
Combining Shared Coin Algorithms

James Aspnes∗ Hagit Attiya† Keren Censor ‡

Abstract

This paper shows that shared coin algorithms can be combined to optimize several complexity mea-
sures, even in the presence of a strong adversary. By combining shared coins of Bracha and Rach-
man [10] and of Aspnes and Waarts [7], this yields a shared coin algorithm, and hence, a randomized
consensus algorithm, with O(n log2 n) individual work and O(n2 log n) total work, using single-writer
registers. This improves upon each of the above shared coins (where the former has a high cost for
individual work, while the latter reduces it but pays in the total work), and is currently the best for this
model.

Another application is to prove a construction of Saks, Shavit, and Woll [16], which combines a
shared coin algorithm that takes O(1) time in failure-free executions, with one that takes O(log n) time
in executions where at most

√
n process fail, and another one O(n3

n−f) time in any other execution.

1 Introduction

Coordinating the actions of processes is crucial for virtually all distributed applications, especially in asyn-
chronous systems. At the core of many coordination problems is the need to reach consensus among pro-
cesses, despite the possibility of process failures. A consensus algorithm is a distributed algorithm where
n processes collectively arrive at a common decision value starting from individual process inputs. It must
satisfy agreement (all processes decide on the same value), validity (the decision value is an input to some
process), and termination (all processes eventually decide). Unfortunately, there is no deterministic consen-
sus algorithm in an asynchronous system, if one process may fail [11,13,14]. However, reaching consensus
becomes possible using randomization with the termination condition relaxed to hold with probability 1.
(The agreement and validity properties remain the same.) The complexity of solving consensus is measured
by the expected number of steps performed by all processes (total work) or by a single process (per-process
or individual work).

∗Supported in part by NSF grant CNS-0435201. Department of Computer Science, Yale University, New Haven, CT.
aspnes@cs.yale.edu

†Supported in part by the Israel Science Foundation (grant number 953/06). Department of Computer Science, Technion, Haifa,
Israel. hagit@cs.technion.ac.il

‡Supported in part by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities. Department of
Computer Science, Technion, Haifa, Israel. ckeren@cs.technion.ac.il

1

Many randomized consensus algorithms have been suggested, in different communication models and
under various assumptions about the adversary (see [3]). Virtually all of them rely on a shared-coin algo-
rithm [6], in which each process outputs a value−1 or +1, and for every v ∈ {−1, +1}, there is a probability
of at least δ that all processes output the same value v; δ is the agreement parameter of the algorithm. Aspnes
and Herlihy [6] have shown that a shared-coin algorithm with agreement parameter δ, expected individual
work I , and expected total work T , yields a randomized consensus algorithm with expected individual work
O(n + I/δ) and expected total work O(n2 + T/δ).

Various shared coin algorithms have been proposed, each using different communication primitives or
optimizing a different complexity measure. Abrahamson [1] presented a randomized algorithm for solving
consensus in asynchronous systems using shared memory, which has an exponential running time. The
first polynomial algorithm for solving randomized consensus under the control of a strong adversary, which
can observe the results of local coin-flips before scheduling the next process, was presented by Aspnes and
Herlihy [6]. They described an algorithm that uses a shared coin in order to reach agreement and has a total
work of O(n4). The amount of memory required by this algorithm was later bounded by Attiya, Dolev, and
Shavit [9]. Aspnes [2] presented an algorithm for randomized consensus with O(n4) total work, which also
uses bounded space. These algorithms were followed by an algorithm of Saks, Shavit and Woll [16] with
O(n3) total work, and an algorithm of Bracha and Rachman [10] with O(n2 log n) total work.

In all of the above algorithms a process running alone may have to do all the work by itself, which implies
that the individual work is the same as the total work. Later, Aspnes and Waarts [7] presented a shared coin
algorithm in which each process performs O(n log2 n) expected number of steps, which is significantly
lower than the O(n2 log n) individual work of the algorithm by Bracha and Rachman [10]. However, by
simply multiplying the individual work by n, their algorithm increases the total work to O(n2 log2 n). This
led Aspnes and Waarts to ask whether this tradeoff is inherent.

