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Abstract

This paper studies the inherent trade-off between termination probability and total step complexity
of randomized consensus algorithms. It shows that for everyintegerk, the probability that anf -resilient
randomized consensus algorithm ofn processes does not terminate with agreement withink(n−f) steps
is at least1

c
k , for some constantc. A corresponding result is proved for Monte-Carlo algorithms that may

terminate in disagreement.
The lower bound holds for asynchronous systems, where processes communicate either by message

passing or through shared memory, under a very weak adversary that determines the schedule in ad-
vance, without observing the algorithm’s actions. This complements algorithms of Kapron et al. [26],
for message-passing systems, and of Aumann et al. [7,8], forshared-memory systems.
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1 Introduction

At the heart of many coordination problems in distributed systems lies the need toreachconsensusamong
processes, despite the possibility of process failures. A (binary) consensus algorithm allows processes start-
ing with input values in{0, 1} to agree on the same output value (agreement). To rule out trivial solutions,
this common output must be one of the inputs (validity), and every process must eventually decide (termi-
nation). It is well-known that no deterministic algorithm can achieve consensus in an asynchronoussystem,
if one process may fail [22,24,30]. One successful approach forcircumventing this impossibility result is to
employ randomization, and relax the termination property to hold with high probability. In typical random-
ized algorithms for consensus, the probability ofnot terminating in agreement decreases as the execution
progresses, becoming smaller as processes perform more steps.

This paper shows that this behavior is inherent, by proving lower boundson the probability of termi-
nation when the step complexity is bounded. In order to make the lower boundsas strong as possible, we
assume a very weak adversarial model, which fixes the complete schedule inadvance, without observing the
steps of the algorithm. In particular, the schedule is determined without knowing results of local coin-flips,
contents of messages sent, or memory locations accessed.

We prove that for every integerk, the probability that anf -resilient randomized consensus algorithm
of n processes does not terminate afterk(n − f) steps is at least1

ck , wherec is a constant if⌈n
f ⌉ is a

constant. The result holds for asynchronous message-passing systems and asynchronous shared-memory
systems (using reads and writes), albeit with different constants. While thesame general proof structure
applies in both cases, it is accomplished differently in the message-passing and the shared-memory models;
the latter case is further complicated due to the adversary’s weakness.

For the message-passing model, our proof extends and improves on a result of Chor, Merritt and
Shmoys [19] forsynchronousmessage-passing systems. They show that the probability that a random-
ized consensus algorithm does not terminate afterk rounds (andk(n − f) steps) is at least1

c·kk . (A similar
result is attributed to Karlin and Yao [27].) The proof rests on consideringa specific chain ofindistinguish-
ableexecutions and showing a correlation between the termination probability and the length of this chain,1

which in turn depends on the number of rounds. The chain is taken from theproof of the rounds lower bound
for (deterministic) consensus [20,21] (cf. [6, Chapter 5]); since thechain is determined in advance, i.e., re-
gardless of the algorithm’s transitions, the lower bound is derived with a weak adversary. (An overview of
the proof strategy appears in Section 2.2.)

Our first contribution, for the message-passing model, improves on this lower bound by exploiting the
fact that asynchrony allows to construct “shorter” indistinguishability chains. This shows that the probability
that an asynchronous randomized consensus algorithm does not terminate afterk(n − f) steps is at least
1
ck , wherec is a constant if⌈n

f ⌉ is a constant. (The lower bound for asynchronous message-passing systems
appears in Section 3.)

Substituting specific values in our lower bound implies that any randomized consensus algorithm has
probability at least 1

polylog(n) for not terminating withinlog log n (asynchronous) rounds, and probability at

least 1
poly(n) for not terminating withinlog n (asynchronous) rounds.

The lower bound can be extended to Monte-Carlo algorithms that always terminate, at the cost of com-

1The lengthof the chain is the number of executions in it.
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promising the agreement property (Section 5). If an asynchronous message-passing algorithm always termi-
nates withink(n− f) steps, then the probability for disagreement is at least1

ck , wherec is a constant if⌈n
f ⌉

is a constant. This lower bound can be compared to the recent consensusalgorithms of Kapron et al. [26]
for the message-passing model. One algorithm always terminates withinpolylog(n) asynchronous rounds,
and has a probability 1

polylog(n) for disagreeing, while the other terminates within2Θ(log7 n) asynchronous

rounds, and has a probability 1
poly(n) for disagreeing.

There is an extensive literature on randomized agreement algorithms for message passing systems. Re-
cent papers in this area provide algorithms for agreement in the presenceof Byzantine processes infull
informationmodels, where the adversary is computationally unbounded. See [11,23,28] for a more detailed
description and references.

In principle, the lower bound scheme can be extended to the shared-memorymodel by focusing on
layeredexecutions [5,31]. However, our severely handicapped adversarial model poses a couple of technical
challenges. First, while in the message-passing model each step can be assumed to send messages to all
processes, in a shared-memory event, a process chooses which register to access and whether to read from it
or write to it. A very weak adversary, as we use for our lower bounds, must find a way to make its scheduling
decisions in advance without even knowing what type of step the processwill take. Second, the proof scheme
requires schedules to be determined independently of the coin-flips. The latter difficulty cannot be alleviated
even by assuming a stronger adaptive adversary that may schedule the processes according to the execution
so far.

We manage to extend the lower bound scheme to the shared-memory model, by first simplifying the
model, assuming that processes either write tosingle-writer registers or perform acheap snapshotopera-
tion, reading all the registers at once. By further assuming that an algorithm regularly alternates between
writes and cheap snapshots, we make processes’ steps predictable, allowing a weak adversary to construct
indistinguishability chains. The lower bound is extended to hold for multi-writer registers by reduction;
while ordinary simulations of multi-writer registers using single-writer registershaveO(n) overhead (which
would nullify the lower bound), cheap snapshots admit a simulation with constant overhead. (The results
for the shared-memory model appear in Section 4.)

The lower bounds we obtain for the shared-memory model are the same as for the message-passing
model, though with different constants. (More detailed calculations and comparison with related work
appear in Section 6.)

To the best of our knowledge, there are no other lower bounds on randomized consensus in shared-
memory systems under a weak adversary. There are several algorithms assuming avalue-obliviousadver-
sary, which may determine the schedule adaptively based on the functionaldescription of past and pending
operations, but cannot observe any value of any register nor resultsof local coin-flips. This model is clearly
stronger than the adversary we employ, and hence our lower bounds apply to it as well.

The algorithms differ by the type of shared registers they use [7–9, 14].For single-writer multi-reader
registers, Aumann and Bender [8] give a consensus algorithm that hasprobability of at most1nc of not ter-
minating withinO(n log2 n) steps. For multi-writer multi-reader registers, Aumann [7] shows a consensus
algorithm in which the probability of not terminating ink iterations (andO(k · n) steps) is at most(3/4)k.

Chandra [14] gives an algorithm withO(log2 n) individual step complexity, assuming an intermediate
adversary that cannot see the outcome of a coin-flip until it is read by someprocess. Aumann and Kapah-
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Levy [9] give an algorithm withO(n log n exp(2
√

polylogn)) total step complexity, using single-writer
single-reader registers, and assuming a value-oblivious adversary.

