
CHAPTER

EIGHTEEN

SPARSE NETWORK COVERS

Most of Parts II and III concentrated on issues of solvability and ignored issues

of complexity; in this final chapter, we return to complexity issues in message

passing systems.

We discuss sparse network covers, a graph theoretic concept with several

applications in distributed algorithms. Very roughly, given a collection of sub-

graphs that cover all the nodes of the graphs, we conduct computations inside

each subgraph, and between neighboring subgraphs. Loosely speaking, a cover is

sparse if each node is covered by few subgraphs; a sparse network cover induces

communication structures that can be tuned to save significantly on message and

time complexity as well as on local memory requirements.

In this chapter, we discuss the mathematical background of this method and

present two of its applications: for routing messages, and to obtain efficient

synchronizers. Other applications are mentioned in the chapter notes.

Throughout this chapter, we consider asynchronous message passing systems,

with arbitrary network topology.

18.1 Sparse Network Covers

We start by recalling some graph theoretic notions and terminology, and then

defining sparse network covers; finally, we present a sequential algorithm for find-

ing sparse network covers. Since sparse network covers are typically constructed

during a pre-processing stage, the sequential algorithm can be applied in a central

node, once it has collected all the topological information; other possibilities are

discussed below.

Consider an undirected graphG(V;E) describing the underlying topology of

a message passing system. As before, we denote n = jV j, the number of nodes

405



406 ADVANCED TOPICS

Figure 18.1: The nodes of a cluster S are drawn in grey.

(processors), and m = jEj, the number of edges (communication links). We

assume G is connected and finite.

For any pair of nodes v and u in V , dist(v; u) denotes the distance between

v and u, that is, the number of edges on the shortest path between them in G.

The diameter of the graph is the maximum distance between any two nodes, that

is, diam(G) = max

v;u2V

dist(v; u). Since G is connected, dist(v; u) is finite for

every pair of nodes v and u; since G is finite, diam(G) is finite as well.

Consider a set of nodes S, and the subgraph it induces, i.e., the edges of G

with both endpoints in S. S is a cluster in G if its nodes are connected to each

other in this subgraph. The size of a cluster S, denoted jSj, is the number of nodes

in S. A cluster induces a connected subgraph of G; the diameter of a cluster

S, diam(S), is calculated in the connected subgraph induced by S. Figure 18.1

shows a cluster S; jSj = 5, and diam(S) = 3.

Consider some collection of clusters, C = fS

1

; : : : ; S

k

g. The diameter

of C, denoted diam(C), is the maximal diameter of a cluster in C, that is,

maxfdiam(S

1

); : : : ; diam(S

k

)g. The volume of C, denoted vol(C), is the sum

of the sizes of its clusters, that is,
P

k

i=1

jS

i

j. If a node appears in two clusters

then it is counted twice in this summation, and contributes two to the total sum.

C is a cover of G if the union of its clusters contains all the nodes of G,

that is, [k
i=1

S

i

= V ; a cover is also called a network cover. If C covers G then

vol(C) =
P

k

i=1

jS

i

j � n, since [k
i=1

S

i

= V . The relation between the volume

of a cover and n counts the number of ‘repetitions’ in C. Specifically, vol(C)=n is

the average number of occurrences of any node in all the clusters of C. Figure 18.2

shows a cover with three clusters; the volume of this cover is 20 (while the number

of nodes in the graph is only 17).

As we shall see in the examples below, the cost incurred by algorithms using

network covers, for example, the number of messages or the local memory require-



SPARSE NETWORK COVERS 407

Figure 18.2: A cover.

ments, is proportional to the number of clusters to which each node belongs. Thus,

the total cost of an algorithm using a specific network cover is often proportional

to the volume of the cover.

Therefore, our objective is to find a cover with low volume and diameter,

while ensuring that the cover has specific properties, e.g., that each node is in a

cluster with all its neighbors. A useful method to achieve this goal is to start with

a cover having the desired properties, regardless of its volume and diameter, and

then ‘coarsen’ it by combining clusters, thus reducing its volume. The key issue

is how to do so without increasing the diameter too much.