In this paper, we show that there is no such tradeoff, and in fact, each complexity measure can be
optimized separately. We achieve this result by showing that shared-coin algorithms can be interleaved in a
way that obtains the best of their complexity figures, without harming the agreement parameter.

Given the power of the adversary to observe both protocols and adjust their scheduling, it is not obvious
that this is the case, and indeed recent work of Lynch et al. [15] shows that undesired effects may follow
from the interaction of an adaptive adversary and composed probabilistic protocols. Nonetheless, we can
show that in the particular case of weak shared-coin algorithms, two algorithms with agreement parameter
δA and δB can be composed with sufficient independence such that the combined protocol terminates with
the minimum of each of the protocols’ complexities (e.g., in both individual and total work), while obtaining
an agreement parameter of δA · δB .

An immediate application of our result shows that the shared coin algorithm of Bracha and Rachman can
be interleaved with the algorithm of Aspnes and Waarts, to get a protocol with both O(n log2 n) individual
work and O(n2 log n) total work. This implies that wait-free randomized consensus can be solved with
O(n log2 n) expected individual work and O(n2 log n) expected total work, using single-writer multi-reader
registers. These are currently the best complexities known for this model.

2

Our result has other applications for combining shared coins in order to enjoy the best of more than
one complexity measure. For example, Saks, Shavit, and Woll [16] presented three shared-coin algorithms,
each having a good complexity for a different scenario. The complexity measure they consider is of time
units: one time unit is defined to be a minimal interval in the execution of the algorithm during which each
non-faulty processor executes at least one step. The first is a wait-free algorithm which takes O(n3

n−f) time,
where f is the actual number of faulty processes. In the second algorithm, the time is O(log n) in executions
with at most f =

√
n faulty processes, and in the third algorithm the time is O(1) in failure-free executions.

All three shared coin algorithms have constant agreement parameters, and Saks, Shavit, and Woll claim that
they can be interleaved to yield one algorithm with a constant agreement parameter that enjoys all of the
above complexities. However, they do not prove this claim, and our paper is the first to do so.

Our result holds also for the shared-memory model with multi-writer multi-reader registers. In this
model, Attiya and Censor [8] have shown a shared-coin algorithm with O(n2) total work. Again, the
individual work is also O(n2). Later, we have shown [4] that the individual work can be further reduced to
O(n log n); again, this had a cost of increasing the total work to O(n2 log n). A restricted version of the
result presented here was first proven in [4] to obtain a shared-coin with O(n2) total work and O(n log n)
individual work. This was superseded recently by Aspnes and Censor [5], who gave a shared-coin algorithm
with O(n) individual work and (immediately) O(n2) total work, which is optimal due to the O(n2) lower
bound on total work presented by Attiya and Censor in [8].

2 Model of Computation

We consider a standard model of an asynchronous shared-memory system, where n processes communicate
by reading and writing to shared registers. Each step consists of some local computation, including an
arbitrary number of local coin flips (possibly biased) and one shared memory event, which is either a read
or a write to some register. The interleaving of processes’ events is governed by a strong adversary that
observes the results of the local coin flips before scheduling the next event; in particular, it may observe a
coin-flip and, based on its outcome, choose whether or not that process may proceed with its next shared-
memory operation.

A configuration consists of the local states of all the processes, and the values of all the registers. Since
we consider randomized algorithms with a strong adversary, we partition the configurations into two cat-
egories Calg and Cadv. In configurations C ∈ Calg there is a process waiting to flip a local coin, and in
configurations C ∈ Cadv all processes are pending to access the shared memory.