An algorithm withO(n log log n) total step complexity against a weak adversary was given by Che-
ung [17], which considers a model with a stronger assumption that a write operation occurs atomically after
a local coin-flip. It improves upon earlier work by Chor, Israeli, and Li[18], who provide an algorithm with
O(n2) total step complexity using a slightly different atomicity assumption.

Other related work on randomized consensus assumes strong adversaries, which adapt to the computa-
tion, scheduling processes dynamically, after observing the results of their local coin-flips. A lot of study
was invested, yielding numerous algorithms (see the survey in [2]). Lowerbounds were given on the ex-
pected number of coin-flips [1], on the expected number of rounds in synchronous systems [10], and a tight
Θ(n2) bound on the total step complexity in asynchronous systems [5].

2 The Lower Bound Strategy

2.1 The Model in Brief

We consider a standard model of an asynchronous system with a set ofn ≥ 3 processesP = {p1, . . . , pn}.
Eachstepof a process consists of some local computation, including an arbitrary number of coin-flips
(possibly biased), and a communication operation, which depends on the communication model.

In a message passing system processes communicate by sending and receiving messages: the communi-
cation operation of a process is sending messages to some subset of the processes, and receiving messages
from some subset of them. For the lower bounds, we assume that a process sends a message to all the pro-
cesses in each step. In a shared memory system processes communicate byreading and writing to shared
registers; each step of a process is either a read or a write to some register.

The local coin-flips of a processpi are modelled as a random string of coin-flip resultsci, which can
be accessed bypi but is unavailable to any other process. All of the randomization of the algorithm is
encompassed withinn coin-flip strings~c = (c1, · · · , cn).

Additional non-determinism is introduced by the scheduling choices made by an adversary. We assume
a weakadversary that is non-adaptive and decides on the scheduling in advance. The adversary does not
observe the results of any local coins a process flips, nor any operation a process performs.

A scheduleσ, together with an initial configurationI andn coin-flip strings~c = (c1, · · · , cn), determine
anexecutionα(σ,~c, I).

2.2 The Lower Bound Approach

Let A be anf -resilient asynchronous randomized consensus algorithm. Letqk denote the maximum proba-
bility, over all weak adversaries and over all initial configurations, thatA does not terminate after a total of
k(n − f) steps are taken.

In order to prove a lower bound onqk, we consider a restricted set of schedules that proceed in layers [5,
31]. Anf -layer is a sequence of at leastn− f distinct process id’s. When executing a layerL, each process
p ∈ L takes a step, in the order specified by the layer.
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We will consider only schedules that aref -schedules. A scheduleσ = L1, L2, · · · , Lk is anf -schedule,
if it is a finite sequence off -layers. A processpi is non-faultyin layerr if it appears in the layer. A process
pi crashesin layerr if it does not take a step in any layerℓ ≥ r. A process isskippedin layerr, if it does
not appear in layerr but appears in one of the following layers.

Definition 1 For a scheduleσ, let crash(σ, p, r) be the schedule that is the same asσ, except thatp crashes
in layer r, i.e., does not take a step in any layerℓ ≥ r. For a setP of processes,crash(σ, P, r) is defined
similarly.

As mentioned in the introduction, our proof will make use of indistinguishable executions. Intuitively,
two finite executionsα andα′ are indistinguishable to a processp if it cannot tell the difference between
them. This implies thatp terminates inα with a decision valuev if and only if it terminates inα′ with
a decision valuev. The formal definition of indistinguishability is model-dependent and will be given
separately in Sections 3 and 4, but we proceed formally to define indistinguishability chains, as follows.

Given two executionsα1 andα2 with the samen coin-flip strings~c = (c1, · · · , cn), we denoteα1
pi∼ α2

if processpi does not distinguish betweenα1 andα2, and does not crash in them. In this case,pi decides on
the same value inα1 and inα2. We denoteα1 ≈m α2 if there is a chain of executionsβ1, · · · , βm+1 such
that

α1 = β1
pi1∼ β2 · · ·

pim∼ βm+1 = α2 .

We call such a chain anindistinguishability chain. Clearly, if α ≈m β ≈m′ γ thenα ≈m+m′ γ, for
every pair of integersm andm′. Moreover, notice that this relation is commutative, i.e., ifα1 ≈m α2 then
α2 ≈m α1.

For every pair of consecutive executions in the chain, there is a process that decides on the same value
in both executions. By the agreement condition, the decision inα1 and inα2 must be the same. This is
the main idea of the lower bound proof, which is captured in Theorem 1: we take two executions that must
have different agreement values and construct an indistinguishability chain between them, which bounds
the probability of terminating in terms of the length of the chain. Two such executions exist by the validity
condition, as we formalize next.

We partition the processes intoS = max{3, ⌈n
f ⌉} setsP1, . . . , PS , each with at mostf processes. For

example, ifn > 2f , Pi = {p(i−1)f+1, · · · , pi·f} for everyi, 1 ≤ i < S, andPS = {p(S−1)f+1, · · · , pn}.
Consider initial configurationsC0, . . . , CS , such that inC0 all the inputs are 0, and inCi, 1 ≤ i ≤ S, all

processes inP1, . . . , Pi have input 1 and all other processes have input 0; in particular, inCS all processes
have input 1.

Let σfull be the full synchronous schedule withk layers, in which no process fails. The next theorem is
the main tool for boundingqk as a function ofm, the length of an indistinguishability chain. This theorem
distills the technique we borrow from [19]. At the end of Section 3 we discuss how asynchrony allows to
construct shorten chains.

Theorem 1 Assume there is an integerm such that for any sequences of coins~c, α(σfull,~c, C0) ≈m

α(σfull,~c, CS). Then the probability thatA does not terminate afterk(n − f) steps isqk ≥ 1
m+1 .
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β1 = α(σfull,~c, C0)

β2

βm+1 = α(σfull,~c, CS)

decision is 0

decision is 1

terminates with probability at least1 − qk

βm terminates with probability at least1 − qk

pi1∼

pim∼

Figure 1: Illustration for the proof of Theorem 1.

Proof: Assume, by way of contradiction, thatqk(m + 1) < 1. Sinceα(σfull,~c, C0) ≈m α(σfull,~c, CS),
there is a chain ofm + 1 executions,

α(σfull,~c, C0) = β1
pi1∼ β2 · · ·

pim∼ βm+1 = α(σfull,~c, CS) .

(See Figure 1.) The probability thatA does not terminate in at least one of thesem + 1 executions is at
mostqk(m + 1). By assumption,qk(m + 1) < 1, and hence, the setB of sequences of coins~c such thatA
terminates in allm+1 executions has probability Pr[~c ∈ B] > 0. Sinceα(σfull,~c, C0) ≈m α(σfull,~c, CS),
the agreement condition implies that the decision in allm + 1 executions is the same. However, the validity
condition implies that the decision inα(σfull,~c, C0) is 0, and the decision inα(σfull,~c, CS) is 1, which is a
contradiction.

A slight extension of the above theorem handlesMonte-Carloalgorithms, where processes may termi-
nate without agreement with some small probabilityǫ. This extension is presented in Section 5.

The statement of Theorem 1 indicates that our goal is to show the existence of an integerm such that
α(σfull,~c, C0) ≈m α(σfull,~c, CS); clearly, the smallerm, the higher the lower bound. The next lemma
comes in handy when we construct these chains.