More specifically, a cover is coarser than another cover if its clusters contain

the clusters of the other cover. Formally, given two collections of clusters, C =

fS

1

; : : : ; S

h

g and C0 = fS

0

1

; : : : ; S

0

r

g, C0 is a coarsening of C if for every S
i

2 C

there exists S0
j

2 C

0 such that S
i

� S

0

j

. A single cluster of C0 may contain all

clusters of C.

Given a cover C of G we would like to obtain a cover of G with a smaller

volume, in order to reduce the average number of clusters a node belongs to. A

simple way to do so is to coarsen C by merging clusters; however, this tends to

increase the diameter of the cover.

We next show how to trade off the volume of the cover with its diameter,

by presenting a sequential algorithm that takes as input a cover C and generates

a coarsening C

0, such that for some integer parameter k, vol(C0) � n

1+

1

k , and

diam(C

0

) � (k + 1) � diam(C).

To understand the trade-offs, consider a few typical choices for k; let d

denote diam(C). For k = 1, vol(C0) � n

2 while diam(C

0

) � 2d; for k = 2,



408 ADVANCED TOPICS

Algorithm 18.1 A sequential algorithm for coarsening covers; input is cover C

and integer k, output is cover C0.

1: C

0 := ;

2: while C 6= ; do // create a new cluster for C0

3: pick some cluster S from C // an arbitrary cluster not yet covered

4: remove S from C

5: T := S

6: repeat // increase T as long as the gain is significant

7: prevT := T

8: Q := fS j S 2 C and S \ T 6= ;g // all clusters in C intersecting T

9: T := T [

S

S2Q

S // merge into T

10: C := C � Q // remove the clusters in Q from C

11: until jT j � n

1

k

� jprevTj or jT j � n

12: add T to C0

vol(C0) � n

3=2 while diam(C

0

) � 3d; for k = logn, vol(C0) � n

1+1= logn while

diam(C

0

) � (logn + 1)d. As k increases, the volume decreases (with a limit of

n) and the diameter increases.

The pseudocode appears in Algorithm 18.1. The algorithm proceeds in iter-

ations; in each iteration (the while loop), one cluster S from C is selected and is

merged with other clusters from C to form a new cluster T that is added to C0. T

itself is created in iterations (the repeat loop); in each iteration, the current cluster

is merged with all clusters in C that intersect it, until the increase in size is too

small. This happens when T increases by no more than a factor of n
1

k , as captured

by the condition in Line 11.

Theorem 18.1 For any graph G(V;E), a cover C of G, and an integer k � 1,

Algorithm 18.1 creates a coarsening C0 of C such that

– vol(C0) � n

1+

1

k , and

– diam(C0) � (k + 1) � diam(C).

Proof. Clearly, the resulting collection of clusters, C0, is a coarsening of C and

therefore, also a cover of G. We now analyze the volume and the diameter of C0.

For any cluster T 2 C

0, let before(T ) be the value of prevT whenT is finalized

(i.e., before Line 11 is executed for the last time). By the condition evaluated at

the end of the repeat loop (Line 11), jT j � n

1

k

jbefore(T )j.

Moreover, we can show that, for everyT andT 0 inC0, before(T )\before(T 0

) =

;. Assume T is added to C0 before T 0; in the last iteration of the repeat loop in

which T is constructed, all the clusters intersecting before(T ) are removed from

C (Lines 8 and 10). Therefore, before(T 0

) does not contain clusters that intersect



SPARSE NETWORK COVERS 409

before(T ). Therefore,

vol(C0) =

X

T2C

0

jT j �

X

T2C

0

n

1

k

jbefore(T )j (by the condition at Line 11)

� n

1

k

X

T2C

0

jbefore(T )j

� n

1

k

n (since the sets are disjoint)

= n

1+

1

k

:

This bounds the volume of C0.

