w

in tw
2

returns false; thus tw
1

must write v to Viable,

and it must be that the checkHS
w

in tw
1

returns true.

Suppose tw
1

is the imaginary initializing twrite. If tr
1

returns from Value, then

tw
2

’s write to Value must come after tr
1

’s read of Value, and so tw
2

’s checkHS
w

follows tr
1

’s tryHS
r

. Since tw
2

is the first write by p
w

, its checkHS
w

returns true,

a contradiction. If tr
1

returns from Copy, then there must be a tryHS
w

by p

w

between tr
1

’s tryHS
r

and checkHS
r

. But then p
w

writes to Copy before tr
1

reads

from Copy, contradicting tr
1

’s reading from the initial value. Thus tw
1

cannot be

the imaginary initializing twrite.

Since checkHS
w

in tw
2

is false, the tryHS
w

in tw
1

must follow the tryHS
r

of

tr
1

. Note that tw
3

is the first twrite after tw
1

whose checkHS
w

returns true. We

want to show that another tread, tr0, following tr
1

has already begun by the time

of tw
3

’s checkHS
w

, and that tr0 does not read from tw
1

.

Since tw
2

’s checkHS
w

returns false, Handshaking Property 2 implies that the

read of tr
1

’s tryHS
r

precedes (the write of) tw
1

’s tryHS
w

.



BOUNDED TIMESTAMPS 357

tr
1

true
checkHS

tryHS Value
read

tr0

false
p

r

tryHS
checkHS

tw
3

tw
1

truetrue

tw
2

p

w

falsetryHS tryHSValue
writecheckHS checkHS checkHS

Figure 16.3: Illustration for Lemma 16.1, Case 2: tw
2

does not write to Viable.

We now show that the write of tr
1

’s tryHS
r

cannot cause any subsequent

checkHS
w

by p
w

to return true. Suppose in contradiction the write of tr
1

’s tryHS
r

causes a subsequent checkHS
w

by p
w

to return true. Then it must occur between

tw
2

’s checkHS
w

, which returns false, and tw
3

’s checkHS
w

, which returns true.

Since this write follows tw
2

’s checkHS
w

, tr
1

cannot return from Value, since

otherwise it would read from tw
2

or later, instead of tw
1

. Since tr
1

must return

from Copy, its checkHS
r

must return true. Handshaking Property 1 implies that

there exists a tryHS
w

by p

w

between the tryHS
w

of tw
1

and the checkHS
r

of tr
1

.

But this is a cotnradiction, since tw
3

contains the first tryHS
w

after tw
1

.

Since tw
3

’s checkHS
w

returns true, Handshaking Property 1 implies that (the

write of) some tryHS
r

, call it tr0, by p

r

occurs between (the write of) the tryHS
w

in tw
1

and the checkHS
w

in tw
3

. We have just argued that tr0 cannot be tr
1

.

Furthermore, let tr0 be the tread whose tryHS
r

precedes the checkHS
w

of tw
3

and

follows the tryHS
w

of every twrite that precedes tw
3

. Note that the tryHS
r

of tr0

must follow the checkHS
w

of tw
2

, or else tw
2

’s checkHS
w

would return true, since

the tryHS
r

of tr0 is assumed to follow the tryHS
w

of tw
1

. (See Figure 16.3.)

By assumption that no tryHS
w

is between the tryHS
r

of tr0 and the checkHS
w

of tw
3

, the checkHS
r

of tr0 returns false and thus tr0 returns Value. In other words,

tr0 reads from tw
2

or later, and thus, by the time v has been removed from Viable

by tw
3

, there has been a tread that does not read from tw
1

.

To prove that Algorithm16.1 correctly traces the values being tread, it remains

to show that if a value v is tread then it is inserted in Viable. The proof of the next

theorem shows that either the twrite writing v puts it in Viable or the next twrite

does so and in the meantime, v is in Prev.

Theorem 16.2 Let tr
1

be a tread by p
r

in � that returns a value v and let tw
1

be

the twrite by p
w

that tr
1

reads from. Let tr
2

be the first tread by p
r

after tr
1

that

does not read from tw
1

. Then v is in either Prev or Viable in every configuration

of � from the end of tw
1

to the beginning of tr
2

.

Proof. Case 1: Either tw
1

is the imaginary initializing twrite or the checkHS
w

in



358 ADVANCED TOPICS

tryHS
p

r

Value
read

false

tr
1

checkHS

Value
writecheckHS

false true

tw
1

tw
2

p

w

checkHS

Figure 16.4: Illustration for Theorem 16.2: checkHS
w

in tw
1

returns false.

tw
1

returns true. Therefore, tw
1

writes v to Viable and the theorem follows from

Lemma 16.1.

Case 2: tw
1

is not the imaginary initializing twrite and the checkHS
w

in tw
1

returns false. Thus tw
1

does not write to Copy; since tr
1

reads from tw
1

, it returns

from Value, indicating that the checkHS
r

in tr
1

returns false.

As long as there is no subsequent twrite by p

w

after tw
1

, v remains in Prev.

Let tw
2

be the next twrite by p

w

. Since tr
1

reads from tw
1

, and not tw
2

, the

write to Value in tw
2

follows the read of Value in tr
1

. Thus the checkHS
w

in tw
2

returns true, since if a twrite prior to tw
1

has its tryHS
w

after tr
1

’s tryHS
r

, tr
1

’s

checkHS
r

would not return false. (See Figure 16.4.) Thus tw
2

puts v in Viable

before removing v from Prev, and the theorem follows from Lemma 16.1.

So far, we have shown that values read by tread can be traced by any processor

who reads Prev and Viable. Since we intend to use tread and twrite instead of

ordinary read and write operations, we also need to prove they are linearizable.

Clearly, if tr returns v from Value, then v was written either by the most recent

twrite operation that completed before tr starts or by a twrite operation that overlaps

tr. For the case when tr returns v from Copy, we use the following simple lemma:

Lemma 16.3 Let tr be a tread by p
r

in � that returns a value v from Copy and let

tw be the twrite by p
w

that tr reads from. Then tw completes after tr starts.