Lemma 2 Assume there is an integerm such that for every scheduleσ, initial configurationI, sequence of
coins~c and setPi, α(σ,~c, I) ≈m α(crash(σ, Pi, 1),~c, I). Thenα(σfull,~c, C0) ≈S(2m+1) α(σfull,~c, CS),
for all sequences of coins~c.

Proof: Consider the schedulesσ0 = σfull, andσi = crash(σ0, Pi, 1) for everyi, 1 ≤ i ≤ S, and the
corresponding executionsαi,j = α(σi,~c, Cj) for everyi andj, 1 ≤ i ≤ S and0 ≤ j ≤ S (the execution
αi,j starts from the initial configurationCj with a schedule which is almost full, except that processes inPi

never take any steps).
By assumption,α0,j ≈m αi,j for everyi, 1 ≤ i ≤ S, and everyj, 0 ≤ j ≤ S. (See Figure 2.) Since

processes inPi are crashed inσi for every i, 1 ≤ i ≤ S, we have thatαi,i−1
p∼ αi,i, for every process

p ∈ P \ Pi. This implies thatαi,i−1 ≈1 αi,i, for everyi, 1 ≤ i ≤ S. Thus,

α(σfull,~c, C0) = α0,0 ≈m α1,0 ≈1 α1,1 ≈m α0,1 ≈m α2,1 ≈1 α2,2 · · ·αS,S ≈m α0,S = α(σfull,~c, CS) .

Therefore,α(σfull,~c, C0) ≈S(2m+1) α(σfull,~c, CS).
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C1 = (1, 0, . . . , 0)

C0 = (0, 0, . . . , 0)

C0 = (0, 0, . . . , 0)

C1 = (1, 0, . . . , 0)

Cs = (1, 1, . . . , 1)

σfull

crash(σfull, P0, 1)

crash(σfull, P0, 1)

σfull

σfull

≈m

≈1

≈m

≈m

Figure 2: Illustration for the proof of Lemma 2.

3 Tradeoff for the Message-Passing Model

In this section we derive the lower bound for the message-passing model. Notice that in the message-passing
model, since a step consists of both sending and receiving messages, a layer L is not only a sequence of
processes, but also specifies for each processp ∈ L the set of processes it receives a message from (recall
that we assumed that it sends messages to all processes). The receptionof messages in a certain layer is
done after all messages of that layer are sent, and therefore the orderof processes in a layer is insignificant.

Formally, anf -layer is a sequencepi1 , . . . , pim of distinct process id’s, followed by a sequenceMi1 , . . . , Mim

of subsets of process id’s, whereMij is the set of process id’s from whichpij receives a message in this
layer. In the executions we construct, a message is either delivered in the same layer, or it is delayed and
delivered after the last layer, and is effectively omitted in the execution.

Recall that the processes are partitioned intoS = max{3, ⌈n
f ⌉} setsP1, . . . , PS , each with at mostf

processes. We manipulate schedules in order to delay messages, as follows.

Definition 2 Letσ be a finite schedule. Letdelay(σ, Pi, Pj , r) be the schedule that is the same asσ, except
that the messages sent by processes inPi in layer r are received by processes inPj only after the last
layer. More formally, ifMp is the subset of processes that a processp receives a message from in layerr

in σ, then for every processp ∈ Pj the subset of processes that it receives a message from in layerr in
delay(σ, Pi, Pj , r) is Mp \ Pi.

We define indistinguishability of executions in the message-passing model as follows: two executions
are indistinguishable to processp if goes through the same local states throughout both executions. More
specifically, in both executionsp sends and receives the same messages, in the same order.

Clearly, at the end of layerr, any process not inPj does not distinguish between the execution so far of
a scheduleσ and an execution so far ofdelay(σ, Pi, Pj , r). Therefore we have:

Lemma 3 Let σ be a schedule withk layers. For any sequences of coins~c, and initial configurationI, at
the end of layerr only processes inPj distinguish betweenα(σ,~c, I) andα(delay(σ, Pi, Pj , r),~c, I).
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Recall thatS = max{3, ⌈n
f ⌉} is the number of setsPi. We define the following recursive function for

everyr andk, 1 ≤ r ≤ k:

mr,k =

{

S if r = k

(2(S − 1) + 1)mr+1,k + S if 1 ≤ r < k

A simple induction shows thatmr,k ≤ (2S)k−r+1.
The following lemma proves thatm1,k is the integer required in Lemma 2 for the message-passing

model, by inductively constructing indistinguishability chains between executions in which a set of pro-
cesses may crash from a certain layerr.

Lemma 4 Let σ be a schedule withk layers such that for somer, 1 ≤ r ≤ k, no process is skipped in
layersr, r + 1, . . . , k. Thenα(σ,~c, I) ≈mr,k

α(crash(σ, Pi, r),~c, I) for every sequences of coins~c, every
initial configurationI, and everyi ∈ {1, . . . , S}.

Proof: Let σ = σ0. Throughout the proof we denoteαi = α(σi,~c, I) for any scheduleσi. The proof is by
backwards induction onr.

Base case:r = k. We construct the following schedules. Letσ1 be the same asσ0 except that
the messages sent by processes inPi in the k-th layer are received by processes inP(i+1) mod S only

after thek-th layer, i.e.,σ1 = delay(σ, Pi, P(i+1) mod S , k). By Lemma 3, we haveα0
p∼ α1, for ev-

ery processp ∈ P \ P(i+1) mod S . We continue inductively to define schedules as above in the fol-
lowing way, for everyh, 0 ≤ h ≤ S − 1: σh+1 is the same asσh except that the messages sent by
processes inPi in the k-th layer are received by processes inP(i+h+1) mod S only after thek-th layer,

i.e., σh+1 = delay(σh, Pi, P(i+h+1) mod S , k). By Lemma 3, we haveαh
p∼ αh+1, for every process

p ∈ P \ P(i+h+1) mod S .
Since inσS no messages sent by processes inPi in layerk are ever received. Except for local states of

the processes inPi, this is the same as if the processes inPi are crashed in layerk:

αS = α(crash(σ, Pi, k),~c, I),

which implies that

α(σ,~c, I) = α0 ≈1 α1 ≈1 · · · ≈1 αS = α(crash(σ, Pi, k),~c, I) .

Therefore,α(σ,~c, I) ≈S α(crash(σ, Pi, k),~c, I).
Induction step:Informally, this is similar to the base case, except that we crashPj in layerr + 1 before

“erasing” messages fromPi to Pj in layerr, and afterwards revivePj in layerr + 1.
Formally, we assume that the lemma holds for layerr + 1, 1 ≤ r < k, and prove that it holds for layer

r. Let σ1 = crash(σ0, P(i+1) mod S , r + 1); by the induction hypothesis,α0 ≈mr+1,k
α1.