For each configuration C ∈ Calg where pi is about to flip a local coin there is a fixed probability space
for the result of the coin, which we denote by XC

i . An element y ∈ XC
i with probability Pr[y] represents a

possible result of the local coin flip of pi from the configuration C. If there is more than one process that is
waiting to flip a coin in C, then we fix some arbitrary order of flipping the local coins, for example according
to the process identifiers. In this case, pi will be the process with the smallest identifier that is waiting to flip
a coin in C. The next process will flip its coin only from the resulting configuration.

3

Algorithm 1 Interleaving shared coin algorithms A and B: code for process pi.

1: while true do
2: take a step in algorithm A

3: if terminated in A by returning v then return v // local computation
4: take a step in algorithm B

5: if terminated in B by returning v then return v // local computation

We can now define the strong adversary formally, as follows. For every configuration C ∈ Calg the
adversary lets a process pi, with the smallest identifier, flip its local coin. For every configuration C ∈ Cadv,
the adversary σ picks an arbitrary process to take a step which accesses the shared memory. Having the
adversary wait until all processes flip their current coins does not restrict the adversary’s power, since any
adversary that does not wait for all coins can be simulated by ignoring the result of a coin until it is scheduled
to be flipped by the simulated adversary.

3 Interleaving shared-coin algorithms

Let A and B be two shared-coin algorithms. Interleaving A and B is done by performing a loop in which
the process executes one step of each algorithm (see Algorithm 1). When one of the algorithms terminates,
returning some value v, the interleaved algorithm terminates as well, and returns the same value v.

We denote by δA and δB the agreement parameters of algorithm A and algorithm B, respectively.
We next show that the agreement parameter of the interleaved algorithm is the product of the agreement

parameters of algorithms A and B. The idea behind the proof is that since different processes may choose
a value for the shared coin based on any of the two algorithms, for all processes to agree on some value
v we need all processes agreeing on v in both algorithms. In order to deduce an agreement parameter
which is the product of the two given agreement parameters, we need to show that the executions of the two
algorithms are independent, in the sense that the adversary cannot gain any additional power out of running
two interleaved algorithms.

In general, it is not obvious that the agreement parameter of the interleaved algorithm is the product
of the two given agreement parameters. In each of the two algorithms it is only promised that there is a
constant probability that the adversary cannot prevent a certain outcome, but in the interleaved algorithm
the adversary does not have to decide in advance which outcome it tries to prevent from a certain algorithm,
since it may depend on how the other algorithm proceeds. For example, it suffices for the adversary to have
the processes in one algorithm agree on 0 and have the processes in the other algorithm agree on 1.

The first theorem assumes that one of the algorithms always terminates within some fixed bound on the
number of steps, and not only with probability 1. We later extend this result to hold for any pair of shared
coin algorithms.

4

Theorem 1 If algorithm A always terminates within some fixed bound on the number of steps, then the
interleaving of algorithms A and B has agreement parameter δ ≥ δA · δB .

Proof: Since algorithm A always terminates within some fixed bound on the number of steps, the inter-
leaved algorithm also terminates within some fixed bound on the number of steps (at most twice as many).
We define the probability of reaching agreement on the value v for every configuration C in one of the
algorithms, by backwards induction, as follows.

With every configuration C, we associate a value s that is the maximal number of steps taken by all
the processes from configuration C, over all possible adversaries and all results of the local coin flips, until
they terminate in the interleaved algorithm (by terminating either in A or in B). Since algorithm A always
terminates within some fixed bound on the number of steps, s is well defined.

We denote by C|A the projection of the configuration C on algorithm A, i.e., C|A consists of the local
states of all the processes regarding algorithm A, and the values of the shared registers of algorithm A.
Similarly we denote by C|B the projection of C on algorithm B.