We now bound the diameter. By Line 8, the clusters of C added to T in an

iteration of the repeat loop must intersect at least one of the clusters of C already

in T ; thus, the diameter of C0 is bounded by the number of times of the repeat

loop is executed times the diameter of C. Therefore, it suffices to show that each

cluster T is constructed within at most k+ 1 iterations of the repeat loop, in order

to bound the diameter of C0.

To bound the number of iterations of the repeat loop, we prove that at the

beginning of the ith iteration of the repeat loop, jT j � n

i�1

k . Therefore, after

k + 1 iterations of the repeat loop, the size of T is at least n1, and the algorithm

terminates.

The proof is by induction on i. The base case, i = 1, is immediate since at the

beginning of the first iteration T is not empty and thus, jT j � 1. For the inductive

step, assume that at the beginning of the (i � 1)th iteration, jT j � n

i�2

k . Since

the condition of the repeat loop (Line 11) is satisfied, the size of T is multiplied

by (at least) n
1

k , and thus, jT j � n

i�1

k at the beginning of the ith iteration.

When sparse network covers are used, coarsening is typically used as a pre-

processing stage, in which a cover with certain properties and relatively low

diameter and volume is constructed. Since Algorithm 18.1 is sequential, all infor-

mation has to be collected to a specific node to apply it in a distributed system.

Alternatively, the pre-processing stage can be done by running a distributed coars-

ening algorithm; several such algorithms are mentioned in the notes at the end of

the chapter.

18.2 Routing with Low Memory Overhead

The first applicationof sparse networkcovers is to the problem of routingmessages

in a communication network.



410 ADVANCED TOPICS

18.2.1 The Problem

Assume some processor p
i

wishes to send a message to another processor p
j

. This

is done along some route, which is a sequence of adjacent communication links in

the network, over which the message is forwarded. A routing algorithm specifies

the route by telling each intermediate node on the route on which outgoing edge

the message should be sent, depending on the destination.

We are interested in the number of messages that are required for transferring

the message, typically dominated by the length of the route, and the amount of

memory dedicated in each processor to the routing information. There is a trade-

off between these two measures, as demonstrated by the following two simple

solutions.

One solution is to route messages on the shortest path between the originator

of the message and its destination. Specifically, each processor p
i

maintains a

routing table which contains the identity of p
i

’s neighbor that is on the shortest

path to p
j

, for every processor p
j

. When p
i

has to send (or forward) a message

addressed to p
j

, it uses the table to find on which link to send the message. Clearly,

this guarantees optimal routes. However, it has high memory requirements since

the routing table maintained by each processor requires O(n logn) bits, yielding

a total of O(n2 logn) bits in the whole network.

Another solution is to send the message by flooding, employing Algorithm 2.2,

for example. That is, if p
i

wants to send a message M to p
j

it sends M to all its

neighbors, which forward it to all their neighbors, etc. If p
i

and p
j

are connected,

then the message will eventually arrive at p
j

. This solution requires no memory,

but it has high message complexity, as O(m) messages are sent even if the source

and the destination are very close.

Below, we describe a scheme which yields a better trade-off between memory

and messages, using sparse network covers. In order to describe it, we need to

define our cost measure more precisely.

For a fixed networkG and routing algorithmA, let cost
A

(v; u) be the number

of messages sent by A in order to deliver a message from v to u. The best we

could hope for is that cost
A

(v; u) = dist(v; u). Therefore, a good measure for

the quality of the routing performed by the algorithm is the stretch factor of A,

defined as:

max

v;u

cost
A

(v; u)

dist(v; u)
;

that is, the worst-case ratio between cost
A

(u; v) and dist(u; v).

A small stretch factor implies that the algorithm uses routes that are not much

longer than the shortest paths between nodes. For example, the stretch factor of

the algorithm using routing tables is 1, while the stretch factor of the algorithm

using flooding is m.

We next present a routing algorithm with stretch factor O(k), which uses

O(n

1+

1

k

log

2

n) total memory bits, for any value of a trade-off parameter k � 1.



