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Abstract

This paper studies the inherent trade-off between teriimgitrobability and total step complexity
of randomized consensus algorithms. It shows that for emeegerk, the probability that arf-resilient
randomized consensus algorithmmgbrocesses does not terminate with agreement within- /) steps
is at Ieastcik, for some constant A corresponding result is proved for Monte-Carlo algarithithat may
terminate in disagreement.

The lower bound holds for asynchronous systems, where ggese&communicate either by message
passing or through shared memory, under a very weak adyetsar determines the schedule in ad-
vance, without observing the algorithm’s actions. This pments algorithms of Kapron et al. [26],
for message-passing systems, and of Aumann et al. [7, 8hfmed-memory systems.
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1 Introduction

At the heart of many coordination problems in distributed systems lies the needdiaconsensuamong
processes, despite the possibility of process failures. A (binaryeosns algorithm allows processes start-
ing with input values in{0, 1} to agree on the same output valagieement To rule out trivial solutions,

this common output must be one of the inputalidity), and every process must eventually decigeni-
nation). It is well-known that no deterministic algorithm can achieve consensusasynchronousystem,

if one process may fail [22,24,30]. One successful approaadtifarmventing this impossibility result is to
employ randomization, and relax the termination property to hold with high piltigain typical random-

ized algorithms for consensus, the probabilitynot terminating in agreement decreases as the execution
progresses, becoming smaller as processes perform more steps.

This paper shows that this behavior is inherent, by proving lower boandke probability of termi-
nation when the step complexity is bounded. In order to make the lower basrgtsong as possible, we
assume a very weak adversarial model, which fixes the complete scheddiaimce, without observing the
steps of the algorithm. In particular, the schedule is determined without kgoesults of local coin-flips,
contents of messages sent, or memory locations accessed.

We prove that for every integér, the probability that arf-resilient randomized consensus algorithm
of n processes does not terminate aftén — f) steps is at Ieasc%, wherec is a constant iff %] is a
constant. The result holds for asynchronous message-passingsyate asynchronous shared-memory
systems (using reads and writes), albeit with different constants. Whilgaiine general proof structure
applies in both cases, it is accomplished differently in the message-passitigesshared-memory models;
the latter case is further complicated due to the adversary’s weakness.

For the message-passing model, our proof extends and improves onltaofe€hor, Merritt and
Shmoys [19] forsynchronousmessage-passing systems. They show that the probability that a random-
ized consensus algorithm does not terminate @fteunds (and:(n — f) steps) is at Ieas(;}g—k. (A similar
result is attributed to Karlin and Yao [27].) The proof rests on considexiggecific chain oindistinguish-
ableexecutions and showing a correlation between the termination probability atehith of this chain,
which in turn depends on the number of rounds. The chain is taken fropndbéof the rounds lower bound
for (deterministic) consensus [20, 21] (cf. [6, Chapter 5]); sincectian is determined in advance, i.e., re-
gardless of the algorithm’s transitions, the lower bound is derived with & ageersary. (An overview of
the proof strategy appears in Section 2.2.)

Ouir first contribution, for the message-passing model, improves on this tmumnd by exploiting the
fact that asynchrony allows to construct “shorter” indistinguishabiligiics. This shows that the probability
that an asynchronous randomized consensus algorithm does not terafieat(n — f) steps is at least
Cik, wherec is a constant iif%} is a constant. (The lower bound for asynchronous message-pagsiams
appears in Section 3.)

Substituting specific values in our lower bound implies that any randomizesknsus algorithm has
probability at least——— for not terminating withinog log n (asynchronous) rounds, and probability at

1
bolylog(n)
1

Ieastm for not terminating withinlog n (asynchronous) rounds.

The lower bound can be extended to Monte-Carlo algorithms that alwagitee, at the cost of com-

Thelengthof the chain is the number of executions in it.



promising the agreement property (Section 5). If an asynchronousgegsssing algorithm always termi-
nates withink(n — f) steps, then the probability for disagreement is at I(Eft,@,sn/herec is a constant if%}

is a constant. This lower bound can be compared to the recent consdgsrithms of Kapron et al. [26]
for the message-passing model. One algorithm always terminates withitog(n) asynchronous rounds,
and has a probabilit)ém for disagreeing, while the other terminates withfflos” ») asynchronous
rounds, and has a probabili}%ﬁn) for disagreeing.

There is an extensive literature on randomized agreement algorithms feagegsassing systems. Re-
cent papers in this area provide algorithms for agreement in the preséBgeantine processes fill
informationmodels, where the adversary is computationally unbounded. See [28] 23; a more detailed
description and references.

In principle, the lower bound scheme can be extended to the shared-memdel by focusing on
layeredexecutions [5,31]. However, our severely handicapped advarsardel poses a couple of technical
challenges. First, while in the message-passing model each step canube@dde send messages to all
processes, in a shared-memory event, a process chooses whitdr tegascess and whether to read from it
or write to it. A very weak adversary, as we use for our lower boundst find a way to make its scheduling
decisions in advance without even knowing what type of step the pradktzke. Second, the proof scheme
requires schedules to be determined independently of the coin-flips. fldreifficulty cannot be alleviated
even by assuming a stronger adaptive adversary that may schedute¢heges according to the execution
so far.

We manage to extend the lower bound scheme to the shared-memory modedt byrfplifying the
model, assuming that processes either writsihgle-writerregisters or perform aheap snapshatpera-
tion, reading all the registers at once. By further assuming that an algor&gularly alternates between
writes and cheap snapshots, we make processes’ steps predictablimygaiioveak adversary to construct
indistinguishability chains. The lower bound is extended to hold for multi-writgisters by reduction;
while ordinary simulations of multi-writer registers using single-writer regidtax®O (n) overhead (which
would nullify the lower bound), cheap snapshots admit a simulation with cdnstarhead. (The results
for the shared-memory model appear in Section 4.)

The lower bounds we obtain for the shared-memory model are the same thg imessage-passing
model, though with different constants. (More detailed calculations and ax@sop with related work
appear in Section 6.)

To the best of our knowledge, there are no other lower bounds ommardd consensus in shared-
memory systems under a weak adversary. There are several algorghumsiag avalue-obliviousadver-
sary, which may determine the schedule adaptively based on the funaeswilption of past and pending
operations, but cannot observe any value of any register nor re$ltisal coin-flips. This model is clearly
stronger than the adversary we employ, and hence our lower bouplysajt as well.

The algorithms differ by the type of shared registers they use [7-9Fbt]single-writer multi-reader
registers, Aumann and Bender [8] give a consensus algorithm thatrblaability of at mos% of not ter-
minating withinO(n log? n) steps. For multi-writer multi-reader registers, Aumann [7] shows a coosens
algorithm in which the probability of not terminating initerations (andD(k - n) steps) is at mos3/4)*.