We define the probability Prv[C] for agreeing in the interleaved algorithm by induction on s. In a
configuration C for which s = 0, all processes terminate in the interleaved algorithm, by terminating either
in A or in B. We define Prv[C] to be 1 if all the processes decide v, and 0 otherwise. Let C be any other
configuration. If C ∈ Cadv, then:

Prv[C] = min
σ

Prv[Cσ],

where Cσ is the resulting configuration after scheduling one process, according to the adversary σ, to access
the shared memory. If C ∈ Calg, then:

Prv[C] =
∑

y∈XC
i

Pr[y] · Prv[Cy],

where pi is the process waiting to flip a local coin in the configuration C and Cy is the resulting configuration
after the coin is flipped. Notice that for the initial configuration CI , we have that δ = min

v
Prv[CI].

In order to prove the theorem, we use PrAv [C] (and similarly PrBv [C]) for a configuration C in the inter-
leaved algorithm, which is the probability that starting from C, all the processes that terminate by terminat-
ing in algorithm A (algorithm B) agree on the value v.

We define these probabilities formally by induction on s. We only state the definition of PrAv [C]; the
definition of PrBv [C] is analogous. Notice that PrAv [C] depends only on the projection C|A of configuration
C on algorithm A. For a configuration C in which s = 0, all the processes have terminated in the interleaved
algorithm. We define PrAv [C] to be 1 if all the processes that terminated by terminating in algorithm A agree
on the value v, and 0 otherwise. Let C be any other configuration. If C ∈ Cadv, then:

PrAv [C] = PrAv [C|A] = min
σ∈A

PrAv [Cσ|A],

where Cσ is the resulting configuration after scheduling one process, according to the adversary σ, to access

5

the shared memory. If C ∈ Calg, then:

PrAv [C] = PrAv [C|A] =
∑

y∈XC
i

Pr[y] · PrAv [Cy|A],

where pi is the process waiting to flip a local coin in the configuration C and Cy is the resulting configuration
after the coin is flipped.

We now claim that for every configuration C, Prv[C] = PrAv [C] · PrBv [C]; the proof is by induction on s.
Base case: If s = 0, then all processes have terminated in the interleaved algorithm. Processes agree on

v if and only if every process decides v, whether it terminates in A or in B, therefore

Prv[C] = PrAv [C] · PrBv [C].

Induction step: Assume the claim holds for any configuration C ′ with at most s− 1 steps remaining to
termination under any adversary. Let C be a configuration with at most s steps until termination under any
adversary. We consider two cases according to the type of C.

If C ∈ Cadv, then:

Prv[C] = min
σ

Prv[Cσ]

= min
{

min
σ∈A

Prv[Cσ], min
σ∈B

Prv[Cσ]
}

,

where σ ∈ A and σ ∈ B are abbreviations for adversaries in which the next process scheduled takes a step
in algorithm A or B, respectively. By the induction hypothesis on the configuration Cσ, with one step less
to termination, we get:

Prv[C] = min
{

min
σ∈A

(
PrAv [Cσ] · PrBv [Cσ]

)
, min
σ∈B

(
PrAv [Cσ] · PrBv [Cσ]

)}

= min
{

min
σ∈A

(
PrAv [Cσ|A] · PrBv [Cσ|B]

)
,min
σ∈B

(
PrAv [Cσ|A] · PrBv [Cσ|B]

)}

where the second equality follows by the definition of PrAv [C] and PrBv [C]. If the step taken from C by σ is
in algorithm A then Cσ|B = C|B , and if the step taken from C by σ is in algorithm B then Cσ|A = C|A.
Thus,

Prv[C] = min
{

min
σ∈A

(
PrAv [Cσ|A] · PrBv [C|B]

)
, min
σ∈B

(
PrAv [C|A] · PrBv [Cσ|B]

)}

= min
{

PrBv [C|B]
(

min
σ∈A

PrAv [Cσ|A]
)

, PrAv [C|A]
(

min
σ∈B

PrBv [Cσ|B]
)}

= min
{

PrBv [C] · PrAv [C], PrAv [C] · PrBv [C]
}

= PrAv [C] · PrBv [C],

which completes the proof of the claim that Prv[C] = PrAv [C] · PrBv [C] for a configuration C ∈ Cadv.