SPARSE NETWORK COVERS 411

This algorithm provides a trade-off: a reduction in the stretch factor at the

cost of an increase in the memory requirements, and vice versa. In order to get a

constant stretch factor, k should beO(1) implying thatO(n2 log
2

n) total memory

bits are required. This is a factor of O(logn) bits larger than the memory bound

given by the algorithm using routing tables.

18.2.2 Overview of the Routing Algorithm

Intuitively, the algorithm maintains detailed information on close-by nodes and

less information on nodes that are far away. When the distance between sender and

receiver is large, even an algorithm using long routes, like the flooding algorithm,

has a good stretch factor. This is achieved by a hierarchy of routing algorithms,

each restricted to a region of a certain diameter.

Specifically, a regional (s; d)-routing algorithm provides O(s) stretch factor

inside regions of diameter d. That is, for any pair of nodes v and u, any message

sent from v tou is delivered by the regional (s; d)-routing algorithm if dist(v; u) �

d; otherwise, v is notified; in both cases, O(s � d) messages are sent.

Let R
i

be the regional (s; 2i)-routing algorithm; we use a hierarchy of routing

algorithms, R
1

; : : : ; R

dlogDe

, concurrently, where D = diam(G).

In more detail, dlogDe regional routing algorithms, for regions of diameter

d = 2; 4; : : : ; 2

dlogDe, are running at the same time in the network, all with O(s)

stretch factor. To send a message from v tou, routing is attempted inR
1

; if routing

is unsuccessful, then routing is attempted inR
2

, and so on, proceeding to regional

routing algorithms with higher indices (R
3

; : : :) until the message is delivered.

The properties of the regional routing algorithms imply that routing succeeds in

R

dlog de

, at the latest, where d = dist(v; u). This implies that each message is

eventually delivered and also implies that the total number of messages sent is at

most
dlogde

X

i=0

s � 2

i

= s

dlog de

X

i=0

2

i

= O(s � d) :

That is, the stretch factor of the general algorithm is O(s).

18.2.3 The Regional Routing Algorithm

We now describe how sparse network covers are used in a regional (s; d)-routing

algorithm to yieldO(s) stretch factor, while using a total of O(n1+
1

s

logn) mem-

ory bits.

Recall that the d-neighborhood of a node v is the set of processors whose

distance from v is at most d; the d-neighborhood of an arbitrary node is clearly a

cluster.

Let D be the set containing the d-neighborhoods of all nodes in the graph.

D is clearly a cover of the graph, jDj = n and diam(D) � 2d. By applying



412 ADVANCED TOPICS

cluster root

4

5

1

2

3

Figure 18.3: DFS numbering of a cluster; the edges of the BFS tree of S are solid.

Theorem 18.1 to D with the parameter k = s, we obtain a cover D0 which is a

coarsening of D, diam(D

0

) < (s + 1) � 2d, and vol(D0

) � n

1+

1

s .

For each node v, there is a cluster in D0 which contains its d-neighborhood,

since D0 is a coarsening of D. In D0, there may be several clusters containing the

d-neighborhood of v; we designate one of them as the home cluster of v.

In each cluster1 in D0 we choose some node as a root, and construct from it

a cluster tree, which is the shortest paths tree (BFS tree) from the root to all nodes

in the cluster.

Inside the cluster, routing is done based on the depth first search (DFS) num-

bering of the cluster tree, as follows.

The nodes of each cluster are numbered by running DFS on the cluster tree

(see Algorithm 2.3). Figure 18.3 presents the DFS numbering of a tree in the

cluster S from Figure 18.1. Denote the DFS number of a node v by dfs(v). Every

node records its own DFS number, as well as the DFS numbers of its children in the

cluster tree. The root maintains a table with the DFS number of each node v in the

cluster.

Routing is done through the root of the cluster. To send a message to another

node u, a node v sends the message up to the cluster root. If u is not in the

cluster, then the root has no DFS number for it, and it notifies v; otherwise, the

root sends the message to u by propagating it down the tree. At node w with

children w
1

; : : : ; w

l

(ordered by increasing DFS numbers) the message is sent to

the child w
i

such that dfs(w
i

) � dfs(u) < dfs(w
i+1

). (Let dfs(w
0

) = �1 and

dfs(w
l+1

) = 1.) Exercise 18.8 asks you to write pseudocode for this algorithm.