Let σ2 be the same asσ1 except that the messages received by processes inP(i+1) mod S from processes
in Pi in layerr are received only after thek-th layer, i.e.,σ2 = delay(σ1, Pi, P(i+1) mod S , r). By Lemma 3,
at the end of layerr only processes inP(i+1) mod S distinguish between the executions, but since they are

crashed in layerr + 1 we haveα1
p∼ α2, for every processp ∈ P \ P(i+1) mod S , implying thatα1 ≈1 α2.
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Pi+1
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Pi+1
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- Pi

Pi+1

Pi
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- Pi

Pi+1

Pi

-
-
- Pi

Pi+1

Pi

Pi+1

-
-
-

layerr layerr layerr layerr

≈1≈mr+1,k
≈mr+1,k

α0 α1 α2 α3

Figure 3: How messages fromPi to Pi+1 are removed in the induction step of Lemma 4.

Let σ3 be the same asσ2, except that the processes inP(i+1) mod S do not crash in layerr + 1. This
implies that

σ2 = crash(σ3, P(i+1) mod S , r + 1).

By the induction hypothesis, we haveα2 ≈mr+1,k
α3. (See Figure 3.)

We continue inductively to define schedules as above in the following way for every h, 0 ≤ h ≤
S − 1. We defineσ3h+1 = crash(σ3h, P(i+h+1) mod S , r + 1), and therefore by the induction hypothesis
α3h ≈mr+1,k

α3h+1. Let σ3h+2 be the same asσ3h+1 except that the messages received by processes
in P(i+h+1) mod S from processes inPi in layer r are received only after thek-th layer, i.e.,σ3h+2 =

delay(σ3h+1, Pi, P(i+h+1) mod S , r). By Lemma 3, at the end of layerr only processes inP(i+h+1) mod S

distinguish between the executions, but since they are crashed in layerr + 1 we haveα3h+1
p∼ α3h+2, for

every processp ∈ P \ P(i+h+1) mod S , implying thatα3h+1 ≈1 α3h+2.
Finally, we defineσ3h+3 to be the same asσ3h+2, except that processes inP(i+h+1) mod S do not crash.

This implies thatσ3h+2 = crash(σ3h+3, P(i+h+1) mod S , r + 1). By the induction hypothesis we have
α3h+2 ≈mr+1,k

α3h+3.
The construction implies that inσ3(S−1)+2 no messages are sent by the processes inPi in layerr, and

they are crashed from layerr + 1. Except for local states of the processes inPi, this is the same as if the
processes inPi are crashed from layerr. Therefore

α(σ3(S−1)+2,~c, I) = α(crash(σ0, Pi, r),~c, I),

and hence

α0 ≈mr+1,k
α1 ≈1 α2 ≈mr+1,k

α3 ≈mr+1,k
· · · ≈mr+1,k

α3(S−1)+1 ≈1 α3(S−1)+2 .

Sincemr,k = (2(S − 1) + 1)mr+1,k + S, this implies thatα0 ≈mr,k
α(crash(σ0, Pi, r),~c, I).

Note that in all executions constructed in the proof, at most one set of processesPi does not appear in a
layer; since|Pi| ≤ f , this implies that at leastn − f processes take a step in every layer, and hence every
execution in the construction contains at leastk(n − f) steps.
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Lemmas 2 and 4 imply that for any sequence of coinsC, α(σfull,~c, C0) ≈S(2m1,k+1) α(σfull,~c, CS).
Sincem1,k ≤ (2S)k, substitutingS(2m1,k + 1) in the parameterm of Theorem 1 yields thatqk ≥

1
(2S)k+1+S+1

. Recall thatS = max{3, ⌈n
f ⌉}. Taking ⌈n

f ⌉ to be a constant, we obtain the main result of
this section:

Theorem 5 LetA be a randomized consensus algorithm in the asynchronous message passing model. There
is a weak adversary and an initial configuration, such that the probability that A does not terminate after
k(n − f) steps is at least1

ck , wherec is a constant if⌈n
f ⌉ is a constant.

In the original construction for the synchronous model ( [20, 21], seealso [6, Chapter 5]), a process
that does not appear in a roundr must be crashed in that round, and therefore must be counted within the
f failures allowed. Hence, in order to change all the inputs from 0 to 1, we must crash and revive fewer
processes at a time at each round. For example, in order to continuek ≤ f rounds only one process may be
crashed at each round. This adds a factor ofk to the base of the power in the denominator of the bound on
qk, which results in a lower bound of1

c·kk for the synchronous message-passing model [19].

4 Tradeoff for the Shared-Memory Model

We now derive a similar lower bound for two shared-memory models, where processes communicate
through shared read/write registers. The first model consists of single-writer registers and a snapshot oper-
ation that costs one step, described formally in Subsection 4.1. In Subsection 4.2 we consider multi-writer
registers. The lower bounds clearly hold for the more restricted model, where processes read only a single
register in each memory access.

In the shared-memory model, the definition of indistinguishability is slightly different than in the message-
passing model. For two executionsα andα′ to be indistinguishable to a processp, we not only requirep
to have the same local states throughout both executions, but also that the values of the shared registers are
the same throughout both; otherwise, for example, havingp perform a read operation afterα andα′ might
result in different executions. This implies that in both executionsp performs the same shared-memory op-
erations, including reading the same values from registers. However, weallow the value of a shared register
to be different at the end ofα andα′ if it is no longer accessed by any process. This slight modification still
captures the requirement that if a processp decidesv in α and does not distinguish betweenα andα′ then it
also decides inα′ on the same valuev.

4.1 Single-Writer Cheap-Snapshot

We first consider a shared-memory model where processes communicate through single-writer registers.
The lower bound is proved under a simplifying assumption that each read step accesses the registers of all
processes. We call this thesingle-writer cheap-snapshotmodel, since each register is written to by one
specific process, and all registers are read by any process in a singlesnapshot. This snapshot is charged one
step, hence the term “cheap”.

As in a standard shared-memory model, a step of a process consists of accessing the shared memory,
and performing local computations. We further assume that in the algorithm, thesteps of every process
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alternate between a write and a cheap-snapshot, starting with a write. Any algorithm can be transformed
to satisfy this requirement by having a process rewrite the same value to its register if it is forced to take a
write operation, or read all of the registers and ignore some of (or all) theirvalues if it is forced to take a
cheap-snapshot operation. This only doubles the step complexity.

Recall that the processes are partitioned intoS = max{3, ⌈n
f ⌉} setsP1, . . . , PS , each with at mostf

processes. We consider a restricted set of layered schedules.

Definition 3 A scheduleσ is regularif for every layerL and everyi, 1 ≤ i ≤ S, either all processesp ∈ Pi

take a step inL consecutively (one after the other, without steps of processes not inPi in between), or none
of the processesp ∈ Pi take a step inL. We denote byπ the permutation of the setsPi that take steps inL,
i.e., if processesp ∈ Pi take a step inL, thenπ−1(i) is their index in the layer. We denote by|π| the number
of setsPi that take steps in the layer.

Note that, in contrast to the message-passing model, in a shared-memory modelthe order of the pro-
cesses in a layerL is significant, since different orderings result in different executions.

Regular schedules are useful in our proofs since in every layer, all the processes in some setPi perform
the same operation, as argued in the next lemma. Since processes in the same set Pi either all write to
different registers (recall that registers are single-writer) or read all registers, this means that in a regular
execution, the order of processes in the setPi does not matter.