6

If C ∈ Calg, with process pi waiting to flip a local coin, then:

Prv[C] =
∑

y∈XC
i

Pr[y] · Prv[Cy]

=
∑

y∈XC
i

Pr[y] · PrAv [Cy] · PrBv [Cy]

=
∑

y∈XC
i

Pr[y] · PrAv [Cy|A] · PrBv [Cy|B],

by the induction hypothesis on the configuration Cy, with one step less to termination. If the coin of pi is in
algorithm A, then Cy|B = C|B , and if the coin of pi is in algorithm B, then Cy|A = C|A. Assume, without
loss of generality, that the coin is in algorithm A, thus,

Prv[C] =
∑

y∈XC
i

Pr[y] · PrAv [Cy|A] · PrBv [C|B]

= PrBv [C|B]


 ∑

y∈XC
i

Pr[y] · PrAv [Cy|A]




= PrBv [C] · PrAv [C],

which completes the proof of the claim that Prv[C] = PrAv [C] · PrBv [C] for a configuration C ∈ Calg.
The theorem follows by applying the claim to the initial configuration CI , to get that Prv[CI] = PrAv [CI]·

PrBv [CI]. Notice that in the interleaved algorithm the adversary is more restricted in scheduling processes
to take steps in algorithm A, than in algorithm A itself, since a process might terminate in algorithm B and
be unavailable for scheduling. This only reduces the power of the adversary, implying that PrAv [CI] ≥ δA.
The same applies for algorithm B and hence PrBv [CI] ≥ δB . Therefore we have that Prv[CI] = PrAv [CI] ·
PrBv [CI] ≥ δA · δB , for every v ∈ {0, 1}, which completes the proof since δ = min

v
Prv[CI].

When neither algorithm A nor algorithm B have a bound on the number of steps until termination,
the same result is obtained by considering truncated algorithms. In a truncated algorithm Ah, we stop the
original algorithm A after at most h steps, for some finite number h, and if not all processes have terminated
then we regard this execution as one that does not agree on any value. This only restricts the algorithm,
so the agreement parameter of a truncated algorithm is at most the agreement parameter of the original
algorithm, i.e., δAh

≤ δA.
For any shared coin algorithm, we define Prhv [CI] to be the probability that all the processes terminate

and decide v within at most h steps from the initial configuration CI . This is exactly the probability Prv[CI]
of the truncated algorithm Ah. The next lemma proves that the probabilities Prhv [CI] tend to the probability
Prv[CI], as h goes to infinity.

Lemma 2 Prv[CI] = limh→∞ Prh
v [CI].

7

Proof: For every h, let Yh be the event that all the processes terminate and decide v within at most h steps
from the initial configuration CI . By this definition, we have Pr[Yh] = Prhv [CI], and Pr[∪∞h=1Yh] = Prv[CI].

It is easy to see that the sequence of events Y1, Y2, . . . is a monotone increasing sequence of events,
i.e., Y1 ⊆ Y2 ⊆ · · ·, therefore the limit limh→∞ Pr[Yh] exists, and by [12, Lemma 5, p. 7] we have
Pr[∪∞h=1Yh] = limh→∞ Pr[Yh]. This implies that Prv[CI] = limh→∞ Prhv [CI].

We use the above limit to show that we can truncate an algorithm to get as close as desired to the
agreement parameter by a bounded algorithm.

Lemma 3 In a shared coin algorithm with agreement parameter δ, for every ε > 0 there is an integer hε

such that Prhε
v [CI] ≥ δ − ε.

Proof: Assume, towards a contradiction, that for every h we have Prhv [CI] < δ − ε. Since Prv[CI] is the
probability that all the processes terminate and decide v (without a bound on the number of steps), this
implies that

Prv[CI] = lim
h→∞

Prhv [CI] ≤ δ − ε < δ,

which completes the proof.