For example, the arrows in Figure 18.3 show the routing from the node whose

DFS number is 5, through the cluster root, to the node whose DFS number is 4.

Clearly, at most 2 � diam(D

0

) messages are sent, since at the worst case, the

longest path in a cluster tree is used twice. This implies that this is a regional

1We remove from D

0 clusters that were not designated as home clusters.



SPARSE NETWORK COVERS 413

(s; d)-routing algorithm.

The number of bits of information maintained in the root is proportional to the

number of nodes in the cluster times logn. This also dominates the total amount of

information maintained at other nodes in the cluster. Therefore, the total amount

of information maintained in all nodes is proportional to the volume of D0 times

logn, that is O(n1+
1

s

logn) bits. Therefore, the total memory overhead of all

logn regional routing schemes is O(n1+
1

s

log

2

n) bits.

18.3 Application to Synchronizers

In this section we present synchronizer ZETA, based on sparse network covers.

This synchronizer provides an interesting trade-off between time and messages:

for a given trade-off parameter k, 2 � k � n, ZETA sends the messages of a round

within O(log

k

n) time after the previous round and sends O(k � n) messages

per round. Recall that synchronizer ALPHA, presented in Chapter 11, sends the

messages of a round within O(1) time after the previous round and sends O(m)

messages per round, where m is the number of communication links.

Let C be the cover containing the 1-neighborhoods of all the nodes in the

network; clearly, diam(C) = 1. We construct a coarsening of C, by applying Theo-

rem 18.1 with parameter log
k

n. We obtain a cover C0 such that the 1-neighborhood

of every node is contained in some cluster of C0; moreover, diam(C

0

) = O(log

k

n),

and vol(C0) = n

1+1= log

k

n

= O(k � n).

For each nodev, we designate one of the clusters containing its 1-neighborhood

as its home cluster.In each cluster2 we choose some node as a root, and construct

a cluster tree around it, which is the BFS tree between the root and all the nodes in

the cluster.

Recall that in synchronizer ALPHA (Chapter 11), a node was safe when all its

messages were received by its neighbors. A node can learn it is safe by waiting to

receive acknowledgments on all the messages it sent.

A convergecast algorithm (Section 2.2) is used to collect the safety information

up each cluster tree. For each cluster tree it belongs to, a node executes the

following algorithm:

If it is a leaf in the tree, it sends a hsafei message to its parent; if it is an

internal node in the tree, it waits for hsafei messages from all its children in this

tree, and then sends a hsafei message to its parent.3 When the root of a cluster tree

receives a hsafei message from all its children, it broadcasts a hpulsei message

down the tree. When a node receives a hpulseimessage from its parent in its home

cluster’s tree, it enables the sending of the next round’s messages.

Clearly, each node sends messages for a round exactly once. Furthermore,

when a node v sends round r messages it knows that all the nodes in the node’s

2Once again, we remove from C all clusters that were not designated as home clusters.
3Messages should be tagged with the cluster’s id.



414 ADVANCED TOPICS

v

v

5

v

3

v

2

v

4

v

1

v

6

Figure 18.4: Cluster for Exercise 18.6; v is the cluster root.

home cluster are safe. Since v’s home cluster includes its 1-neighborhood, this

implies that all v’s neighbors are safe. Therefore, all the messages sent to v at the

previous round were received, as needed.

Note that the time between two consecutive rounds is proportional to the

diameter of the cover, i.e., O(log
k

n). The number of messages sent per round is

proportional to the total size of the cluster trees, which is, in turn, proportional to

the volume of the cover, i.e., O(k � n).

Exercises

18.1 Calculate the diameter of the cover presented in Figure 18.2.

18.2 Calculate the diameter and the volume of fV g, the cover with a single cluster

containing all nodes of G.