Chandra [14] gives an algorithm with(log® n) individual step complexity, assuming an intermediate
adversary that cannot see the outcome of a coin-flip until it is read by pomess. Aumann and Kapah-



Levy [9] give an algorithm withO(n log n exp(2+/polylogn)) total step complexity, using single-writer
single-reader registers, and assuming a value-oblivious adversary.

An algorithm withO(nloglogn) total step complexity against a weak adversary was given by Che-
ung [17], which considers a model with a stronger assumption that a wetatin occurs atomically after
a local coin-flip. It improves upon earlier work by Chor, Israeli, andli8], who provide an algorithm with
O(n?) total step complexity using a slightly different atomicity assumption.

Other related work on randomized consensus assumes strong aidgershich adapt to the computa-
tion, scheduling processes dynamically, after observing the resultsiofdbal coin-flips. A lot of study
was invested, yielding numerous algorithms (see the survey in [2]). Lbaends were given on the ex-
pected number of coin-flips [1], on the expected number of rounds ichsgnous systems [10], and a tight
©(n?) bound on the total step complexity in asynchronous systems [5].

2 The Lower Bound Strategy

2.1 The Model in Brief

We consider a standard model of an asynchronous system with arseét 8fprocesse® = {pi,...,pn}.
Eachstepof a process consists of some local computation, including an arbitrary eruafitcoin-flips
(possibly biased), and a communication operation, which depends onrtimewtcation model.

In a message passing system processes communicate by sending mmbrewessages: the communi-
cation operation of a process is sending messages to some subset aickgsps, and receiving messages
from some subset of them. For the lower bounds, we assume that agpsecels a message to all the pro-
cesses in each step. In a shared memory system processes communieaigirigy and writing to shared
registers; each step of a process is either a read or a write to some register

The local coin-flips of a procegs are modelled as a random string of coin-flip resujtswhich can
be accessed by; but is unavailable to any other process. All of the randomization of the idigoiis
encompassed within coin-flip stringsé = (c1, - -, ¢n).

Additional non-determinism is introduced by the scheduling choices made &gv&ersary We assume
aweakadversary that is non-adaptive and decides on the scheduling incadva@he adversary does not
observe the results of any local coins a process flips, nor any opeeagimcess performs.

A scheduler, together with an initial configuratiohandn coin-flip stringsc = (cy, - - -, ¢,,), determine
anexecutiom(o, ¢, I).

2.2 The Lower Bound Approach

Let A be anf-resilient asynchronous randomized consensus algorithmylagnote the maximum proba-
bility, over all weak adversaries and over all initial configurations, thabes not terminate after a total of
k(n — f) steps are taken.

In order to prove a lower bound a@g, we consider a restricted set of schedules that proceed in layers [5,
31]. An f-layeris a sequence of at least- f distinct process id's. When executing a layerach process
p € L takes a step, in the order specified by the layer.



We will consider only schedules that afeschedulesA schedules = L1, Lo, - - -, Ly is an f-schedule,
if it is a finite sequence of -layers. A procesp; is non-faultyin layerr if it appears in the layer. A process
p; crashesdn layerr if it does not take a step in any layér> r. A process iskippedin layerr, if it does
not appear in layer but appears in one of the following layers.

Definition 1 For a scheduler, letcrash(o, p, r) be the schedule that is the sameragxcept thap crashes
in layerr, i.e., does not take a step in any layep r. For a setP of processes;rash(o, P, ) is defined
similarly.

As mentioned in the introduction, our proof will make use of indistinguishabéewions. Intuitively,
two finite executionsy and«’ are indistinguishable to a processf it cannot tell the difference between
them. This implies thap terminates i with a decision value if and only if it terminates i’ with
a decision values. The formal definition of indistinguishability is model-dependent and will beeigi
separately in Sections 3 and 4, but we proceed formally to define indistivadpilisy chains, as follows.

Given two executions; andas with the samer coin-flip stringsé = (cy, - - -, ¢,,), we denotey; % a9
if processp; does not distinguish between andas, and does not crash in them. In this casejecides on
the same value in; and inas. We denotev; =, ao if there is a chain of execution$, - - -, B,,+1 such
that

a1 =61 % By T By = g
We call such a chain amdistinguishability chain Clearly, if o ~,, 0 ~,y v thena ~,,1, ~, for
every pair of integers: andm’. Moreover, notice that this relation is commutative, i.eqif~,, as then
a9 Xy 0.

For every pair of consecutive executions in the chain, there is a gréicasdecides on the same value
in both executions. By the agreement condition, the decisiam iand inas must be the same. This is
the main idea of the lower bound proof, which is captured in Theorem 1: keetit@ executions that must
have different agreement values and construct an indistinguishabihin tietween them, which bounds
the probability of terminating in terms of the length of the chain. Two such exewuérist by the validity
condition, as we formalize next.

We partition the processes intb= max{3, (%1} setsPy, ..., Pg, each with at mosf processes. For
example, ifn > 2f, P; = {p_1)f+1, -, pi-p} foreveryi, 1 <i < S, andPs = {ps—1)f4+1," "> Pn}-

Consider initial configuration€’, . . ., Cg, such that irCy all the inputs are 0, and ifi;, 1 < i < S, all
processes iy, ..., P; have input 1 and all other processes have input O; in particuléfgiall processes
have input 1.

Let o f,u be the full synchronous schedule witHayers, in which no process fails. The next theorem is
the main tool for bounding; as a function ofn, the length of an indistinguishability chain. This theorem
distills the technique we borrow from [19]. At the end of Section 3 we dstwsv asynchrony allows to
construct shorten chains.

Theorem 1 Assume there is an integer such that for any sequences of coifisa(o sy, G, Co) ~m

a(o i, ¢ Cs). Then the probability thatl does not terminate aftét(n — f) steps isy, > m%rl



B = a0 rui, €, Co)

decisionis 0
Diy
B2 - terminates with probability at least— gy,
.
o
O terminates with probability at lea$t— g,
Pim

Bmi1 = (0 a6, Cs)

decisionis 1

Figure 1: lllustration for the proof of Theorem 1.