Lemma 6 Let σ be a regular schedule withk layers. Then in every layerL in σ, for everyi, 1 ≤ i ≤ S,
either all processp ∈ Pi do not take a step inL, or all processesp ∈ Pi perform a write operation inL, or
all processesp ∈ Pi perform a cheap-snapshot operation inL.

Proof: The proof is by induction on the layer numberr.
Base case:Let r = 1, i.e.,L is the first layer ofσ. Sinceσ is regular, either all processp ∈ Pi take a

step inL, or none of the processesp ∈ Pi take a step inL. If all take a step then by our assumption on the
algorithm, it is a write operation. Otherwise, none take a step, which proves the base case.

Induction step:Assume the lemma holds for layerℓ, 1 ≤ ℓ ≤ r. We prove the lemma for layerr+1. By
the induction hypothesis, in every layerℓ, 1 ≤ ℓ ≤ r, either all processesp ∈ Pi perform a cheap-snapshot
operation, or all perform a write operation, or none perform an operation. If none preform any operation
in any layerℓ ≤ r, then at the beginning of layerr + 1 the pending operation of all processesp ∈ Pi is
a write operation by our assumption on the algorithm. Otherwise, letℓ be the maximal layer in which all
processesp ∈ Pi took a step. If they are cheap-snapshot operations, then at the beginning of layerr + 1 the
pending operation of all processesp ∈ Pi is a write operation by our assumption on the algorithm. If they
are write operations, then at the beginning of layerr + 1 the pending operation of all processesp ∈ Pi is a
cheap-snapshot operation by our assumption on the algorithm. In any case, at the beginning of layerr + 1,
either all processesp ∈ Pi have a pending cheap-snapshot operation, or all have a pending writeoperation.
Sinceσ is regular, either none of the processesp ∈ Pi take a step in layerr + 1, or all take a step in layer
r + 1, in which case it would either be a cheap-snapshot operation for all processes, or a write operation for
all processes.

In the proof, we apply certain manipulations to regular schedules, allowing us to delay and crash sets of
processes, as follows.
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Definition 4 Letσ be a schedule such that everyp ∈ Pi is non-faulty in layerr, and such thatPi is not the
last set of processes in the layer. Letswap(σ, Pi, r) be the schedule that is the same asσ, except that the
steps of processes inPi are swapped with steps of the next set of processes in that layer. Formally, if π is the
permutation of layerr in σ andπ′ is the permutation of layerr in swap(σ, Pi, r), and if j = π−1(i), then
we haveπ′(j) = π(j + 1) andπ′(j + 1) = π(j).

Inductively, we define

swapj(σ, Pi, r) = swap(swapj−1(σ, Pi, r), Pi, r),

that is,Pi is swappedj times and movedj sets later in the layer.

Definition 5 Let σ be a schedule andr be a layer such that no process is skipped in any layerℓ > r. Let
delay(σ, Pi, r) be the schedule that is the same asσ, except that the steps ofPi starting from layerr are
delayed by one layer. Thus, there is no step ofp ∈ Pi in layer r, the step ofp ∈ Pi in layer r + 1 is the step
that was in layerr, and so on. The permutations of the layersℓ ≥ r + 1 do not change.

Note that this definition assumes a scheduleσ in which no process is skipped in any layerℓ > r.
Specifically, this implies thatPi appears in every layerℓ ≥ r + 1, which allows to keep the permutations in
layersℓ ≥ r + 1 unchanged indelay(σ, Pi, r).

Delaying a setPi from layerr can be seen as delayingPi from layerr + 1, swappingPi in layerr until
it reaches the end of the layer, accounting forPi as the first set in layerr + 1 instead of the last set in layer
r, and then swappingPi in layerr + 1 until it reaches its original place in the layer.

Although accounting forPi as the first set in layerr + 1 instead of the last set in layerr does not
change the order of steps taken, it is technically a different schedule (recall that the schedules are defined as
sequences of layers, which in this case are different in layersr andr + 1). Therefore we define:

Definition 6 Letσ be a schedule where the last set of processes in layerr is Pi, and this set does not appear
in layer r + 1. Letrollover(σ, Pi, r) be the schedule that is the same asσ, except thatPi is the first set in
layer r + 1 instead of the last set in layerr.

Effectively, such two schedulesσ androllover(σ, Pi, r) have the same order of steps, which implies that
the executions of these schedules is the same:

α(σ,~c, I) = α(rollover(σ, Pi, r),~c, I).

Definitions 4, 5, and 6 imply:

Corollary 7 Letσ be a regular schedule withk layers. For everyr, 1 ≤ r ≤ k, andπr the permutation of
layer r in σ,

delay(σ, Pi, r) = swapπ−1
r+1(i)−1(rollover(swap|πr|−π−1

r (i)(delay(σ, Pi, r + 1), Pi, r), Pi, r), Pi, r + 1).

Figure 4 depicts the schedules used when delaying a setPi in layerr of a scheduleσ, according to this
corollary.

Recall thatcrash(σ, Pi, r) is the schedule that is the same asσ, except that processes inPi crash in
layerr. Crashing a setPi in layerr can be seen as delaying it from layerr, and then crashing it from layer
r + 1. Definitions 1 and 5 imply that:
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σ · · · . . . Pi . . .
| {z }

layerr

. . . Pi . . .
| {z }

layerr + 1

· · ·

delay(σ, Pi, r + 1) · · · . . . Pi . . .
| {z }

layerr

. . . . . .
| {z }

layerr + 1

· · ·

swap(delay(σ, Pi, r + 1), Pi, r) · · · . . . . . . Pi

| {z }

layerr

. . . . . .
| {z }

layerr + 1

· · ·

rollover(swap(delay(σ, Pi, r + 1), Pi, r), Pi, r) · · · . . . . . .
| {z }

layerr

Pi . . . . . .
| {z }

layerr + 1

· · ·

swap(rollover(swap(delay(σ, Pi, r + 1), Pi, r), Pi, r), Pi, r + 1) · · · . . . . . .
| {z }

layerr

. . . Pi . . .
| {z }

layerr + 1

· · ·

= delay(σ, Pi, r) · · · . . . . . .
| {z }

layerr

. . . Pi . . .
| {z }

layerr + 1

· · ·

Figure 4: An example showing howswap operators are applied to delay a set of processesPi; assumePi is
the penultimate set in layerr and the third set in layerr + 1. Note that the third transition does not modify
the execution, and only accounts the steps ofPi to layerr +1 instead of layerr; the last transition just notes
that we have obtaineddelay(σ, Pi, r).

Corollary 8 For every regular scheduleσ,

crash(σ, Pi, r) = crash(delay(σ, Pi, r), Pi, r + 1).

An important property of regular schedules is that swapping, delaying, or crashing a set of processesPi

yields a regular schedule as well, because the sets are manipulated together.

Lemma 9 Letσ be a regular schedule withk layers. Then for everyi, 1 ≤ i ≤ S, and everyr, 1 ≤ r ≤ k,
the schedulesswap(σ, Pi, r), delay(σ, Pi, r), rollover(σ, Pi, r), andcrash(σ, Pi, r) are regular.

Proof: Every layerℓ 6= r in swap(σ, Pi, r) is the same as inσ and therefore satisfies the requirement of
a regular schedule. In layerr, all processes that took steps inσ also take steps inswap(σ, Pi, r), and each
set remains consecutive. Therefore,swap(σ, Pi, r) is regular. It is also easy to see thatrollover(σ, Pi, r) is
regular.