We can now truncate the shared coin algorithm A after a finite number of steps as a function of ε, and
use Theorem 1 to get an interleaved algorithm with agreement parameter δAhε

· δB ≥ (δA − ε) · δB .
By truncating algorithm A we only restrict the interleaved algorithm (as we only restrict algorithm A),

and therefore we have that by interleaving algorithms A and B we obtain an agreement parameter δ that is
at least (δA − ε) · δB for every ε > 0, which implies that δ ≥ δA · δB , and gives the following theorem.

Theorem 4 The interleaving of algorithms A and B has agreement parameter δ ≥ δA · δB .

4 Applications

4.1 Shared Coin Using Single-Writer Registers

We obtain a shared-coin algorithm using only single-writer registers that has both O(n2 log n) total work
and O(n log2 n) individual work, by interleaving the algorithm from [10] and the algorithm from [7].

For two shared-coin algorithms A and B, we denote by TA(n) and IA(n) the total and individual work,
respectively, of algorithm A, and similarly denote TB(n) and IB(n) for algorithm B. We now argue that the
total and individual step complexities of the interleaved algorithm are the minimum between the respective
complexities of algorithms A and B.

Lemma 5 The interleaving of algorithms A and B has an expected total work of

2min{TA(n), TB(n)}+ n,

and an expected individual work of
2min{IA(n), IB(n)}+ 1.

8

Proof: We begin by proving the total work. After at most 2TA(n) + n total steps where executed by
the adversary, at least TA(n) of them where in algorithm A, and hence all the processes have terminated
Algorithm A, and have therefore terminated the interleaved algorithm. The same applies to Algorithm B.
Therefore the interleaved algorithm has a total work of 2min{TA(n), TB(n)}+ n.

We now prove the bound on the individual work. Consider any process pi. After at most 2IA(n) + 1
total steps of pi where executed by the adversary, at least IA(n) of them were in algorithm A, and hence
the process pi has terminated Algorithm A, and has therefore terminated the interleaved algorithm. The
same applies to Algorithm B. This is true for all the processes, therefore the interleaved algorithm has an
individual work of 2min{TA(n), TB(n)}+ 1.

Applying Lemma 5 and Theorem 1 to an interleaving of the algorithms of [10] and [7], yields:

Theorem 6 There is a shared-coin algorithm with a constant agreement parameter, with O(n2 log n) total
work and O(n log2 n) individual work, using single-writer multi-reader registers.

4.2 Shared Coin for Different Levels of Resilience

In this section we discuss interleaving done by Saks, Shavit, and Woll [16]. They presented the following
three shared-coin algorithms, all having a constant agreement parameter. The complexity measure they
consider is of time units: one time unit is defined to be a minimal interval in the execution of the algorithm
during which each non-faulty processor executes at least one step.

The first algorithm takes O(n3

n−f) time, where f is the number of faulty processes. It is wait-free, i.e.,
it can tolerate f = n − 1 faulty processes. This is done by having each process repeatedly flip a local coin
and write it into an array, then collect the array to see if at least n2 coins were already flipped. Once a
process observes that enough coins were flipped, it terminates and decides on the majority of all the coins it
collected. The individual work of the first algorithm is in O(n3), since in the worst case, the process does
all the work by itself.

The second algorithm takes O(log n) time in executions with at most f =
√

n faulty processes, but
may not terminate otherwise. This is done by having each process flip one local coin and write it into an
array, then repeatedly scan the array until it observes that at least n−√n coins were already flipped. It then
terminates and decides on the majority of all the coins it collected.

In the third algorithm there is one predetermined process that flips one local coin and writes the result
into a shared memory location. The other processes repeatedly read that location until they see it has been
written into, and then decide in that value. This takes O(1) time in failure-free executions, but may not
terminate otherwise.

Theorem 1 shows that the interleaving of these three algorithm gives a shared coin algorithm with a
constant agreement parameter. Technically, we apply the theorem twice, first to interleave the first algorithm
(which is bounded) and the second algorithm; then we interleave the resulting algorithm (which is bounded)
with the third algorithm.