Proof: Assume, by way of contradiction, thgt(m + 1) < 1. Sincea(o f1, ¢, Co) ~m (0 sy, Cs),
there is a chain ofr + 1 executions,
- pi Pim -

(o pu, ¢ Co) =1 ~ Bo-+ ' Bg1 = aopuy, ¢ Cs)
(See Figure 1.) The probability that does not terminate in at least one of theser 1 executions is at
mostgi(m + 1). By assumptiongx(m + 1) < 1, and hence, the sét of sequences of coinssuch thatd
terminates in alln 4 1 executions has probability [fre B] > 0. Sincea(o ¢, ¢, Co) ~m (o fuu, ¢, Cs),
the agreement condition implies that the decision imall 1 executions is the same. However, the validity
condition implies that the decision (o 1., ¢, Co) is 0, and the decision ia(o ¢, ¢, Cs) is 1, which is a
contradiction. n

A slight extension of the above theorem handnte-Carloalgorithms, where processes may termi-
nate without agreement with some small probabdityhis extension is presented in Section 5.

The statement of Theorem 1 indicates that our goal is to show the existeandrdegerm such that
a(o i, ¢, Co) ~m alofru,c Cs); clearly, the smallern, the higher the lower bound. The next lemma
comes in handy when we construct these chains.

Lemma 2 Assume there is an integer such that for every schedude initial configurationl, sequence of
coinsc and setP;, a(o, ¢, I) ~y, alcrash(o, P;,1),¢,I). Thena(o i, ¢ Co) =g@m+1) (0 fuil; € Cs),
for all sequences of coing

Proof: Consider the schedules) = oy, ando; = crash(oo, P;, 1) for everyi, 1 < i < S, and the
corresponding executions ; = «(o;, ¢, C;) for everyi andj, 1 < i < S and0 < j < S (the execution
oy ; starts from the initial configuratio@’; with a schedule which is almost full, except that processéds in
never take any steps).

By assumptiong ; ~,, a;; for everyi, 1 <i < S, and everyj, 0 < j < S. (See Figure 2.) Since
processes irP; are crashed iw; for everyi, 1 < i < S, we have thaty; ;_; R «; 4, for every process
p € P\ P;. This implies thaty; ;1 ~1 «;;, for everyi, 1 <1i < S. Thus,

a(o i, ¢, Co) = 0,0 Rm 1,0 1 01,1 R Q0,1 Rm 02,1 R 022+ A58 &y 00,5 = (0, ¢, Cs) .

Therefore (o fun, ¢, Co) ~s@m+1) (0 fuu, ¢, Cs). ]



O full

Co = (0,0,.. ’O)
CO = (0’ O’ . ,O) CTaSh(O-full> POa 1) R
Py, 1 ~1
C = (1,0’ . ’0) CTaSh(O-full, 0, )
Cy = (1,0,...,0) O full .
o
o
o
O full ~m

Cy=(1,1,...,1)

Figure 2: lllustration for the proof of Lemma 2.

3 Tradeoff for the Message-Passing Model

In this section we derive the lower bound for the message-passing maztale that in the message-passing
model, since a step consists of both sending and receiving messagest, & iaynot only a sequence of
processes, but also specifies for each propessl. the set of processes it receives a message from (recall
that we assumed that it sends messages to all processes). The reoéptessages in a certain layer is
done after all messages of that layer are sent, and therefore theobptecesses in a layer is insignificant.

Formally, anf-layer is a sequenge, , .. ., p;,, of distinct process id’s, followed by a sequerndg , ..., M;
of subsets of process id's, wheké;  is the set of process id’s from whigh, receives a message in this
layer. In the executions we construct, a message is either delivered iartteelayer, or it is delayed and
delivered after the last layer, and is effectively omitted in the execution.

Recall that the processes are partitioned ifite- max{3, [%]} setsPy, ..., Pg, each with at mosf

processes. We manipulate schedules in order to delay messages, as.follow

Definition 2 Leto be afinite schedule. Léelay(o, P;, Pj, ) be the schedule that is the samesagxcept

that the messages sent by processeg;iim layer r are received by processes ity only after the last

layer. More formally, ifAZ, is the subset of processes that a progessceives a message from in layer
in o, then for every process € P; the subset of processes that it receives a message from inslager
delay(o, P;, Pj,r) is My \ P;.

We define indistinguishability of executions in the message-passing moddlassf two executions
are indistinguishable to procegsf goes through the same local states throughout both executions. More
specifically, in both executionssends and receives the same messages, in the same order.

Clearly, at the end of layer, any process not i#; does not distinguish between the execution so far of
a scheduler and an execution so far @tlay(o, P;, P, ). Therefore we have:

Lemma 3 Leto be a schedule witk layers. For any sequences of coifisand initial configuration/, at
the end of layer- only processes i; distinguish betweea(o, ¢, I') anda(delay(o, P;, P;,r), ¢, I).



Recall thatS = max{3, [} is the number of setf;. We define the following recursive function for
everyr andk, 1 < r < k:

my g

] s ifr ==k
Tl @S-+ Dmeax+S ifl<r<k

A simple induction shows that,. , < (25)F7+1,

The following lemma proves thah, j, is the integer required in Lemma 2 for the message-passing
model, by inductively constructing indistinguishability chains between exewiiio which a set of pro-
cesses may crash from a certain layer

Lemma 4 Leto be a schedule witl layers such that for some 1 < r < k, no process is skipped in
layersr,r +1,..., k. Thena(o, ¢, I) ~m, , a(crash(o, P;,r),c, I) for every sequences of coidsevery
initial configuration’, and everyi € {1,...,S}.

Proof: Leto = oy. Throughout the proof we denote = (o, ¢, I) for any schedule;. The proof is by
backwards induction on.

Base case:r = k. We construct the following schedules. Let be the same as; except that
the messages sent by processesirin the k-th layer are received by processesm), i) moq s ONly
after thek-th layer, i.e.,o1 = delay(o, P;, Pii11) mod 5, k). By Lemma 3, we havey £ ay, for ev-
ery procesp € P\ Pii1ymods- We continue inductively to define schedules as above in the fol-
lowing way, for everyh, 0 < h < S — 1: o541 IS the same as;, except that the messages sent by
processes inP; in the k-th layer are received by processesm). ;1) moa s ONly after thek-th layer,
i.e., opy1 = delay(on, Py, Plitht1) mod s- k). By Lemma 3, we havey, X a4, for every process
P €PN\ Pliyni1) mod s

Since incg N0 messages sent by processes;iim layer k are ever received. Except for local states of
the processes iR;, this is the same as if the processe®jrare crashed in layé.

as = a(crash(o, Py, k), ¢, 1),
which implies that
a(o, ¢, 1) =ag ~1 a1 &~ -+ ~1 ag = afcrash(o, P, k), ¢, 1) .