Proof. Suppose in contradiction that tw completes before tr starts. Then there

must be a tryHS
w

between tr’s tryHS
r

and checkHS
r

. This tryHS
w

is part of some

twrite tw0 that follows tw. But before doing the tryHS
w

, tw0 writes to Copy (see

Figure 16.5), contradicting the fact that tr reads from tw, and not from tw0.

Theorem 16.4 The procedures tread and twrite in Algorithm 16.1 wait-free sim-

ulate a single-reader single-writer register.

Proof. By Lemma 16.3, a tread operation reading from Copy returns a value

written by an overlapping twrite operation. This shows that a tread operation reads



BOUNDED TIMESTAMPS 359

p

w

tw

tryHS
write
Copy

tw0

tryHS

p

r

tr

true Copy
readcheckHS

tryHS

Copy
write

Figure 16.5: Illustration for Lemma 16.3.

p

r

tr
2

read
ValueCopy

read
true

tr
1

checkHS
tryHS

p

w

write
Value

tw
2

tryHSCopy
write

tw
1

checkHS
true

Figure 16.6: Illustration for Theorem 16.4: tr
1

returns from Copy.

from the most recent twrite operation that completed before it starts or from a

twrite operation that overlaps it. To complete the proof of linearizability, we need

to show there are no new-old inversions.

So, consider two tread operations, tr
1

, which reads from twrite tw
1

, and tr
2

,

which reads from twrite tw
2

. If tr
1

completes before tr
2

begins, then either tw
1

and tw
2

are the same, or tw
1

precedes tw
2

. If tr
1

and tr
2

return from the same

variable (either Value or Copy), then the claim follows from the linearizability of

the low-level variables.

If tr
1

returns from Copy then, by Lemma 16.3, tw
1

completes after tr
1

starts.

Since tw
1

first writes to Value, then tr
2

returns from Value the value written by tw
1

or a later twrite operation from Value. (See Figure 16.6.)

If tr
2

returns from Copy then, by Lemma 16.3, tw
2

completes after tr
2

starts.

The linearizability of the low-level variables implies that tr
1

cannot read from a

twrite operation that starts after tr
1

completes. Therefore, tw
1

is either equal to

tw
2

or to an earlier twrite.

Clearly, tread and twrite are wait-free and require only a constant number of

ordinary read and write operations. The procedures use a total of four single-writer

single-reader registers, each containing either one or two ordinary values, (Value,

Prev, Copy, and Viable) and two single-writer single-reader binary registers (the

handshaking bits).



360 ADVANCED TOPICS

16.1.2 The Single-Generator Timestamp Algorithm

Let us now turn to the algorithm for the single-generator timestamp system. As

discussed earlier, the key idea of the algorithm is fairly simple: The generator

keeps track of its timestamps, using the traceable use reads and writes; when the

generator needs to produce a new timestamp, it picks a new timestamp that is not

currently active, and writes in a special Order register that the new timestamp is

to be considered larger than all timestamps existing in the system.

However, a closer look at the way single-generator timestamps are used reveals

that the above idea is not sufficient. Consider, for example, the simulation of a

multi-reader register from single-reader registers (Algorithm 10.2). An important

part of this algorithm is having a reader write to all readers the value it is going to

return. It is possible that the reader will later read another value from the writer,

and therefore, the variable Viable for the original (traceable) register will not

contain this value. To avoid this situation, values are forwarded between readers

using twrite and tread, instead of ordinary reads and writes. Before producing

a new timestamp, the generator reads the Prev and Viable variables for all the

traceable registers, which, as we prove below, contain the set of all timestamps

that may be used in the system.

As usual, the processors are numbered p

0

through p

n�1

; one of them is

the generator and all of them can compare timestamps to find the maximum.

Timestamps are integers from some finite set T and values are records that can

contain other types, including timestamps.

We assume that an application obeys the following rules when using NewTS,

CompTS, tread, and twrite:

Rule 1. Only one processor, the generator, calls NewTS.

Rule 2. For each ordered pair of distinct processors (p
i

; p

j

), p
i

transmits times-

tamps to p
j

only via a known finite set of traceable registers.

Rule 3. Whenever a processor writes a value containing a timestamp, it uses

twrite and the value contains at most one timestamp.

Rule 4. Whenever a processor reads a value containing a timestamp, it uses tread.

Rule 1 implies that the NewTS invocations occur sequentially; this rule is true for

some applications, such as the multi-reader simulation in Chapter 10. Rules 2

through 4 imply that all timestamps are transmitted from one processor to another

via a traceable register. This requirement is necessary (but not sufficient) for the

system to keep track of timestamps that are potentially in use.

In the timestamp system, then, we have a finite number of traceable registers

through which processors communicate timestamps using twrite and tread. To

disambiguate the traceable use procedures, the procedure calls should include the

name of the traceable register as a parameter and the registers (Value, Copy, Viable,



BOUNDED TIMESTAMPS 361

Algorithm 16.2 A bounded timestamp system, for a single generator p
k

.

procedure NewTS(): // for the generator p
k

1: read all Viable and Prev variables

2: let S be the set of all timestamps appearing in the Viable and Prev variables

3: let T be a timestamp not in S // remove timestamps not in S and

4: for i := 0 to n� 1 do Order[k; i] := (Order[k; i]jS):T // append T

5: return T

procedure CompTS
i

(k; T

1

; T

2

), 0 � i � n� 1: // for each processor p
i

1: read Order[k; i]

2: return the parameter T
l

that appears later in Order[k; i]

Prev, and the handshaking bits) used by the procedures should be parameterized

with the name of the traceable register. However, to avoid clutter, these indications

are generally not included.

The pseudocode appears as Algorithm 16.2. For compatibility with the

multiple-generator system, presented later in this chapter, it is written for a given

generator, p
k

.