18.3 Give an example of two covers C and C0, such that C0 is a coarsening of C,

vol(C0) > vol(C), and diam(C

0

) > diam(C).

18.4 Prove that if C is a cover of G, and C0 is a coarsening of C, then C0 is a cover

of G.

18.5 Consider Algorithm 18.1, and show that diam(C

0

) � l � diam(C), where l is

the maximal number of times the repeat loop is executed for a single cluster

added to C0.

18.6 Write the routing table for the nodes in the cluster shown in Figure 18.4.

18.7 Modify Algorithm 2.3 to assign DFS numbers to nodes.

18.8 Write pseudocode for routing inside a cluster, using DFS numbers.

18.9 Write pseudocode for synchronizer ZETA.

18.10 Prove that ZETA locally simulates the synchronous message passing model.

Hint: Follow the proof of Theorem 11.2.



SPARSE NETWORK COVERS 415

Chapter Notes

The simple sequential algorithm for finding sparse network covers and the proof

of Theorem 18.1 are due to Peleg [200]. This algorithm can be made distributed

using simple synchronization mechanisms (see Peleg [200]), but the resulting al-

gorithm does not have good message and time complexities. Efficient distributed

algorithms for this problem we given by Awerbuch, Berger, Cowen and Peleg [36]

(optimizing the time) and by Awerbuch, Patt-Shamir, Peleg and Saks [37] (opti-

mizing the number of messages).

Finding routing algorithms with good memory requirements is one of the

original applications of sparse network covers, presented by Awerbuch and Pe-

leg [39]. The routing algorithm presented in Section 18.2 only bounds the total

memory requirements of the routing scheme. However, some nodes, e.g., the clus-

ter roots or nodes that belong to many clusters, maintain much more information

than others. Awerbuch and Peleg [39] show how to optimize also the maximal

memory requirements per node.

Synchronizer ZETA was suggested by Segall and Shabtay [233]. They also

present an efficient distributed algorithm for constructing the sparse network cover

needed for ZETA, together with the cluster trees; see also a correction by Moran

and Snir [183]. Awerbuch [32] originally presented a synchronizer, GAMMA, with

similar complexities. ZETA improves the constants of GAMMA, and is also simpler

to understand and analyze.

Another application of sparse network covers is to reduce the message com-

plexity of distributed algorithms. Afek and Ricklin [7] present a simulation

that takes any distributed algorithm whose message complexity is O(c � m)

and produces an algorithm solving the same problem with message complex-

ity O(c � n logn+m logn), where, as always, n is the number of nodes and m is

the number of edges.

Roughly speaking, the transformation uses a sparse network cover; in each

cluster there is a central node and there are simple paths connecting the centers of

pair of overlapping clusters (sharing a node). To run the algorithm, each central

node executes the algorithm for all nodes in its cluster. Messages sent within

the cluster need not be sent at all. Messages between nodes in different clusters

are sent between the corresponding central nodes. The cost of sending messages

from a specific node to all its neighbors is bounded by the number of clusters

in which the node has neighbors times the distance between the corresponding

central nodes. Theorem 18.1 is used to bound these quantities. For example,

taking the cover consisting of the 1-neighborhood of every node and k = logn,

we obtain a cover in which each node is (on the average) in O(n1= logn) clusters,

and the distance between central nodes of two neighboring clusters is O(logn).

An interesting application of this transformation is to find all the shortest

paths in the network; this problem is the key for many routing and topology

maintenance algorithm in wide-area networks. The message complexity of a



416 ADVANCED TOPICS

standard algorithm for finding all shortest paths is O(n �m) (see Gallager [115]

and Segall [232]). Applying the above simulation gives an algorithm whose

message complexity is O(n2 logn). The sparse network cover is constructed

with O(m + n logn) messages using an algorithm of Awerbuch [32]; the same

algorithm also distinguishes the cluster root and constructs a BFS cluster tree

around it.

Other applications of sparse network covers are for tracking mobile users (by

Awerbuch and Peleg [40]), and for distributed directories (by Peleg [201]).