The proof fordelay(σ, Pi, r) andcrash(σ, Pi, r) is by backwards induction on the layer numberr.
Base case:For r = k, delaying a setPi in the last layer, is the same as crashingPi. Denoteσ′ =

delay(σ, Pi, k) = crash(σ, Pi, k). Every layerℓ < k in σ′ is the same as inσ, and the last layerk is the
same inσ′ except that the processes inPi do not take a step. Hence,σ′ is also regular.

Induction step:We assume the lemma holds for every layerℓ, r + 1 ≤ ℓ ≤ k, and prove it for layerr.
By Corollary 7, the induction hypothesis and since swapping results in a regular schedule,delay(σ, Pi, r)

is regular. By Corollary 8, the induction hypothesis and since delaying results in a regular schedule,
crash(σ, Pi, r) is regular.
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We next construct an indistinguishability chain of schedules between any regular schedule and a sched-
ule in which some set of processes is delayed or crashed. The construction relies on Corollary 7 and Corol-
lary 8 to delay or crash a set of processes through a sequence of swaps. The elementary step in this con-
struction, where a set is swapped with the following one, is provided by the next lemma.

Lemma 10 Letσ be a regular schedule withk layers. For any sequences of coins~c, and initial configuration
I, if Pi is not the last set of processes in layerr, 1 ≤ r ≤ k, then there is a setPj such that at the end of
layer r only processes inPj (at most) distinguish betweenα(σ,~c, I) andα(swap(σ, Pi, r),~c, I).

Proof: Considerswap(σ, Pi, r) and letπ be the permutation corresponding to layerr. SincePi is not
the last set in the layer, we haveπ−1(i) 6= |π|. Let i′ = π(π−1(i) + 1), i.e.,Pi is swapped withPi′ . By
Lemma 6, either all the processes inPi perform a cheap-snapshot operation or all processes inPi perform a
write operation. The same applies forPi′ .

If both types of operations are cheap-snapshot operations or both types are write operations (necessarily
to different registers), thenα(σ,~c, I)

p∼ α(swap(σ, Pi, r),~c, I) for every processp in the layer.
If one type of operations is cheap-snapshot and the other is writing, thenonly the processes in the set

performing cheap-snapshot observe a difference. Denote this set by Pj (wherej is eitheri or i′).

Notice that the setPj (the value of the indexj) depends only on the types of operations performed, i.e,
only onσ, and not on the sequences of coins~c or the initial configurationI. This is necessary for claiming
that the adversary is non-adaptive.

For everyr andk, 1 ≤ r ≤ k, we define:

sr,k =

{

1 if r = k

2 · cr+1,k + 1 if 1 ≤ r < k

dr,k =

{

S if r = k

dr+1,k + S · sr,k + S · sr+1,k if 1 ≤ r < k

cr,k =

{

S if r = k

dr,k + cr+1,k if 1 ≤ r < k

whereS = max{3, ⌈n
f ⌉} is the number of setsPi. These recursive functions will be used for bounding the

lengths of the indistinguishability chains in our construction.
The next proposition shows a bound on these functions; its proof appears in the appendix.

Proposition 11 cr,k ≤ (2S + 4)k−r+1.

The main technical result of this section is the following lemma, which will be used toshow an indis-
tinguishability chain between the executions that result from schedulesσ andcrash(σ, Pi, 1), in order to
apply Lemma 2. Additional claims, regardingswap anddelay, are proved in order to carry through with
the proof.
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Lemma 12 Letσ be a regular schedule withk layers such that no process is skipped at any layerℓ ≥ r, for
somer, 1 ≤ r ≤ k. For any sequences of coins~c, and initial configurationI, and for everyi, 1 ≤ i ≤ S,
the following all hold:

α(σ,~c, I) ≈sr,k
α(swap(σ, Pi, r),~c, I),

α(σ,~c, I) ≈dr,k
α(delay(σ, Pi, r),~c, I),

α(σ,~c, I) ≈cr,k
α(crash(σ, Pi, r),~c, I).

Proof: Let σ0 = σ. Throughout the proof, we denoteαi = α(σi,~c, I) for every scheduleσi, andα′
i =

α(σ′
i,~c, I) for every scheduleσ′

i.
The proof is by backwards induction onr.
Base case:r = k. Considerswap(σ, Pi, k), wherePi is not the last set in the layer (otherwise swapping

is undefined). By Lemma 10, there is a setPj , which does not depend on~c or I, such thatα(σ,~c, I)
p∼

α(swap(σ, Pi, r),~c, I), for every processp 6∈ Pj . Therefore,α(σ,~c, I) ≈sk,k
α(swap(σ, Pi, k),~c, I).

DelayingPi in the last layer is equivalent to failing it, thereforedelay(σ, Pi, k) = crash(σ, Pi, k).
Denote this schedule byσ′. We crashPi by swapping it until it reaches the end of the layer and then
removing it. In more detail, letπ be the permutation of the last layer ofσ, and define:

σ′′ = swap|π|−π−1(i)(σ, Pi, k).

The proof of the base case forswap(σ, Pi, k) implies that there is a chain of lengthsk,k·(|πr|−π−1
r (i)) ≤

(S − 1) · sk,k = S − 1 between the executions, i.e.,α0 ≈S−1 α(σ′′,~c, I). Clearly,α(σ′′,~c, I)
p∼ α(σ′,~c, I),

for every processp 6∈ Pi, and therefore,α(σ,~c, I) ≈dk,k
α(delay(σ, Pi, r),~c, I) and α(σ,~c, I) ≈ck,k

α(crash(σ, Pi, r),~c, I).
Induction step:Assume the lemma holds for layerr + 1 ≤ k. We prove that it holds for layerr.
We first deal with swapping; assume thatPi is not the last set in the layer and considerswap(σ, Pi, r).

By Lemma 10, there is a setPj , which does not depend on~c or I, such that at the end of layerr only
process inPj distinguish betweenα(σ,~c, I) andα(swap(σ, Pi, r),~c, I). We defineσ1 to be the same as
σ except that processes inPj are crashed in layerr + 1, i.e.,σ1 = crash(σ, Pj , r + 1). By the induction
hypothesis,α0 ≈cr+1,k

α1. Let σ2 be the same asσ1 except thatPi andPj are swapped in layerr, i.e.,
σ2 = swap(σ1, Pi, r). Since only processes inPj observe the swapping, but are all crashed in the next
layer, we have thatα1

p∼ α2 for every processp 6∈ Pj . Finally, let σ3 be the same asσ2, except that
processes inPj are not crashed in layerr + 1, i.e.,σ2 = crash(σ3, Pj , r + 1). By the induction hypothesis,
α2 ≈cr+1,k

α3. Notice thatσ3 = swap(σ, Pi, r), and2cr+1,k +1 = sr,k, which implies thatα(σ,~c, I) ≈sr,k

α(swap(σ, Pi, r),~c, I).
Next, we consider the case of delaying a process, i.e.,delay(σ, Pi, r)). (Recall Figure 4.) By Corol-

lary 7,

delay(σ, Pi, r) = swapπ−1
r+1(i)−1(rollover(swap|πr|−π−1

r (i)(delay(σ, Pi, r + 1), Pi, r), Pi, r), Pi, r + 1).