For a specific generator, p
k

, the new procedures use some additional (non-

traceable) shared registers, Order[k; i] for all i. Conceptually we need only one

Order variable, in which the generator records the order in which it has generated

the timestamps that are potentially in use, as determined by the Prev and Viable

variables. Since we only have at our disposal single-reader registers, we must use

a separate copy of Order for each reader. Initially, each Order[k; i] contains the

timestamp included in the initial value of the traceable registers.1

We assume that the application uses the timestamps in a restricted manner; in

addition to Rules 1 through 4 stated above, another rule is required to ensure that

timestamps which are potentially in use are traced. First, we formally define the

timestamps that are potentially in use. A timestamp T is active for processor p
i

via processor p
j

after some finite prefix of an execution if either:

– p

j

= p

i

and T is the value returned by the most recent NewTS invocation by

p

i

(which implies that p
i

is the generator), or

– p

j

6= p

i

and the most recent twrite by p

j

to one of the registers tread by p

i

(including the imaginary initializing twrite) or the most recent tread by p

i

from one of the registers twritten by p
j

contains T .

Thus we require:

Rule 5. If a processor calls CompTS or twrite, then every timestamp contained in

a parameter must be active for that processor.

1For simplicity, we assume that the application has exactly one timestamp that appears in the initial

value of every traceable register.



362 ADVANCED TOPICS

Together with Rules 2 and 3, this rule allows us to bound the number of

timestamps potentially in use at any given time. If this rule were violated, then a

processor could remember in its local state all timestamps ever generated so far,

and reintroduce each one into the system later on.

We now define, inductively, the forwarding distance of a timestamp T that is

active for a processor p
i

via p
j

. If p
j

equals p
i

, then T has forwarding distance

0. If p
j

is not equal to p

i

, then T has forwarding distance one greater than the

forwarding distance of T for p
j

when p

j

performed the twrite from which p

i

obtained T .

Notice that it is possible for the same timestamp to be active for p
i

via

several different processors, and with several different forwarding distances. For

instance, this situation could occur if p
i

obtainsT directly from the generator, with

forwarding distance 1, and if p
i

also obtains T indirectly via p
j

, with forwarding

distance 2. In this case, to avoid ambiguity, we will consider T to have the smallest

forwarding distance.

Next we define the NewTS invocation nt that generates timestamp T that is

active for p
i

via p
j

, by induction on the forwarding distance:

1. If the forwarding distance of T for p
i

is 0 (implying p
i

is the generator), then

nt is the most recent NewTS invocation.

2. Suppose T has forwarding distance f > 0 for p

i

. Let tw be the twrite

execution by p

j

from which p

i

obtains T . Then nt is the NewTS execution

that generated T for p
j

when p

j

performed tw.

Fix an admissible execution � of the single-generator timestamp system and

assume that the application follows Rules 1 through 5; we now prove that the

Timestamp Property is satisfied. The proof relies on two lemmas. Lemma 16.6

shows that every active timestamp is in Order, and thus CompTS is well-defined.

Lemma 16.7 shows that timestamps are listed in Order in the correct order. To

prove these lemmas, we need a preliminary lemma stating that active timestamps

with positive forwarding distance are in a Prev or Viable variable.

Lemma 16.5 If T is active for p
i

via p

j

and has positive forwarding distance

after some finite prefix of �, then T is in either a Prev or Viable variable in every

configuration of the prefix after the completion of the first twrite by the generator

following the NewTS that generated T for p
i

.

Proof. We will show this lemma by induction on f , the forwarding distance of

T for p
i

.

Basis: Suppose f = 1. Then the lemma follows from Rule 2 and Theo-

rem 16.2.

Induction: Suppose f > 1. Let tw be the twrite of p
j

which writes T for p
i

using traceable register R. The forwarding distance of T for p
j

during tw is f �1.



BOUNDED TIMESTAMPS 363

Thus the inductive hypothesis states that T is in a Prev or Viable variable starting

with the stated twrite of the generator and lasting as long as T is active for p
j

,

which, by Rule 5, is at least through the end of tw.

Since T is active for p
i

via p
j

at the end of the prefix under consideration, by

Theorem 16.2, T is in either PrevR or ViableR from the end of tw to the end of

the prefix.

Lemma 16.6 If T is active for p
i

via p
j

after some finite prefix of �, then T is in

Order[k; i] in every configuration of the prefix after the completion of the NewTS

that generated T for p
i

.

Proof. We will show this lemma by induction on f , the forwarding distance of

T for p
i

.

Basis: If f = 0, i.e., p
i

= p

j

is the generator, then by the code, T is put in

Order[i] during the NewTS that generated T . T stays in Order[i] at least until the

next twrite by p
i

, at which time it ceases to be active for p
i

via p
i

.

Induction: Suppose f > 0. By Lemma 16.5, T is in either a Prev or Viable

variable as long as it is active. Thus any execution of NewTS will observe T as

being potentially in use and will neither remove it from Order[i] nor choose it as

the new timestamp.

Lemma 16.7 If T
1

and T

2

are active for p
i

after some finite prefix of � and the

NewTS that generated T

1

for p
i

precedes the NewTS that generated T

2

for p
i

,

then T
1

precedes T
2

in Order[i].

Proof. Let nt
1

and nt
2

be the NewTS executions that generated T

1

and T

2

,

respectively, for p
i

. Since nt
1

finishes before nt
2

begins and T
1

is still active after

nt
2

, a twrite by the generator containing T

1

follows nt
1

and precedes nt
2

. By

Lemma 16.5, T
1

remains in a Prev or Viable variable after the first twrite by the

generator followingnt
1

.

During nt
2

, the generator will observe T

1

in a Prev or Viable variable, and

thus, will not remove it from Order[i] or choose it. (This implies that T
2

6= T

1

.)

Since the generator always adds new entries to the end of Order[i], T
1

precedes

T

2

in Order[i].

Theorem 16.8 If the application follows Rules 1 through 5, then the Timestamp

Property is satisfied in every admissible execution.