Thereforen(o, ¢, I) =g a(crash(o, P, k), ¢, I).
Induction stepinformally, this is similar to the base case, except that we cfash layerr + 1 before
“erasing” messages from; to P; in layerr, and afterwards revive; in layerr + 1.
Formally, we assume that the lemma holds for layer1, 1 < r < k, and prove that it holds for layer
7. Letoy = erash(oo, Pit1) mod 557 + 1); by the induction hypothesisy ~,, , , 1.
Let o, be the same as, except that the messages received by process@s. i) ,,q s from processes
in P; in layerr are received only after thieth layer, i.e. oo = delay(o1, Piy Pi41) mod 5 7). By Lemma 3,
at the end of layer only processes ;1) moq 5 distinguish between the executions, but since they are

crashed in layer + 1 we haven; £ s, for every process € P\ Pli41) mod s, Implying thatay ~1 as.
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Qo Nmeg1k Qi ~1 Q2 N1k as

Figure 3: How messages frof) to P;,; are removed in the induction step of Lemma 4.

Let o3 be the same as,, except that the processes My 1) moq s do not crash in layer + 1. This
implies that
02 = CT@Sh(037P(¢+1) mod $» 7 + 1)

By the induction hypothesis, we hawg ~,, ., , as. (See Figure 3.)

We continue inductively to define schedules as above in the following wagvery h, 0 < h <
S — 1. We defineosy 1 = crash(osn, Plith+1) mod 5,7 + 1), and therefore by the induction hypothesis
Q3h Nm,.1, Q3nt1- Letogyio be the same ass, 1 except that the messages received by processes
iN Pli4ht1) mod s from processes i in layer r are received only after the-th layer, i.e.,o3,12 =
delay(osni1, Py Plith+1) mod s:7)- By Lemma 3, at the end of layeronly processes it 1, 1) mod s
distinguish between the executions, but since they are crashed in-lay&émwe haveasy, 1 R Qu3p o, for
every procesp € P\ P p11) mod 5+ IMPlying thatazy, 1 ~1 asgpy2.

Finally, we definers, 3 to be the same asy, 12, except that processes My ,11) moa s d0 Not crash.
This implies thatos, o = crash(o3ny3, Pitht1) mod 5,7 + 1). By the induction hypothesis we have
Q3h+2 Fm, i X3h+3-

The construction implies that i3 s_1),» N0 messages are sent by the processés in layerr, and
they are crashed from layer+ 1. Except for local states of the processedjnthis is the same as if the
processes i; are crashed from layetr. Therefore

a(o3(s-1)+2,¢ 1) = a(crash(oo, Py, 1), ¢, 1),
and hence
Q0 Fmyqgp 0L O2 Ry g X3 Sy Fmpgy g X3(S—1)+1 F1 X3(5—1)42 -
Sincem,x = (2(S — 1) + 1)my 41 + S, this implies thaty ~,,, , a(crash(oo, P;,7),¢1). [ |

Note that in all executions constructed in the proof, at most one set cégsed’; does not appear in a
layer; sincelP;| < f, this implies that at least — f processes take a step in every layer, and hence every
execution in the construction contains at least — f) steps.

8



Lemmas 2 and 4 imply that for any sequence of cdifgy(o f., ¢, Co) A S(2my 1) a(ofu, ¢, Cs).
Sincem;, < (25)F, substitutingS(2m, & + 1) in the parametern of Theorem 1 yields thag, >
m. Recall thatS = max{3, [%]}. Taking[’%] to be a constant, we obtain the main result of
this section:

Theorem 5 Let A be a randomized consensus algorithm in the asynchronous messsjegoaodel. There
is a weak adversary and an initial configuration, such that the probabiliy thdoes not terminate after
k(n — f) stepsis at Ieasg%, wherec s a constant iff % | is a constant.

In the original construction for the synchronous model ( [20, 21],ase [6, Chapter 5]), a process
that does not appear in a roundnust be crashed in that round, and therefore must be counted within the
f failures allowed. Hence, in order to change all the inputs from O to 1, we anash and revive fewer
processes at a time at each round. For example, in order to coitidug rounds only one process may be
crashed at each round. This adds a factot tf the base of the power in the denominator of the bound on
qx, Which results in a lower bound %f}?k for the synchronous message-passing model [19].

4 Tradeoff for the Shared-Memory Model

We now derive a similar lower bound for two shared-memory models, whereegses communicate
through shared read/write registers. The first model consists of smgk-registers and a snapshot oper-
ation that costs one step, described formally in Subsection 4.1. In Sulbsé@iave consider multi-writer
registers. The lower bounds clearly hold for the more restricted modetewitecesses read only a single
register in each memory access.

In the shared-memory model, the definition of indistinguishability is slightly diffetfean in the message-
passing model. For two executionsand«a’ to be indistinguishable to a procegswe not only require
to have the same local states throughout both executions, but also thatube of the shared registers are
the same throughout both; otherwise, for example, hawipgrform a read operation aftaranda’ might
result in different executions. This implies that in both executjppsrforms the same shared-memory op-
erations, including reading the same values from registers. Howevat|ovethe value of a shared register
to be different at the end ef and</ if it is no longer accessed by any process. This slight modification still
captures the requirement that if a proceskecides in « and does not distinguish betweeranda’ then it
also decides im’ on the same value.

4.1 Single-Writer Cheap-Snapshot

We first consider a shared-memory model where processes communicatghttsingle-writer registers.
The lower bound is proved under a simplifying assumption that each reqadctesses the registers of all
processes. We call this ttgngle-writer cheap-snapshotodel, since each register is written to by one
specific process, and all registers are read by any process in asiragiehot. This snapshot is charged one
step, hence the term “cheap”.

As in a standard shared-memory model, a step of a process consistesfiagcthe shared memory,
and performing local computations. We further assume that in the algorithnstepe of every process



alternate between a write and a cheap-snapshot, starting with a write. Aorittadg can be transformed
to satisfy this requirement by having a process rewrite the same value toigtterefit is forced to take a
write operation, or read all of the registers and ignore some of (or all) ¥h&ies if it is forced to take a
cheap-snapshot operation. This only doubles the step complexity.

Recall that the processes are partitioned ifite- max{3, [%1} setsPy, ..., Ps, each with at mosf
processes. We consider a restricted set of layered schedules.

Definition 3 A scheduler is regularif for every layerL and everyi, 1 < i < S, either all processes € P,
take a step il consecutively (one after the other, without steps of processes fbirnrbetween), or none
of the processes € P; take a step in.. We denote by the permutation of the sef3 that take steps i,
i.e., if processep € P, take a step inL, thenz—1(4) is their index in the layer. We denote by the number
of setsP; that take steps in the layer.

