
MUTUAL EXCLUSION IN SHARED MEMORY 87

Algorithm 4.7 Fast mutual exclusion: code for processor p
i

, 0 � i � n � 1.

Initially, Fast-lock and Slow-lock are 0, and

Want[i] is false for all i, 0 � i � n� 1

hEntryi:

1: Want[i] := true

2: Fast-lock := i

3: if Slow-lock 6= 0 then

4: Want[i] := false

5: wait until Slow-lock = 0

6: goto 1

7: Slow-lock := i

8: if Fast-lock 6= i then // otherwise, enter on the fast path

9: Want[i] := false

10: for all j, wait until Want[j] = false

11: if Slow-lock 6= i then // otherwise, enter on the slow path

12: wait until Slow-lock = 0

13: goto 1

hCritical Sectioni

hExiti:

14: Slow-lock := 0

15: Want[i] := false

hRemainderi

A fast algorithm clearly requires the use of multi-writer shared variables; if

each variable is written only by a single processor, then a processor wishing to

enter the critical section has to check at least n variables for possible competition.

The key for the algorithm is the correct combination of two mechanisms, one

for providing fast entry when only a single processor wants the critical section,

and the other for providing deadlock freedom when there is contention.

In the algorithm presented below, two shared variables are used for controlling

access when there is no contention: Fast-lock and Slow-lock. In addition, each

processor p

i

has a Boolean shared variable Want[i] whose value is true if p

i

is

interested in entering the critical section and false otherwise. The pseudocode

appears in Algorithm 4.7.

A processor can enter the critical section either by finding Fast-lock = i (in

Line 8) or by finding Slow-lock = i (in Line 11). In the first case (Line 8) we say

that a processor enters the critical section along the fast path, while in the second

case (Line 11) we say it enters the critical section along the slow path.

Consider the simple case in which no processor is in the critical section or in

the entry section; in this case, Slow-lock is 0 and all entries of Want are 0. When