Proof. Assume processor p
i

executes CompTS(T
1

; T

2

), T
1

6= T

2

, which returns

T

j

. By Lemma 16.7, timestamps appear in Order[k; i] in the correct order. Thus,

the NewTS invocation that generated T

j

for p
i

is later than the NewTS invocation

that generated the other parameter for p
i

. By Lemma 16.5, the NewTS that

generated an active timestamp for p

i

is the latest NewTS that generated that

timestamp.



364 ADVANCED TOPICS

Suppose the single-generator timestamp system is to support an application

with r traceable registers. Then the number of (ordinary) single-reader single-

writer registers required is O(r + n): O(1) for each traceable register plus n

Order[k; i] variables.

The number of operations required for each invocation of the NewTS proce-

dure is dominated by the number of operations needed to read the Viable and Prev

variables, which is O(r). (Note, by the way, that the Viable and Order variables

are accessed in NewTS and CompTS by ordinary read and write operations since

they are not traceable registers.) The procedure CompTS requires O(1) read and

write operations.

An interesting question concerns the size of timestamps and registers. To

make sure that NewTS can always pick an unused timestamp, we need to have

jT j > M , where M is the number of active timestamps. There can be as many 3r

different timestamps appearing in all the Viable and Prev variables. Thus we must

have jT j > 3r. Each timestamp value can be described using O(log r) bits. The

largest registers are the Order[k; i] registers, each of which requires O(r log r)

bits.

16.1.3 Reducing the Complexity

The number of reads and writes performed in a NewTS operation is dominated by

reading the Viable and Prev registers; this task is sometimes called garbage collec-

tion since it collects the unused timestamps. A simple improvement is to generate

more than one timestamp after each garbage collection, and to collect garbage

every once in a while; this requires an increase in the size of the timestamps’ pool.

For example, if we have at most a active timestamps in each configuration, and

we want to collect garbage only every b NewTS operations, then the timestamps

could be all integers in the range [0::a+ b+ 1] .

The generator collects garbage (by reading Viable and Prev) after b�1NewTS

operations, and writes b new timestamps to the Order registers. The generator

uses these timestamps in its b following NewTS operations, until they run out, and

then repeats. In this way, after b � 1 NewTS operations each with O(n) writes,

there is one NewTS operation with O(r) additional reads, where r is the number

of traceable registers. By choosing an appropriate value of b, the cost of garbage

collection is amortized (Exercise 16.3).

Moreover, most of the cost of NewTS is reading Viable and Prev for all

traceable registers. Since these reads are not done atomically, the procedure

remains correct even if they are read in several invocations of NewTS. Therefore,

we can spread the reading of Viable and Prev for all traceable registers several

invocations of NewTS, and generate b timestamps after such a collect is completed,

for an appropriate value of b. This way, no individual NewTS invocation requires

many read operations.



BOUNDED TIMESTAMPS 365

Algorithm 16.3 A bounded simulation of multi-reader register R from single-

reader registers.

Initially Report[i; j] = Val[i] = (v

0

; T

0

), 1 � i; j � n,

where v
0

is the desired initial value of R and T

0

is any timestamp

when read
r

(R) occurs: // reader p
r

reads from register R

1: (v[0]; T [0]) := tread
r

(Val[r])

2: for i := 1 to n do (v[i]; T [i]) := tread
r

(Report[i; r])

3: let j be such that T [j] = MaxTS(T [0]; T [1]; : : : ; T [n])

4: for i := 1 to n do twrite
r

(Report[r; i]; (v[j]; T [j]))

5: return
r

(R; v[j])

when write(R; v) occurs: // the writer writes v to register R

1: T := NewTS()

2: for i := 1 to n do twrite
0

(Val[i]; (v; T ))

3: ack(R)

16.2 Application: A Bounded Simulation of Multi-Reader

Registers

Let us now see how a single-generator timestamp system can be employed to

bound the shared memory requirements of a particular algorithm—the simulation

of multi-reader registers from single-reader registers (Algorithm 10.2).

The pseudocode appears as Algorithm 16.3. Essentially, it is Algorithm 10.2,

with the procedures developed in the previous section used to replace the simple

integer timestamps used by the unbounded algorithm. Recall that p
0

is the writer

and p

1

through p

n

are the readers. Each Val[i] is a traceable register twritten by

the writer p
0

and tread by p

i

, 1 � i � n. Each Report[i; j] variable is a traceable

register twritten by p

i

and tread by p

j

, 1 � i; j � n. Thus there are O(n

2

)

traceable registers. Note that the unique timestamp T

0

appearing in the initial

value of all the traceable registers will be the sole timestamp appearing initially in

Order[0; i], for each i.

Proving that this algorithm simulates a multi-reader register is done along the

lines of the proof of the unbounded simulation (Algorithm 10.2). It is based on

the following lemma:

Lemma 16.9 Suppose timestamp T

1

is twritten to Report[i] and subsequently,

timestamp T
2

is twritten to Report[i]. Then T
2

is generated by a NewTS that is no

earlier than the NewTS that generates T
1

.

Proof. Suppose, by way of contradiction, this is not true. Consider the earliest

twrite tw where this is violated. Let tw0 be the previous twrite.



366 ADVANCED TOPICS

Both twrites are part of read operations by the same processor, and the read

containing tw0 ends before the read containing tw begins. Prior to tw, the second

read operation treads Report[i], which was twritten by tw0. Thus the second read

observes the result of the first read. By the Timestamp Property, carried over

to MaxTS, tw twrites a timestamp that is generated at least as recently as the

timestamp twritten by tw0.

Note that in the unbounded case, this lemma followed trivially since time-

stamps are increasing integers.

The complete correctness proof of this algorithm is left as an exercise to the

reader (Exercise 16.4). In this proof, the Timestamp Property, carried over to

MaxTS, replaces the semantics of max on integers, while the linearizability of the

traceable registers is used instead of the linearizability of the ordinary registers.