Note that, in contrast to the message-passing model, in a shared-memorytheodeder of the pro-
cesses in a layel is significant, since different orderings result in different executions

Regular schedules are useful in our proofs since in every layergegtirtftesses in some d@tperform
the same operation, as argued in the next lemma. Since processes in thees&neither all write to
different registers (recall that registers are single-writer) or rdlagkgisters, this means that in a regular
execution, the order of processes in theRaeloes not matter.

Lemma 6 Leto be a regular schedule with layers. Then in every layel in o, for everyi, 1 < i < S,
either all proces® € P, do not take a step i, or all processe® € P; perform a write operation irl., or
all processe® < P; perform a cheap-snapshot operation/in

Proof: The proof is by induction on the layer number

Base caseletr = 1, i.e., L is the first layer ofr. Sinceo is regular, either all procegse P; take a
step inL, or none of the processps= P; take a step irl.. If all take a step then by our assumption on the
algorithm, it is a write operation. Otherwise, none take a step, which progdsate case.

Induction stepAssume the lemma holds for layérl < ¢ < r. We prove the lemma for layer+ 1. By
the induction hypothesis, in every layérl < ¢ < r, either all processegs € P; perform a cheap-snapshot
operation, or all perform a write operation, or none perform an djperalf none preform any operation
in any layer? < r, then at the beginning of layer+ 1 the pending operation of all processes P, is
a write operation by our assumption on the algorithm. Otherwisé, betthe maximal layer in which all
processep € P, took a step. If they are cheap-snapshot operations, then at the inegifiteyerr + 1 the
pending operation of all processes P, is a write operation by our assumption on the algorithm. If they
are write operations, then at the beginning of layer 1 the pending operation of all procesges P; is a
cheap-snapshot operation by our assumption on the algorithm. In amyatdle beginning of layer+ 1,
either all processgs € P; have a pending cheap-snapshot operation, or all have a pendingpeitation.
Sinceo is regular, either none of the procesges P, take a step in layer + 1, or all take a step in layer
r + 1, in which case it would either be a cheap-snapshot operation for akkpses, or a write operation for
all processes. ]

In the proof, we apply certain manipulations to regular schedules, allovging delay and crash sets of
processes, as follows.
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Definition 4 Leto be a schedule such that every P, is non-faulty in layer-, and such thaf’; is not the

last set of processes in the layer. Lsetap(o, P;, ) be the schedule that is the samecsa®xcept that the
steps of processes ip, are swapped with steps of the next set of processes in that layeralariinr is the

permutation of layer in o and ' is the permutation of layer in swap(o, P;,r), and ifj = 7=1(4), then

we haver'(j) = w(j + 1) and7’'(j + 1) = 7 (j).

Inductively, we define
swap’ (o, P;,r) = swap(swap’ (o, Pi,r), P;,r),
that is, P; is swapped times and moved sets later in the layer.

Definition 5 Leto be a schedule and be a layer such that no process is skipped in any ldyerr. Let

delay(o, P;,r) be the schedule that is the samesaexcept that the steps &f starting from layerr are

delayed by one layer. Thus, there is no step af P; in layer r, the step op € P; in layerr + 1 is the step
that was in layer-, and so on. The permutations of the layérs r 4+ 1 do not change.

Note that this definition assumes a schedulen which no process is skipped in any layer> r.
Specifically, this implies thaP; appears in every layér> r + 1, which allows to keep the permutations in
layers? > r + 1 unchanged irelay(o, P;, ).

Delaying a sef; from layerr can be seen as delayidty from layerr + 1, swappingP; in layerr until
it reaches the end of the layer, accounting®&s the first set in layer + 1 instead of the last set in layer
r, and then swapping; in layerr + 1 until it reaches its original place in the layer.

Although accounting forP; as the first set in layer + 1 instead of the last set in layerdoes not
change the order of steps taken, it is technically a different schecdall(that the schedules are defined as
sequences of layers, which in this case are different in layarglr + 1). Therefore we define:

Definition 6 Leto be a schedule where the last set of processes in laigeP;, and this set does not appear
in layerr + 1. Letrollover(o, P;,r) be the schedule that is the samesa®xcept thatP; is the first set in
layerr + 1 instead of the last set in layer

Effectively, such two schedules androllover(o, P;,r) have the same order of steps, which implies that
the executions of these schedules is the same:

a(o,é, 1) = a(rollover(o, P;,r), ¢, I).
Definitions 4, 5, and 6 imply:

Corollary 7 Leto be a regular schedule with layers. For every, 1 < r < k, andr, the permutation of
layerrin o,

delay(o, P;,r) = swap”r_il(i)_l(rollover(swap"”‘_W’"_l(i)(delay(a, P,r+1),P,r),P,r), Pyr+1).

Figure 4 depicts the schedules used when delaying B;$etlayerr of a scheduler, according to this
corollary.

Recall thatcrash(o, P;, r) is the schedule that is the samemgsexcept that processes i crash in
layerr. Crashing a seb; in layerr can be seen as delaying it from layerand then crashing it from layer
r + 1. Definitions 1 and 5 imply that:

11



layerr layerr + 1
delay(o, Pi,m+1) -+ ... cee e
lave layerr + 1
ayerr
swap(delay(o, Py, + 1), Py,r) -+ ... ...|B| ... ...
layerr layerr + 1
rollover(swap(delay(o, Pi,r + 1), Py,r), Pi,r) -+ ... ... |Pi|... ...
layerr Y
layerr + 1
swap(rollover(swap(delay(o, Py, + 1), Py, r), Py,r), Pi,r+1) -+ .. ... . o
—
layerr Y
layerr + 1
= delay(o, Py,r) -+ ... ...
N~—— Ny
layerr layerr + 1

Figure 4: An example showing howvap operators are applied to delay a set of procegseassumepP; is
the penultimate set in layerand the third set in layer + 1. Note that the third transition does not modify
the execution, and only accounts the stepB,db layerr + 1 instead of layer; the last transition just notes
that we have obtainedelay(o, P;, ).

Corollary 8 For every regular schedule,
crash(o, P;,r) = crash(delay(o, P;,r), P;,r + 1).

An important property of regular schedules is that swapping, delayir@ashing a set of processEs
yields a regular schedule as well, because the sets are manipulated together

Lemma 9 Leto be a regular schedule with layers. Then foreveryy 1 < i < S, and everyr, 1 <r <k,
the scheduleswap(o, P;, r), delay(o, P;,r), rollover(o, P;,r), andcrash(o, P;, r) are regular.