Recall that applyingrollover does not change the execution. Hence, by the proof for swapping, theinduc-
tion hypothesis, and since

dr+1,k + sr,k · (|πr| − π−1
r (i)) + sr+1,k · (π−1

r+1(i) − 1) ≤ dr+1,k + S · sr,k + S · sr+1,k = dr,k
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it follows thatα(σ,~c, I) ≈dr,k
α(delay(σ, Pi, r),~c, I).

Finally, we consider the case of crashing a process, i.e.,crash(σ, Pi, r). By Corollary 8,

crash(σ, Pi, r) = crash(delay(σ, Pi, r), Pi, r + 1).

By the proof for delaying, the induction hypothesis, and sincedr,k + cr+1,k = cr,k, it follows that

α(σ,~c, I) ≈cr,k
α(crash(σ, Pi, r),~c, I).

Note that in all executions constructed in the proof, at most one set of processesPi does not appear in a
layer; since|Pi| ≤ f , this implies that at leastn − f processes take a step in every layer, and hence every
execution in the construction contains at leastk(n − f) steps.

Lemmas 2 and 12 imply that for every sequence of coins~c, α(σfull,~c, C0) ≈S(2c1,k+1)+1 α(σfull,~c, CS),
Sincec1,k ≤ (2S +4)k, we have thatS(2c1,k +1)+1 ≤ (2S +4)k+1. Substituting in Theorem 1 yields that
qk ≥ 1

(2S+4)k+1+1
. SinceS can be taken to be a constant when⌈n

f ⌉ is a constant, we get the next theorem:

Theorem 13 LetA be a randomized consensus algorithm in the asynchronous shared-memory model, with
single-writer registers and cheap snapshots. There is a weak adversary and an initial configuration, such
that the probability thatA does not terminate afterk(n− f) steps is at least1

ck , wherec is a constant if⌈n
f ⌉

is a constant.

4.2 Multi-Writer Cheap-Snapshot

We derive the lower bound for multi-writer registers by reduction to single-writer registers. In a simple
simulation of a multi-writer register from single-writer registers (e.g., [32]), performing a high-level read or
write operation (to the multi-writer register) involvesn low-level read operations (of all single-writer regis-
ters) and possibly one low-level write operation (to the process’ own single-writer register). This multiplies
the total step complexity byO(n).

However, with cheap-snapshots, we can read all single-writer registers in one step, yielding a simulation
that only doubles the total step complexity (since writing includes a cheap-snapshot operation). The pseu-
docode of the simulation appears in Algorithm 1, which uses an arrayRR of single-writer variables.RR[i]

is the last value written bypi, together with a timestamp. The correctness of this algorithm follows along
the proof of Algorithm 10.3 from [6].

Since in the single-writer cheap-snapshot model each snapshot operation accounts for one access to the
shared memory, every algorithm in the multi-writer model can be transformed to an algorithm in the single-
writer cheap-snapshot model, where the step complexity is only multiplied by a constant factor. Combining
this with Theorem 13 yields the next theorem.

Theorem 14 LetA be a randomized consensus algorithm in the asynchronous shared-memory model, with
multi-writer registers and cheap snapshots. There is a weak adversaryand an initial configuration, such
that the probability thatA does not terminate afterk(n− f) steps is at least1

ck , wherec is a constant if⌈n
f ⌉

is a constant.
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Algorithm 1 Simulating a multi-writer registerR from single-writer registers.

Processpi has a shared registerRR[1], each consisting of the pair〈v, t〉;
initially, each register holds〈0, init〉, whereinit is the desired initial value

1: read(R):
2: snapshotRR array into local(t, v) array
3: returnv[j] such thatt[j] is maximal

4: write(R, v) by pw:
5: snapshotRR array into local(t, v) array
6: let lts be the maximum oft[1], . . . , t[n]

7: write the pair(v, lts + 1) to RR[w]

8: return

5 Monte-Carlo Algorithms

Another way to overcome the impossibility of asynchronous consensus, is toallow Monte-Carlo algorithms.
This requires us to relax the agreement property and allow the algorithm to decide on conflicting values,
with small probability. Letǫk be the maximum probability, over all weak adversaries and over all initial
configurations, that processes decide on conflicting values afterk(n − f) steps. The next theorem is the
analogue of Theorem 1, for bounding the probability of terminating afterk(n − f) steps.

Theorem 15 Assume there is an integerm such that for any sequences of coins~c, α(σfull,~c, C0) ≈m

α(σfull,~c, CS). Thenqk ≥ 1−(m+1)ǫk

m+1 .

Proof: Assume, by way of contradiction, that(m+1)qk < 1− (m+1)ǫk. Consider them+1 executions
in the sequence implied by the fact thatα(σfull,~c, C0) ≈m α(σfull,~c, CS). The probability thatA does not
terminate in at least one of thesem + 1 executions is at most(m + 1)qk. By assumption,qk(m + 1) <

1 − (m + 1)ǫk, and hence, the setB of sequences of coins~c such thatA terminates in allm + 1 executions
has probability Pr[~c ∈ B] > (m + 1)ǫk.

If the agreement property is satisfied in allm + 1 executions, then by the validity condition, as in the
proof of Theorem 1, we get that the decision inα(σfull,~c, C0) is the same as the decision inα(σfull,~c, CS),
which is a contradiction. Hence, for every~c ∈ B, the agreement condition does not hold in at least one of
these executions.

Since we havem + 1 schedules in the chain, there exists a schedule for which the agreement condition
does not hold with probability greater thanǫk. But this means thatA satisfies agreement with probability
smaller than1 − ǫk, which is a contradiction.

Substituting with Lemma 2 and Lemma 4, yields the lower bound for the message passing model.

Theorem 16 Let A be a randomized consensus algorithm in the asynchronous message passing model.
There is a weak adversary and an initial configuration, such that the probability thatA does not terminate
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after k(n − f) steps is at least1−ckǫk

ck , wherec is a constant if⌈n
f ⌉ is a constant, andǫk is a bound on the

probability for disagreement.

Substituting with Lemma 2 and the proof of Theorem 14 yields the lower bound for the shared memory
model.

Theorem 17 Let A be a randomized consensus algorithm in the asynchronous shared-memory model with
multi-writer registers and cheap snapshots. There is a weak adversaryand an initial configuration, such
that the probability thatA does not terminate afterk(n − f) steps is at least1−ckǫk

ck , wherec is a constant
if ⌈n

f ⌉ is a constant, andǫk is a bound on the probability for disagreement.

The bound we obtain in Theorem 15 on the probabilityqk of not terminating increases as the allowed
probabilityǫk of terminating without agreement decreases, and coincides with Theorem 1in case the agree-
ment property must always be satisfied (i.e.,ǫk = 0). In case an algorithm always terminates ink(n − f)

steps (i.e.,qk = 0), we can restate Theorem 15 as a bound onǫk:

Corollary 18 Assume there is an integerm such that for any sequences of coins~c, α(σfull,~c, C0) ≈m

α(σfull,~c, CS). Moreover, assume that the algorithm always terminates afterk(n − f) steps, i.e.,qk = 0.
Thenǫk ≥ 1

m+1 .