9

The interleaving of all three algorithms enjoys all of the above complexities, by an argument similar to
Lemma 5. This can of course be further improved by replacing the first algorithm with the algorithm of
Section 4.1 or with the algorithm of Aspnes and Censor [5], if multi-writer registers can be employed.

5 Summary

We prove that interleaving shared coin algorithms yields a shared-coin algorithm whose agreement param-
eter is the product of the agreement parameters of the two algorithms, and its complexity is the minimum
of their complexity figures. In particular, this yields a shared-coin algorithm with a constant agreement
parameter, with O(n2 log n) total work and O(n log2 n) individual work, using single-writer multi-reader
registers. Using the scheme of Aspnes and Herlihy [6] this gives a randomized consensus algorithm with
O(n2 log n) total work and O(n log2 n) individual work, using single-writer multi-reader registers. We also
give the first proof of the interleaving done by Saks, Shavit, and Woll [16], for algorithms that provide
different levels of resilience.

An important open question is whether the complexities of Theorem 6 can be improved in the model
of single-writer registers. The lower bounds of Ω(n2) for total work and hence Ω(n) for individual work,
which were obtained in [8] for multi-writer registers and are tight in that case, apply also for single-writer
registers. This still leaves polylogarithmic gaps for both complexity measures. Resolving whether there is
an inherent difference in the complexity of randomized consensus between the two models of registers is an
intriguing direction for further research.

The result about interleaving is fairly general and can be extended to other communication models, and
to other complexity measures as well.

Acknowledgements: We would like to thank Roberto Segala for useful discussions.

References

[1] K. Abrahamson. On achieving consensus using a shared memory. In Proceedings of the 7th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 291–302, 1988.

[2] J. Aspnes. Time- and space-efficient randomized consensus. Journal of Algorithms, 14(3):414–431,
May 1993.

[3] J. Aspnes. Randomized protocols for aynchronous consensus. Distributed Computing, 16(2-3):165–
176, Sept. 2003.

[4] J. Aspnes, H. Attiya, and K. Censor. Randomized consensus in expected O(n log n) individual work.
In Proceedings of the 27th ACM symposium on Principles of distributed computing (PODC), pages
325–334, 2008.

10

[5] J. Aspnes and K. Censor. Approximate shared-memory counting despite a strong adversary. In Pro-
ceedings of the 20th annual ACM-SIAM Symposium on Discrete algorithms (SODA), 2009 (To appear).

[6] J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory. Journal of Algorithms,
11(3):441–461, 1990.

[7] J. Aspnes and O. Waarts. Randomized consensus in expected O(n log2 n) operations per processor.
SIAM J. Comput., 25(5):1024–1044, 1996.

[8] H. Attiya and K. Censor. Tight bounds for asynchronous randomized consensus. J. ACM, 55(5):1–26,
2008.

[9] H. Attiya, D. Dolev, and N. Shavit. Bounded polynomial randomized consensus. In Proceedings of the
8th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 281–293, 1989.

[10] G. Bracha and O. Rachman. Randomized consensus in expected O(n2 log n) operations. In Proceed-
ings of the 5th International Workshop on Distributed Algorithms (WDAG), pages 143–150, 1991.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, Apr. 1985.

[12] G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford Science Publications,
2nd edition, 1992.

[13] M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):124–149, January 1991.

[14] M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research, pages 163–183, 1987.

[15] N. A. Lynch, R. Segala, and F. W. Vaandrager. Observing branching structure through probabilistic
contexts. SIAM J. Comput., 37(4):977–1013, 2007.

[16] M. Saks, N. Shavit, and H. Woll. Optimal time randomized consensus—making resilient algorithms
fast in practice. In Proceedings of the 2nd annual ACM-SIAM symposium on Discrete algorithms
(SODA), pages 351–362, 1991.

11