Let us analyze the complexities of the algorithm. A write operation requires

the generation of a new timestamp, and the traceable write of n values. Using

the figures calculated earlier, this sums up to O(n

2

) low-level ordinary read and

write operations on single-writer single-reader registers. A read operation involves

traceable reading of n+ 1 variables, calculation of the maximum timestamp, and

forwarding to n other processors. Using the figures calculated earlier, this sums

up to O(n) low-level read and write operations.

The dominating factor in the space complexity is the number of bits required

to represent the bounded timestamps. This number depends on the number of

timestamps that can be active in the system, which is O(n

2

) (Exercise 16.5).

Thus, O(logn) bits are needed to store a single timestamp. The largest registers

are the Order[0; i] variables, each containing O(n

2

logn) bits.

16.3 Concurrent Timestamp System

We now turn to show a timestamp system in which some number, say m, of

the n processors can generate timestamps, possibly in overlapping invocations of

the procedure NewCTS (the ‘C’ stands for ‘concurrent’). Every processor may

potentially need to find the more recent of two timestamps with the procedure

CompCTS. Such timestamp systems can be used to replace the unbounded integer

timestamps used by the simulation of multi-writer registers (Algorithm 10.3) and

in other applications discussed in the notes at the end of the chapter. The basic

idea is very similar to the vector timestamps used in the multi-writer simulation;

each timestamp is a vector with m entries, where m is the number of generators.

However, each entry, instead of attaining unbounded integer values, contains a

bounded timestamp from the single-generator timestamp system (described in the

previous section).

Specifically, a concurrent timestamp system must support the following two

procedures:



BOUNDED TIMESTAMPS 367

NewCTS
i

: invoked by processor p
i

, 0 � i � n� 1, if p
i

is a generator; takes no

parameters and returns a timestamp.

CompCTS
j

: invoked by any processor p
j

, 0 � j � n� 1; takes two timestamps

as parameters and returns one of its parameters.

Informally speaking, CompCTS should return the parameter that was pro-

duced more recently by a NewCTS.

When there is a single generator and NewTS operations are executed se-

quentially, the notion of ‘most recent’ is well-defined. This is not the case for a

concurrent timestamp system where NewCTS operations by different processors

may overlap. Instead, we require the existence of a total order on all NewCTS

operations that extends their real-time order, and we require a CompCTS operation

to return the parameter that was produced most recently, with respect to this order.

This property is formally stated as follows:

Concurrent Timestamp Property: There exists a total order ) on all NewCTS

operation executions that extends the real-time order on non-overlapping

operations, such that the following holds.

Consider any CompCTS execution ct on arguments VT
0

and VT
1

that returns

VT
i

. Let nt be the NewCTS execution that returns VT
i

and ends most recently

before ct begins. Then VT
1�i

was not returned by a NewCTS operation that

precedes ct in ).

Clearly, CompCTS can be used to implement a MaxCTS procedure that finds

the maximal timestamp among its parameters, in which comparisons are done

using CompCTS.

The implementation of a concurrent timestamp system that we will now

describe uses vectors of (single-generator timestamp system) timestamps as the

concurrent timestamps. Another important difference from the single-generator

case is that we must provide traceable registers that are multi-reader. These two

differences cause much of the complications.

The basic idea of the algorithm, as mentioned above, is to use vectors of

single-generator timestamps, which will be manipulated as in the multi-writer

register simulation of Chapter 10. Thus we use the single-generator procedures

NewTS and CompTS in order to generate and compare the (scalar) entries in the

vectors. Each entry corresponds to a particular generator. We will have separate

copies of the procedures for each possible generator.

In the single-generator case, the application using NewTS and CompTS must

obey certain rules to ensure that timestamps are traceable and thus the Timestamp

Property is satisfied. According to these rules, timestamps must be transferred

between processors using traceable writes and reads (twrite and tread). In the

multi-generator case, the NewCTS and CompCTS procedures can be viewed as

applications using the single-generator procedures NewTS and CompTS. Thus



368 ADVANCED TOPICS

we need analogous rules here to ensure that the vector timestamps, which contain

single-generator timestamps, are transferred traceably. However, we cannot use

twrite and tread unchanged from the single-generator case, because the traceable

register abstraction now needs to support multiple readers—it is very helpful to

be able to share a traceable register containing a vector timestamp with all the

readers. Thus, we modify twrite and tread to handle multiple readers. We call the

resulting procedures mtwrite and mtread.

Finally, the application that is using the concurrent timestamp system needs

to obey certain rules to ensure that the Concurrent Timestamp Property is satisfied.

The processors are constrained to call NewCTS and CompCTS in certain ways,

and vector timestamps must be transferred traceably. Conveniently enough, the

vector timestamps can be transferred by the CTS user in the same way as by the

CTS implementation, using mtread and mtwrite.

We first explain the traceable read and write for a multi-reader traceable

register, and then we present the concurrent timestamp procedures.

16.3.1 A Multi-Reader Traceable Register

Consider a traceable register R that is to be traceably written by one processor

p

j

(denoted mtwrite
j

) and traceably read by several processors (denoted mtread
i

for each treader p
i

). The procedures mtread and mtwrite are very similar to their

single-reader counterparts. To handle the multiple readers, during the mtwrite
j

, p
j

checks for a handshake with each potential reader p
i

. If a handshake is detected

for p
i

, then p
j

updates a separate version of the variables Copy and Viable just for

p

i

.

The variables Value and Prev are multi-reader variables, written by p

j

and

read by all the treaders of R. Such multi-reader variables can be constructed from

single-reader registers using the multi-reader register simulation from Chapter 10.

The single-generator bounded timestamp system used to provide these multi-

reader registers is inside the register, which is a black box to the multi-reader

traceable read and write procedures whose implementation we are now describing.

Detailed pseudocode appears as Algorithm 16.4. The identities of the mtwriter

p

j

and the mtreader p
i

for the handshaking procedures are indicated by the super-

script (j; i).