Proof: Every layer? # r in swap(o, P;,r) is the same as ia and therefore satisfies the requirement of
a regular schedule. In layer all processes that took stepsdralso take steps iswap(o, P;, ), and each
set remains consecutive. Thereforeap(o, P;, r) is regular. It is also easy to see thatlover (o, P;,r) is
regular.

The proof fordelay(o, P;, r) anderash(o, P;,r) is by backwards induction on the layer number

Base case:Forr = k, delaying a sef’; in the last layer, is the same as crashifg Denotes’ =
delay(o, P;, k) = crash(o, P;, k). Every layer! < k in ¢’ is the same as in, and the last layek is the
same ino’ except that the processesihdo not take a step. Hence, is also regular.

Induction step:We assume the lemma holds for every lager + 1 < ¢ < k, and prove it for layer.
By Corollary 7, the induction hypothesis and since swapping results inuarescheduledelay(o, P;, 1)
is regular. By Corollary 8, the induction hypothesis and since delayingjtsem a regular schedule,
crash(o, P;,r) is regular. |
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We next construct an indistinguishability chain of schedules betweeregmjar schedule and a sched-
ule in which some set of processes is delayed or crashed. The cdiastmeties on Corollary 7 and Corol-
lary 8 to delay or crash a set of processes through a sequence juf.shMae elementary step in this con-
struction, where a set is swapped with the following one, is provided byakdemma.

Lemma 10 Leto be aregular schedule withlayers. For any sequences of coifigind initial configuration
I, if P; is not the last set of processes in layen < r < k, then there is a seP; such that at the end of
layer only processes i#; (at most) distinguish betweer(o, ¢, I) ando(swap(o, P;,r), ¢, I).

Proof: Considerswap(o, P;,r) and letw be the permutation corresponding to layerSince P; is not
the last set in the layer, we hawe ! (i) # |x|. Leti’ = n(x~1(i) + 1), i.e., P; is swapped withP,. By
Lemma 6, either all the processesiinperform a cheap-snapshot operation or all processBsperform a
write operation. The same applies By.

If both types of operations are cheap-snapshot operations or beth aye write operations (necessarily
to different registers), them(o, ¢, I) £ a(swap(o, P;,r), ¢, I) for every procesg in the layer.

If one type of operations is cheap-snapshot and the other is writing othlgrihe processes in the set
performing cheap-snapshot observe a difference. Denote thig $&t(where; is either: ori'). |

Notice that the seP; (the value of the index) depends only on the types of operations performed, i.e,
only ong, and not on the sequences of coitar the initial configuration/. This is necessary for claiming
that the adversary is non-adaptive.

For everyr andk, 1 < r < k, we define:

s B 1 ifr==%
TN 2i e+ 1 if1<r<k
d B S ifr==%
kT drpr1o+S S+ S spp F1<r<k
S ifr==~%
Crk = .
’ dr7k+cr+17k fl<r<k

whereS = max{3, [ %]} is the number of setf;. These recursive functions will be used for bounding the
lengths of the indistinguishability chains in our construction.
The next proposition shows a bound on these functions; its proof epimethe appendix.

Proposition 11 ¢, < (25 + 4)F+1,

The main technical result of this section is the following lemma, which will be usatid@ an indis-
tinguishability chain between the executions that result from schedute®l crash(o, P;, 1), in order to
apply Lemma 2. Additional claims, regardisgiap anddelay, are proved in order to carry through with
the proof.
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Lemma 12 Leto be aregular schedule with layers such that no process is skipped at any layerr, for
somer, 1 < r < k. For any sequences of coigsand initial configuration/, and for everyi, 1 < i < S,
the following all hold:

a(o, ¢, 1) =, a(swap(o, P;,7r),¢ 1),
04(0;5;[) %d'r,k a(delay(U,Pi,r),E,I),
a(o, ¢, 1) =, alcrash(o,P;,r),c1).

Proof: Letoy = o. Throughout the proof, we denote = a(o;, ¢, I) for every schedule;, anda) =
a(o}, ¢ I) for every schedule’.

The proof is by backwards induction en

Base caser = k. Considerswap(o, P;, k), whereP; is not the last set in the layer (otherwise swapping
is undefined). By Lemma 10, there is a $&t which does not depend ahor I, such thaix (o, ¢, I) £
a(swap(o, P;, ), ¢ 1), for every procesp ¢ P;. Thereforen(o, ¢, I) =, , a(swap(o, P, k), ¢ I).

Delaying P; in the last layer is equivalent to failing it, therefodelay(o, P;, k) = crash(o, P, k).
Denote this schedule by’. We crashP; by swapping it until it reaches the end of the layer and then
removing it. In more detail, let be the permutation of the last layer®@ofand define:

o’ = swap‘”‘_”_l(i)(a, P k).

The proof of the base case farap(o, P;, k) implies that there is a chain of length .- (|7, | —, 1 (7)) <
(S —1)- sk, = S — 1 between the executions, i.eq ~s_1 a(d”, ¢ I). Clearly,a(o”,&I) X a(d’, 1),
for every procesp ¢ P, and thereforep(o,c,I) =g, , aldelay(o, P;,7),¢ 1) anda(o,é, 1) =, ,
a(crash(o, Py, r), ¢, I).

Induction step:Assume the lemma holds for layer- 1 < k. We prove that it holds for layer.

We first deal with swapping; assume tHatis not the last set in the layer and considetp(o, P;, ).
By Lemma 10, there is a sét;, which does not depend anor I, such that at the end of layeronly
process inP; distinguish betweew(o, ¢, I) anda(swap(o, P;,r),c,I1). We defines; to be the same as
o except that processes ity are crashed in layer + 1, i.e.,o; = crash(o, Pj,r + 1). By the induction
hypothesisag ~.,,,, a1. Letoy be the same as; except thatP; and P; are swapped in layer, i.e.,
oy = swap(o1, P, ). Since only processes iR; observe the swapping, but are all crashed in the next
layer, we have that; £ a5 for every process ¢ P;. Finally, letos be the same as,, except that
processes i?; are not crashed in layer+ 1, i.e.,oo = crash(os, P;,r +1). By the induction hypothesis,
Qg =, ,, a3. Notice thatos = swap(o, Pi,r), and2c, 1 ; + 1 = s,.x, which implies thatv(o, ¢, 1) =, ,
a(swap(o, P, 1), ¢, I).

Next, we consider the case of delaying a process,deay(o, P;,r)). (Recall Figure 4.) By Corol-
lary 7,

delay(o, P;,r) = swap’r;il(i)_l(rollover(swap"”‘77{1@(delay(a, Pi,r+1),P,r),P,r),P,r+1).