For example, the algorithms for the message-passing model given by Kapron et al. [26] are Monte-
Carlo, i.e., have a small probability for terminating without agreement. They present an algorithm that
always terminates withinpolylog(n) asynchronous rounds, and has a probability1

polylog(n) for disagreeing.
For comparison, our lower bound of Corollary 18 for disagreeing whenk = polylog(n) andqk = 0 is
ǫk ≥ 1

cpolylog(n) , wherec is a constant if⌈n
f ⌉ is a constant. Their second algorithm always terminates within

2Θ(log7 n) asynchronous rounds, and has a probability1poly(n) for disagreeing, while our lower bound is

ǫk ≥ 1

c2
Θ(log7 n)

.

6 Discussion

We presented lower bounds for the termination probability achievable by randomized consensus algorithms
with bounded running time, under a very weak adversary. Our results are particulary relevant in light of
the recent surge of interest in providingByzantine fault-tolerancein practical, asynchronous distributed
systems (e.g., [13, 29]). The adversarial behavior in these applicationsis better captured by non-adaptive
adversaries as used in our lower bounds, rather than the adaptive adversary, which can observe the results of
local coin-flips, used in most previous lower bounds [1,5,10].

For all models, when agreement is required to always hold, we have shown that the probabilityqk that
the algorithm fails to complete ink(n − f) steps is at least1

ck , for a model-dependent valuec which is a
constant if⌈n

f ⌉ is a constant. Table 1 shows the bounds for specific values ofk.
The previous lower bound for the synchronous message-passing model [19] is qk ≥ 1

(ck)k , for some
constantc. From the perspective of the expected total step complexity, given a non-termination probabil-

ity δ, the lower bound of [19] impliesΩ
(

(n − f) log 1/δ
log log 1/δ

)

steps, which is improved by our bound to

Ω((n − f) log 1/δ) steps.
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Model k = log n k = log2 n

lower bound asynchronous MP, SWCS, MWCS 1

n
Ω(1)

1

n
Ω(log n)

synchronous MP [19] 1

n
Ω(log log n)

upper bound SWMR [8] 1

n
O(1)

MWMR [7] 1

n
O(1)

Table 1: Bounds onqk in different models, when agreement is required to always hold. MP is the message-
passing model, while SW/MW stands for single/multi-writer registers, SR/MR for single/multi-reader reg-
isters, and CS for cheap snapshots.

In the shared-memory model with single-writer multi-reader registers, Aumannand Bender [8] show
a consensus algorithm with probability1 − 1

nO(1) for terminating inO(n log2 n) steps. For multi-writer
multi-reader registers, Aumann [7] presents an iterative consensus algorithm, with constant probability to
terminate at each iteration, independently of the previous iterations. This impliesthat the probability of
terminating afterk iterations is1 − 1

ck , for some constantc.
When agreement is required to hold only with high probability, Kapron et al. [26] give an algorithm for

the asynchronous message passing model that always terminates withinpolylog(n) asynchronous rounds
and has a probability 1

polylog(n) for disagreeing, and an algorithm that always terminates within2Θ(log7 n)

asynchronous rounds and has a probability1poly(n) for disagreeing.
An interesting open question is to close the gap between the values of the probability ǫk for disagreement

achieved in the algorithms of [26] and the lower bounds obtained in this paperon that probability. It is also
interesting to tighten the bounds in the synchronous model and for large values ofk.

Our lower bounds can be used to estimate the error distribution and bound thevariance of the running
time of randomized consensus algorithms. They do not yield significant lowerbounds for the expected step
complexity—there is still a large gap between the (trivial) lower bounds and upper bounds for the shared-
memory model, with a weak adversary.

Another, broader research direction is to explore complexity bounds on randomized algorithms for other
coordination problems, most notably,renaming[4] andset consensus[15].

An alternative approach for deriving a lower bound on randomized consensus under a weak adversary,
suggested by Eli Gafni, is the following. First, derive a lower bound for two processes in a message-
passing system. Then, use the ABD simulation [3] to simulate shared memory in a message passing system,
generalizing the bound to hold for shared memory as well. Finally, use the BG simulation [12] to extend the
bound ton processes. Proving the lower bound for two processes by showing anindistinguishability chain
with a certain size would be similar to Section 3. Other approaches, like using topological arguments [25],
require introducing a whole different setting, which may not be simpler than the setting used in this paper.
In addition, the BG and ABD simulations incur a cost in the number of steps taken, which may lead to a
weaker bound than the one presented in this paper. Pursuing this approach is appealing in the context of
extending the lower bound to theset consensusproblem [15], as direct connectivity arguments [16] seem
more involved than a topological approach.
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Appendix: Proof of Proposition 11

Recall the definition of the following recursive functions ofr andk, for 1 ≤ r ≤ k.

sr,k =

{

1 if r = k

2 · cr+1,k + 1 if 1 ≤ r < k

dr,k =

{

S if r = k

dr+1,k + S · sr,k + S · sr+1,k if 1 ≤ r < k

cr,k =

{

S if r = k

dr,k + cr+1,k if 1 ≤ r < k

We bound these functions as follows.

Proposition 11 cr,k ≤ (2S + 4)k−r+1.

Proof: By definition ofsr,k we havesr,k = 2cr+1,k + 1 which implies that

dr,k = dr+1,k + S · sr,k + S · sr+1,k

= dr+1,k + S · (2cr+1,k + 1) + S · (2cr+2,k + 1)

= dr+1,k + 2Scr+1,k + 2Scr+2,k + 2S.

Substituting this in the definition ofcr,k gives

cr,k = cr+1,k + dr,k

= cr+1,k + dr+1,k + 2Scr+1,k + 2Scr+2,k + 2S.
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Sincedr+1,k = cr+1,k − cr+2,k, we have

cr,k = cr+1,k + dr+1,k + 2Scr+1,k + 2Scr+2,k + 2S

= cr+1,k + (cr+1,k − cr+2,k)

+2Scr+1,k + 2Scr+2,k + 2S

= (2S + 2)cr+1,k + (2S − 1)cr+2,k + 2S,

where the initial values areck,k = S, and

ck−1,k = ck,k + dk−1,k

= ck,k + (dk,k + S · sk−1,k + S · sk,k)

= ck,k + (dk,k + S · (2ck,k + 1) + S · sk,k)

= S + S + S · (2S + 1) + S · 1 = S(2S + 4).

We now prove the claim by backwards induction onr.
Base case:Forr = k we haveck,k = S ≤ (2S + 4), and forr = k − 1 we haveck−1,k = S(2S + 4) ≤

(2S + 4)2.
Induction step:We assume the lemma holds for everyℓ such thatr + 1 ≤ ℓ ≤ k, and prove it forr.
Substituting the induction hypothesis oncr+1,k andcr+2,k gives:

cr,k = (2S + 2)cr+1,k + (2S − 1)cr+2,k + 2S

≤ (2S + 2)(2S + 4)k−r

+(2S − 1)(2S + 4)k−r−1 + 2S

≤ (2S + 2)(2S + 4)k−r + (2S + 4)k−r + (2S + 4)k−r

= (2S + 2 + 1 + 1)(2S + 4)k−r

= (2S + 4)k−r+1,

which completes the proof.
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