The following two theorems state that the multi-reader version of the trace-

able read and write procedures satisfy the same properties as the original (Theo-

rems 16.2 and 16.4). Moreover, the procedures are linearizable even if multiple

readers may call mtread operations on the same traceable register. The proofs are

left to Exercise 16.6 and Exercise 16.7.

Theorem 16.10 Algorithm 16.4 guarantees the following in every admissible

execution �: Let tr
1

be a mtread by p
r

in � that returns a value v and let tw
1

be

the mtwrite by p
w

in � that tr
1

reads from. Let tr
2

be the first mtread by p
r

in �



BOUNDED TIMESTAMPS 369

Algorithm 16.4 Implementation of a multi-reader traceable register to

support the bounded multi-generator system:

code for the mtwriter p
j

and every mtreader p
i

.

Initially Value = Prev = v

0

, Copy[i] = v

0

and Viable[i] = hv

0

; v

0

i for all i

such that p
i

is an mtreader, where v
0

is the initial value of the traceable register

procedure mtread
i

(): // for every p

i

that is an mtreader

1: tryHS
j;i

i

()

2: v := Value

3: if checkHS
j;i

i

() then v := Copy[i]

4: return v

procedure mtwrite
j

(v): // for the mtwriter p
j

1: Value := v

2: for all i such that p
i

is an mtreader do

3: if checkHS
j;i

j

() then

4: Copy[i] := v

5: Viable[i] := hPrev; vi

6: tryHS
j;i

j

()

7: Prev := v // outside the for and the if

after tr
1

that does not read from tw
1

. Then v is in either Prev[r] or Viable[r] in

every configuration of � from the end of tw
1

to the beginning of tr
2

.

Theorem 16.11 Algorithm 16.4 wait-free simulates a multi-writer single-reader

(linearizable) register.

Letk be the number of mtreaders of the multi-reader traceable register. Clearly

the number of ordinary read and write operations in mtread is O(1) and in mtwrite

is O(k). The number of shared variables required is O(k).

16.3.2 The Multiple-Generator Timestamp Algorithm

As mentioned earlier, the algorithm is very much like the construction embedded

in the multi-writer register simulation (Algorithm 10.3), which in turn is very

similar to vector timestamps studied in Chapter 6. Each timestamp is a vector

with m entries: The k-th entry of the vector contains a bounded timestamp from

the single-generator timestamp system of p
k

, the k-th generator.

The multiple-generator timestamp system uses a single-generator timestamp

system for each generator, p
k

. Recall that the single-generator algorithm treated

values as typed objects that contain timestamps and possibly other components.

Thus, each generator only handles the k-th coordinate of the vector timestamp,



370 ADVANCED TOPICS

Algorithm 16.5 A bounded multi-generator timestamp system.

Initially VTS[k] = hv

0

; : : : ; v

n�1

i, 0 � k � m � 1,

where each v

i

is the timestamp in the initial value of Order[i; i]

procedure NewCTS
k

: // for each p

k

that is a generator

1: for j := 0 to m � 1 do

2: lvts[j] := mtread
i

(VTS[j]):[j] // extract the jth coordinate

3: lvts[k] := NewTS
k

()

4: mtwrite
k

(VTS[k]; lvts)

5: return lvts

procedure CompCTS
i

(VT
1

;VT
2

): // for every p

i

1: if VT
1

= VT
2

then return VT
1

2: let k be the smallest index in which the parameters do not agree

2: let j be such that VT
j

[k] = CompTS
i

(k;VT
1

[k];VT
2

[k])

// parameter k indicates generator k

3: return VT
j

and treats other coordinates (containing timestamps of other generators) as un-

interpreted values.

In addition, for each generator p
k

, 0 � k � m� 1, there is a shared variable:

VTS[k]: a single-writer multi-reader traceable register containing a vector of

scalar timestamps, written by p
k

and read by all processors.

The pseudocode appears as Algorithm 16.5. Note that the procedure NewCTS

is the bounded analog of unbounded procedure NewCTS in Algorithm 10.3.

Assume that the application using the concurrent timestamp system obeys the

following rules.

Rule 10. Only one processor, p
k

, calls NewCTS
k

.

Rule 20. For each ordered pair of distinct processors (p

i

; p

j

), p
i

transmits vec-

tor timestamps to p

j

only via a finite set of known registers. Scalar

timestamps are only transmitted as part of vector timestamps.

Rule 30. Whenever a processor writes a value containing a vector timestamp, it

uses mtwrite, and only timestamps generated by p

k

appear in entry k of

the vector, 0 � k � m� 1.

Rule 40. Whenever a processor reads a value containing a vector timestamp, it

uses mtread.

These rules are similar to Rules 1 through 4 specified in Section 16.1.1:

The transmission of single-generator timestamps is strictly controlled. Rule 30



BOUNDED TIMESTAMPS 371

requires that each coordinate in a forwarded vector timestamp be generated by the

corresponding unique generator.

We also require a rule that is the analog of Rule 5, but first we must define

what it means for a vector timestamp to be active. A vector timestamp T is active

for processor p
i

via processor p
j

after some finite prefix of an execution if:

– p

j

= p

i

and T is the value returned by the most recent NewCTS
i

invocation;

or

– p

j

6= p

i

and either the most recent mtwrite by p

j

to one of the registers read

by p
i

or the most recent mtread by p

i

from one of the registers written by p
j

contains T .

A key feature we use below is (see Exercise 16.8).

Lemma 16.12 If a vector timestampT is active after some prefix of the execution,

then each component T [k] is active in the single-generator timestamp system of

p

k

after this prefix.

We impose the following additional requirement on the application:

Rule 50. All vector timestamps appearing in parameters to CompCTS and mtwrite

are active.

It follows that:

Lemma 16.13 If the application obeys Rules 10 through 50, then the projection

of an execution for a particular generator p
k

corresponds to an execution of the

single-generator timestamp system for p
k

that obeys Rules 1 through 5.

Using the notion of active vector timestamp, we can extend the definitions of

forwarding distance and generating NewCTS operation to vector timestamps.