Recall that applyingollover does not change the execution. Hence, by the proof for swappinmdhe-
tion hypothesis, and since

eyt + Sp - (7] = 771 (0) + Sprr e - (T34 () = 1) S dpgre + S S0k + S+ Spprh = drg
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it follows thata(o, ¢, I) ~q, , a(delay(o, P;, ), ¢ 1).
Finally, we consider the case of crashing a processci:esh (o, P;,r). By Corollary 8,

crash(o, P;,r) = crash(delay(o, P;,r), P;,r + 1).
By the proof for delaying, the induction hypothesis, and siice+ ¢, 41,1 = ¢k, it follows that
a(o,C 1) =, alerash(o, P;,r), ¢ I).
u

Note that in all executions constructed in the proof, at most one set cégsed’; does not appear in a
layer; since|P;| < f, this implies that at least — f processes take a step in every layer, and hence every
execution in the construction contains at least — f) steps.

Lemmas 2 and 12 imply that for every sequence of c8ingo ruir, ¢, Co) Xs(2c, , +1)+1 (0 fuit; € Cs),
Sincec; , < (25 +4)*, we have thab(2c;  +1) +1 < (25 +4)**1. Substituting in Theorem 1 yields that

qr > m. SinceS can be taken to be a constant wr@d is a constant, we get the next theorem:

Theorem 13 Let A be a randomized consensus algorithm in the asynchronous shamadmnenodel, with
single-writer registers and cheap snapshots. There is a weak adyeasd an initial configuration, such
that the probability thatd does not terminate aftér(n — f) steps is at Ieas;t%, wherec is a constant iﬂ?}
is a constant.

4.2 Multi-Writer Cheap-Snapshot

We derive the lower bound for multi-writer registers by reduction to singiéewregisters. In a simple
simulation of a multi-writer register from single-writer registers (e.g., [32)f@rming a high-level read or
write operation (to the multi-writer register) involvedow-level read operations (of all single-writer regis-
ters) and possibly one low-level write operation (to the process’ owresimngter register). This multiplies
the total step complexity b§ (n).

However, with cheap-snapshots, we can read all single-writer regjiatene step, yielding a simulation
that only doubles the total step complexity (since writing includes a cheggsisoboperation). The pseu-
docode of the simulation appears in Algorithm 1, which uses an d@¥apf single-writer variablesR R|[i]
is the last value written by;, together with a timestamp. The correctness of this algorithm follows along
the proof of Algorithm 10.3 from [6].

Since in the single-writer cheap-snapshot model each snapshotiopeecounts for one access to the
shared memory, every algorithm in the multi-writer model can be transformeaddtyarithm in the single-
writer cheap-snapshot model, where the step complexity is only multiplied bystaot factor. Combining
this with Theorem 13 yields the next theorem.

Theorem 14 Let A be a randomized consensus algorithm in the asynchronous shamdmnenodel, with
multi-writer registers and cheap snapshots. There is a weak advesasahan initial configuration, such
that the probability thatd does not terminate aftér(n — f) steps is at Ieasg%, wherecis a constant if |
is a constant.
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Algorithm 1 Simulating a multi-writer registeR from single-writer registers.

Procesy; has a shared regist&R|[1], each consisting of the pajv, t);
initially, each register holdQ), init), whereinit is the desired initial value

1: read(R):
2:  snapshoRRR array into local(t, v) array
3:  returnu[j] such that[j] is maximal

write(R,v) by py:
snapshoR R array into local(t, v) array
letlts be the maximum of[1],. .., t[n]
write the pain(v, its + 1) to RR[w]
return

i R A

5 Monte-Carlo Algorithms

Another way to overcome the impossibility of asynchronous consensusliswoMonte-Carlo algorithms.
This requires us to relax the agreement property and allow the algorithntigeden conflicting values,
with small probability. Lete; be the maximum probability, over all weak adversaries and over all initial
configurations, that processes decide on conflicting values/after f) steps. The next theorem is the
analogue of Theorem 1, for bounding the probability of terminating &fter— f) steps.

Theorem 15 Assume there is an integer such that for any sequences of cof)s(o f.,, ¢, Co) ~m
—(m41ex

a(ou, @ Cs). Theng, > 1 e

Proof: Assume, by way of contradiction, th@t + 1)g; < 1 — (m + 1)¢;. Consider then + 1 executions
in the sequence implied by the fact thé 7., ¢, Co) ~m a(ofui, ¢, Cs). The probability thatd does not
terminate in at least one of these+ 1 executions is at mostn + 1)g;. By assumptiongi(m + 1) <
1 — (m + 1)ex, and hence, the sét of sequences of coinssuch thatd terminates in alln + 1 executions
has probability FE' € B] > (m + 1)e.

If the agreement property is satisfied in all+ 1 executions, then by the validity condition, as in the
proof of Theorem 1, we get that the decisionifv 7., ¢, Cp) is the same as the decisiondifo ¢, ¢, Cs),
which is a contradiction. Hence, for evefy= B, the agreement condition does not hold in at least one of
these executions.

Since we haven + 1 schedules in the chain, there exists a schedule for which the agreemdittaro
does not hold with probability greater thap But this means thatl satisfies agreement with probability
smaller thanl — ¢, which is a contradiction. [

Substituting with Lemma 2 and Lemma 4, yields the lower bound for the messagegpassiel.

Theorem 16 Let A be a randomized consensus algorithm in the asynchronous messsgjagpenodel.
There is a weak adversary and an initial configuration, such that thbadsiity that A does not terminate

16



after k(n — f) stepsis at Ieasi%kﬁk, wherec is a constant if 7| is a constant, andj, is a bound on the
probability for disagreement.

Substituting with Lemma 2 and the proof of Theorem 14 yields the lower bourtddshared memory
model.

Theorem 17 Let A be a randomized consensus algorithm in the asynchronous shamdmnenodel with
multi-writer registers and cheap snapshots. There is a weak advesasahan initial configuration, such
that the probability thatA does not terminate aftét(n — f) steps is at Ieasi%kek, wherec is a constant
if (%} is a constant, and,, is a bound on the probability for disagreement.

The bound we obtain in Theorem 15 on the probabiityof not terminating increases as the allowed
probabilitye;, of terminating without agreement decreases, and coincides with Thedrecade the agree-
ment property must always be satisfied (ieg.~= 0). In case an algorithm always terminatesim — f)
steps (i.e.qx = 0), we can restate Theorem 15 as a bound;on

Corollary 18 Assume there is an integet such that for any sequences of coifisx(o 1, ¢, Co) ~m
a(o i, ¢, Cs). Moreover, assume that the algorithm always terminates after— f) steps, i.e.q; = 0.
Thene, > 1.