To prove the correctness of the multi-generator timestamp system, we first

prove that if a vector timestamp is active, then all its component (scalar) timestamps

are in the appropriate Order variables; this is the equivalent of Lemma 16.6.

Lemma 16.14 If vector timestamp T is active for p
i

via p
j

after some finite prefix

of �, then T [k] is in Order[k; i], for all k and i, in every configuration of the prefix

after the completion of the NewCTS that generated T for p
i

.

Proof. By Lemma 16.13, the projection of the execution for generator p
k

is an

admissible execution of the single-generator timestamp system. Since T is active,

each component T [k] is active, by Lemma 16.12. By Lemma 16.6, T [k] is in

Order[k; i].



372 ADVANCED TOPICS

p

j

VTS[j]
mtwrite

p

i

VTS[j] VTS[i]
mtwritemtread

nt
1

nt
2

VTS[i]
mtread

Figure 16.7: Overlapping NewCTS operations.

To prove that Algorithm 16.5 satisfies the Concurrent Timestamp Property,

we must first define a total order ) on all NewCTS operation executions.

Consider two NewCTS operation executions, nt
1

by p
i

and nt
2

by p
j

.

If the mtwrite to VTS[i] in nt
1

is linearized before the mtread from VTS[i] in

nt
2

, then we define nt
1

) nt
2

; if the mtwrite to VTS[j] in nt
2

is linearized before

the mtread from VTS[j] in nt
1

, then we define nt
2

) nt
1

. (Exercise 16.9 asks

you to prove that these two cases do not occur simultaneously.) If nt
1

and nt
2

are

non-overlapping, then one of the above conditions holds, and the order defined

between nt
1

and nt
2

extends the real-time order between them.

Suppose now that neither of the above conditions holds (see Figure 16.7);

then nt
1

and nt
2

overlap, and therefore, i 6= j. Let T
1

be the timestamp generated

by nt
1

, and T
2

be the timestamp generated by nt
2

.

We first argue that T
1

6= T

2

. Without loss of generality, assume that p
j

mtreads VTS[i] before p
i

mtreads VTS[j].

T

2

[i] is active with positive forwarding distance from p

j

’s mtread of VTS[i]

in nt
2

onward. By Lemma 16.5 and Lemma 16.13, T
2

[i] is in a Prev or Viable

variable once it has positive forwarding distance. When nt
1

performs NewTS
i

, it

observes T
2

[i] as potentially in use and thus T
1

[i] 6= T

2

[i].

Since T
1

6= T

2

, there exists a smallest coordinate k in which T
1

and T
2

differ.

Since VTS[k] is linearizable, the mtreads from VTS[k] in nt
1

and in nt
2

are ordered.

If p
i

’s mtread from VTS[k] in nt
1

is linearized before p
j

’s mtread from VTS[k] in

nt
2

(as in Figure 16.8) then we define nt
1

) nt
2

; otherwise, we define nt
2

) nt
1

.

We now prove the main theorem of this chapter:

Theorem 16.15 If the application obeys Rules 10 through 50, then Algorithm 16.5

satisfies the Concurrent Timestamp Property in every admissible execution.

Proof. Exercise 16.10 asks you to prove that ) is a total order on all NewCTS

operations, which preserves the real-time order of non-overlapping operations.

Assume processor p
l

executes CompCTS(T
1

; T

2

), T
1

6= T

2

, which returns

T

1

. Let nt
1

be the NewCTS by processor p
i

that generated T

1

for p
l

, and let nt
2



BOUNDED TIMESTAMPS 373

p

j

nt
2

VTS[j]
mtwrite

VTS[k]
mtread

p

i

VTS[i]
mtwrite

VTS[k]
mtread

nt
1

Figure 16.8: Defining the order of overlapping operations.

be the NewCTS by processor p
j

that generated T

2

for p
l

. We have to prove that

nt
2

) nt
1

.

Assume, by way of contradiction, that nt
1

) nt
2

. Consider the smallest

coordinate k in which T

1

and T

2

differ. The definition of ) implies that p
i

’s

read from VTS[k] in nt
1

is before p

j

’s read from VTS[k] in nt
2

(again, consider

Figure 16.8).

Lemma 16.12 implies that T
1

[k] is active from the time p

i

mtreads VTS[k]

during nt
1

onwards, sinceT
1

is active from this point onward. By the linearizability

of VTS[k], when p
j

reads VTS[k] in nt
2

, it obtains a value that is at least as recent

as T
1

[k]. By assumption, T
1

[k] 6= T

2

[k], and thus it must be that the NewTS
k

that generated T

1

[k] completed before the NewTS
k

that generated T

2

[k]. The

relationship between the NewTS
k

executions, together with Lemma 16.13 and

Lemma 16.7, implies that T
1

[k] is before T
2

[k] in Order[k; l], when p

l

executes

CompCTS(T
1

; T

2

). The pseudocode for CompCTS implies p
l

should return T

1

,

which is a contradiction.

Exercise 16.12 asks you to verify that the number of read and write operations

on ordinary single-writer multi-reader registers performed by NewCTS isO(r+m),

where r is the number of traceable registers, and m is the number of generators,

and the number of read and write operations performed by CompCTS is O(1).

Exercise 16.13 asks you to calculate the number of single-writer multi-reader

registers and their size.

16.4 Application: A Bounded Simulation of Multi-Writer

Registers

In the previous section, we have seen how the single-generator timestamp system

can replace the unbounded integer timestamps used in the simulation of multi-

reader registers from single-reader registers. In this section, we shall see how

the concurrent timestamp system can replace the vectors of unbounded integers



374 ADVANCED TOPICS

Algorithm 16.6 Bounded simulation of a multi-writer register R from single-

writer registers: code for readers and writers.

Initially Val[i] = (v

0

; T

0

), where v
0

equals the desired initial value of R

and T

0

is an arbitrary vector timestamp, 0 � i � m � 1

when read
r

(R) occurs: // reader p
r

reads from register R, 0 � r � n � 1

1: for i := 0 to m � 1 do (v[i]; vts[i]) := mtread
r

(Val[i])

2: let j be such that vts[j] = MaxCTS
r

(vts[1]; : : :; vts[m])

3: return
r

(R; v[j])

when write
w

(R; v) occurs: // writer p
w

writes v to register R, 0 � w � m � 1

1: vts := NewCTS
w

()

2: mtwrite
w

(Val[w]; (v; vts))

3: ack
w

(R)

used as timestamps in the simulation of multi-writer registers from single-writer

registers.

The pseudocode appears in Algorithm 16.6. It is essentially Algorithm 10.3,

with procedures NewCTS and MaxCTS, developed in the previous section, re-

placing the simple manipulations of the integer vector timestamps done in the

unbounded algorithm. The m writers are p
0

; : : : ; p

m�1

and all of the processors,

p

0

; : : : ; p

n�1

, are the readers. Each Val[i] variable is a multi-reader single-writer

traceable register, written by p

i

and read by all the processors. Note that the

timestamp T

0

contained in the initial value of Val[i] will be the sole entry in each

Order[i; j]

Proving that this algorithm simulates a multi-writer register follows the lines

of the proof of the unbounded simulation (Algorithm 10.3).

The candidate linearization order � is defined in two steps. First, we put into

� all the write operations according to the ) order on the timestamps associated

with the values they write. Second, we consider each read operation in turn, in

the order in which its response occurs in �. A read operation that returns a value

associated with timestamp VT is placed immediately before the write operation

that follows (in �) the write operation that generated VT.

Since ) extends the real-time order of NewCTS operations, we have the

analog of Lemma 10.7. The Concurrent Timestamp Property implies the following

analog of Lemma 10.8:

Lemma 16.16 If VT
1

is written to Val[i] and later VT
2

is written to Val[i], then

any execution of CompCTS(VT
1

;VT
2

) returns VT
2

.

The complete proof of correctness of Algorithm 16.6 is left to Exercise 16.14;

it uses the above lemmas, replaces the semantics of max on vector timestamps



BOUNDED TIMESTAMPS 375

with the correctness of MaxCTS, and uses the linearizabilityof mtread and mtwrite.

Exercise 16.14 also requests you to analyze the complexity of the algorithm.

Exercises

16.1 Prove that the forwarding distance of an active timestamp is finite.

16.2 A simple implementation of MaxTS from CompTS reads Order in each

invocation; write a direct implementation of MaxTS that reads Order only

once, and prove it satisfies the Timestamp Property, carried over to MaxTS.

16.3 Find the value of b such that if garbage is collected every bNewTS operations,

then the amortized number of read and write operations per NewTS is O(1).

16.4 Prove that Algorithm 16.3 is a simulation of a single-writer multi-reader

register from single-writer single-reader registers.

16.5 Show that the number of active timestamps in Algorithm 16.3 is O(n

2

).

16.6 Prove Theorem 16.10.

16.7 Show that the mtread and mtwrite procedures wait-free simulate a single-

writer multi-reader register (Theorem 16.11).

Hint: The main property you need to prove is linearizability; this can be done

by following the proof of Theorem 16.4 for mtreads by different readers.

16.8 Prove Lemma 16.12.

16.9 Consider two NewCTS operation executions, nt
1

by p
i

and nt
2

by p
j

. Prove

that it cannot happen that both the write of nt
1

to VTS[i] is before the read

from VTS[i] in nt
2

, and the write of nt
2

to VTS[j] is before the read from

VTS[j] in nt
1

.

16.10 Prove that ) is a total order on all NewCTS operations that preserves the

real-time order of non-overlapping operations.

16.11 A simple implementation of MaxCTS from CompCTS reads an Order vari-

able in each invocation; write a direct implementation of MaxCTS that reads

Order only once, and prove it satisfies the Concurrent Timestamp Property,

carried over to MaxCTS.

16.12 Prove that the number of read and write operations on ordinary single-writer

multi-reader registers performed by NewCTS is O(r + m), where r is the

number of traceable registers and m is the number of generators, and the

number of read and write operations performed by CompCTS is O(1).



376 ADVANCED TOPICS

16.13 For the concurrent timestamp system presented in Section 16.3, calculate the

number of single-writer multi-reader registers and their size.

16.14 Prove that Algorithm 16.6 simulates a multi-writer register. Analyze the

number of ordinary read and write operations performed on single-writer

single-reader registers and the space usage.

16.15 Use a bounded concurrent timestamp system to bound the sequence numbers

in the universal simulations, given in Chapter 15, of shared objects from

consensus objects (e.g., Algorithm 15.4).

Chapter Notes

Timestamps were originally abstracted by Israeli and Li [137]. They presented

an algorithm for the case timestamps are generated sequentially, i.e., NewTS

invocations do not overlap, but are not necessarily performed by a single gener-

ator. Dolev and Shavit refined their definition and presented an algorithm for a

concurrent timestamp system [97].

Our constructions are based on the concurrent timestamp algorithm of Dwork

and Waarts [102]. The synchronization structure in our tread and twrite (and

in mtread and mtwrite) procedures follows Haldar [126], who, in turn, follows

Vidyasankar’s simulation of single-writer multi-reader registers with weaker types

of registers [251]. The treatment of forwarding (of timestamps between readers)

is inspired by the work of Attiya, Bar-Noy and Dolev [22], where timestamps are

used in the simulation of shared memory with message passing.

The algorithms of Dwork and Waarts and of Haldar reduce the number of

memory accesses (reads and writes) and the space complexity (number of registers)

by careful combination of the tracing mechanisms for several registers.

Our presentation extracts the single-generator timestamp algorithmembedded

in the concurrent timestamp algorithm of Dwork and Waarts. As we have seen,

single-generator timestamps have interesting applications; we also believe this

improves the understanding of this complex algorithm.

Dwork, Herlihy and Waarts [100] have shown how to use traceable registers

to bound the shared memory requirements of algorithms based on asynchronous

phases. Chapter 17 contains another application of bounded timestamps.