For example, the algorithms for the message-passing model given byrKapad. [26] are Monte-
Carlo, i.e., have a small probability for terminating without agreement. Thegeptean algorithm that
always terminates withipolylog(n) asynchronous rounds, and has a probab%yﬁ)gw for disagreeing.
For comparison, our lower bound of Corollary 18 for disagreeing whea polylog(n) andg; = 0 is
€ > ng(n) wherec is a constant iﬁ%} is a constant. Their second algorithm always terminates within

26(log" n) asynchronous rounds, and has a probabiptig% for disagreeing, while our lower bound is

1
€k Z C2@(log7 n) "

6 Discussion

We presented lower bounds for the termination probability achievable lpnaized consensus algorithms
with bounded running time, under a very weak adversary. Our res@tpaaticulary relevant in light of
the recent surge of interest in providifyzantine fault-tolerancén practical, asynchronous distributed
systems (e.g., [13, 29]). The adversarial behavior in these applicasidnetter captured by non-adaptive
adversaries as used in our lower bounds, rather than the adaptemsay which can observe the results of
local coin-flips, used in most previous lower bounds [1, 5, 10].

For all models, when agreement is required to always hold, we havensthatvthe probabilityy;, that
the algorithm fails to complete ih(n — f) steps is at Ieasgi;, for a model-dependent valuewhich is a
constant if[?} is a constant. Table 1 shows the bounds for specific valugs of

The previous lower bound for the synchronous message-passing fhéfes ¢, > (Ckﬁ for some
constantc. From the perspective of the expected total step complexity, given aemgnation probabil-
ity 6, the lower bound of [19] implies$2 ((n - f) log1/0 ) steps, which is improved by our bound to

loglog1/é
Q((n— f)log1/d) steps.
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Model ‘ k=logn | k=1log’n

lower bound| asynchronous MP, SWCS, MWCS nnl(l) —tes )
synchronous MP [19] ATy
upper bound SWMR [8] T
MWMR [7] o

Table 1: Bounds og, in different models, when agreement is required to always hold. MP is teeage-
passing model, while SW/MW stands for single/multi-writer registers, SR/MRifiglesmulti-reader reg-
isters, and CS for cheap snapshots.

In the shared-memory model with single-writer multi-reader registers, AuraadrBender [8] show
a consensus algorithm with probability— ﬁ for terminating inO(nlog® n) steps. For multi-writer
multi-reader registers, Aumann [7] presents an iterative consensugtatgowith constant probability to
terminate at each iteration, independently of the previous iterations. This intipdieshe probability of
terminating aftet iterations isl — Cik for some constant

When agreement is required to hold only with high probability, Kapron eRél.dive an algorithm for
the asynchronous message passing model that always terminatespwitflisg () asynchronous rounds
and has a probabilitgm for disagreeing, and an algorithm that always terminates wizfiftpe’ n)
asynchronous rounds and has a probabﬁ% for disagreeing.

An interesting open question is to close the gap between the values of tlabiitgla;, for disagreement
achieved in the algorithms of [26] and the lower bounds obtained in this jpapéat probability. It is also
interesting to tighten the bounds in the synchronous model and for largesvafik.

Our lower bounds can be used to estimate the error distribution and bouwdrifiece of the running
time of randomized consensus algorithms. They do not yield significant logeerds for the expected step
complexity—there is still a large gap between the (trivial) lower bounds apéripounds for the shared-
memory model, with a weak adversary.

Another, broader research direction is to explore complexity boundsmatomized algorithms for other
coordination problems, most notabignaming[4] andset consensy45].

An alternative approach for deriving a lower bound on randomizedemmsus under a weak adversary,
suggested by Eli Gafni, is the following. First, derive a lower bound far fwocesses in a message-
passing system. Then, use the ABD simulation [3] to simulate shared memory irsagagmssing system,
generalizing the bound to hold for shared memory as well. Finally, use therB@asion [12] to extend the
bound ton processes. Proving the lower bound for two processes by showimgliatinguishability chain
with a certain size would be similar to Section 3. Other approaches, like usiaptigal arguments [25],
require introducing a whole different setting, which may not be simpler thasétting used in this paper.
In addition, the BG and ABD simulations incur a cost in the number of steps tak@noh may lead to a
weaker bound than the one presented in this paper. Pursuing this epsagpealing in the context of
extending the lower bound to tleet consensusroblem [15], as direct connectivity arguments [16] seem
more involved than a topological approach.
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Appendix: Proof of Proposition 11

Recall the definition of the following recursive functionsrodndk, for1 < r < k.

< B 1 if r==k
T 2 s+ 1 if1<r<k
d B S if r==k
T deak+ S s+ S spay FL<r <k
S if r==~%
Crk = .
’ dr,k+cr+1,k fl<r<k

We bound these functions as follows.
Proposition 11 ¢, < (25 + 4)F "1,
Proof. By definition ofs,.;, we haves, ;, = 2¢,1  + 1 which implies that

dr,k = dr—l—l,k +5- Srk +S- Sr+1,k
dpsr e + 8- 21k +1) + 8- 2¢425 +1)
d7‘+17k + 2SCT+17]€ + 2SCT+27]<; + 25.

Substituting this in the definition af, ;. gives

Crk = Cr4lk + dr,k
Cr41,k T dr—i—l,k: + 280r+1,k + 2561”-‘1—27]{2 +28.
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Sinced, 1 = ¢r+1,k — Cry2.k, WE have

Crk = Crplk +dryrp +25c 41k + 2S¢ 0 + 28
= ek + (Cra1k — Cri2k)
+25c, 1 +2Sc 40 + 25
= (254 2)cry16 + (25 — D)epyap + 25,

where the initial values ar@, ;, = S, and

Ch—1k = Ckk T dp—1k
e+ (e + 5 sp—16+ S Skk)
ek + (A +S - (2ck,+1)+ S skk)
— S4S5+S5-(25+1)+5-1=5(25 + 4).

We now prove the claim by backwards inductionson

Base caseForr = k we havec, , = S < (25 +4), and forr = k — 1 we havecy,_1 ;, = S(25 +4) <
(25 + 4)2.

Induction stepWe assume the lemma holds for evérsuch that + 1 < ¢ < k, and prove it for-.

Substituting the induction hypothesis en.; ;, andc, 12 gives:

Cr = (25 + 2)Cr+1,k + (25 - 1)CT+27’€ +25
< (25 42)(28 +4)kT
+(28 - 1)(28 + 4)F " + 28

< (25 +2)2S + T4 (28 + 4T 4 (28 + 4k
= (2S+2+1+1)(2S+4)*T
= (28 +4)F L
which completes the proof. |
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