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ABSTRACT
A distributed consensus algorithm allows n processes to
reach a common decision value starting from individual in-
puts. Wait-free consensus, in which a process always termi-
nates within a finite number of its own steps, is impossible
in an asynchronous shared-memory system. However, con-
sensus becomes solvable using randomization when a pro-
cess only has to terminate with probability 1. Randomized
consensus algorithms are typically evaluated by their total
step complexity, which is the expected total number of steps
taken by all processes.

This work proves that the total step complexity of ran-
domized consensus is Θ(n2) in an asynchronous shared mem-
ory system using multi-writer multi-reader registers. The
bound is achieved by improving both the lower and the up-
per bounds for this problem.

In addition to improving upon the best previously known
result by a factor of log2 n, the lower bound features a
greatly streamlined proof. Both goals are achieved through
restricting attention to a set of layered executions and using
an isoperimetric inequality for analyzing their behavior.

The matching algorithm decreases the expected total step
complexity by a log n factor, by leveraging the multi-writing
capability of the shared registers. Its correctness proof is
facilitated by viewing each execution of the algorithm as a
stochastic process and applying Kolmogorov’s inequality.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
programming ; F.2 [Theory of Computation]: Analysis of
Algorithms and Problem Complexity; G.3 [Mathematics
of Computing]: Probability and Statistics—Stochastic
processes
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1. INTRODUCTION
Coordinating the actions of processes is crucial for virtu-

ally all distributed applications, especially in asynchronous
systems. At the core of many coordination problems is the
need to reach consensus among processes, despite the pos-
sibility of process failures. A (binary) consensus algorithm
allows processes starting with input values in {0, 1} to agree
on the same output value (agreement); to rule out trivial
solutions, this common output must be one of the inputs
(validity). Consensus is a fundamental task in asynchronous
systems, and can be employed to implement arbitrary con-
current objects [21]; consensus is also a key component of
the state-machine approach for replicating services [22,28].

Perhaps the most celebrated result in distributed com-
puting shows that no deterministic algorithm can achieve
consensus in an asynchronous system, if one process may
fail [20, 21, 23]. Due to the importance of the consensus
problem, much research was invested in trying to circum-
vent this impossibility result. One successful approach is to
allow randomized algorithms in which a nonfaulty process
terminates only with probability 1. (The agreement and va-
lidity properties remain the same.) Randomized consensus
algorithms are typically evaluated by their total step com-
plexity, which is the expected total number of steps taken
by all processes.

Many randomized consensus algorithms have been sug-
gested, in different communication models and under vari-
ous assumptions about the adversary (see [4]). In partic-
ular, algorithms were designed to solve randomized con-
sensus in asynchronous shared-memory systems, against a
strong adversary that can observe the results of local coin
flips before scheduling the processes [1, 2, 5, 26]. The total
step complexity of the best previously known algorithm is

O(n2 log n) [13]. A lower bound of Ω( n2

log2 n
) on the expected

total number of coin flips was proved by Aspnes [3]; this im-
plies the same lower bound on the total step complexity.

Closing the gap of Θ(log3 n) between the lower and the
upper bounds and determining the total step complexity
of randomized consensus remained an intriguing open ques-
tion.



In this paper, we prove that Θ(n2) is a tight bound on
the total step complexity of solving randomized consensus
under the strong adversary in asynchronous shared mem-
ory systems, where processes communicate by reading and
writing to multi-writer multi-reader registers.

The Ω(n2) lower bound is obtained by considering a re-
stricted set of schedules with a round-based structure, called
layers [25]. We focus on configurations at the end of each
layer and classify them according to their valence [20, 25],
namely, the decisions that can be reached in layered exten-
sions. As opposed to deterministic algorithms, where the
valence of a configuration binds the extension to reach a cer-
tain decision value v, in a randomized algorithm the valence
only implies that some execution will decide v with high
probability [3]. This introduces a category of null-valent
configurations, from which no decision value is reached with
high probability. When a decision is reached, the configura-
tion must be univalent, so the proof aims to avoid univalent
configurations. An important case in the proof is when the
configuration is null-valent, where we derive an isoperimet-
ric inequality in order to control a one-round coin-flipping
game for reaching another null-valent configuration.

To show that the lower bound is tight, we present a ran-
domized algorithm for consensus, which has an O(n2) total
step complexity. We give a shared coin algorithm with a con-
stant agreement parameter, which leverages a single binary
multi-writer register (in addition to n single-writer multi-
reader registers); this can be used to obtain a randomized
consensus algorithm with the same total step complexity [5].
We prove that all processes output the same value with high
probability by viewing any schedule of the algorithm as a
stochastic process, and applying Kolmogorov’s inequality.

Related Work. The previous Ω( n2

log2 n
) lower bound [3] re-

lies on a lower bound for coin flipping games. In this proof,
the adversary schedules processes step-by-step, and the re-
sults of the games are analyzed through hyperbolic func-
tions, resulting in a long and unwieldy proof. In contrast,
our approach considers only the configurations at the end of
layers, allowing powerful results about product probability
spaces to be applied, and streamlining the analysis of the
behavior of executions.

Our general proof structure follows a proof by Bar-Joseph
and Ben-Or [12] of an Ω(

p
n/ log n) lower bound on the ex-

pected number of rounds in a randomized consensus algo-
rithm for the synchronous message passing model. In partic-
ular, like them, we treat null-valent configurations by consid-
ering one-round coin-flipping games and applying an isoperi-
metric inequality. Unlike their proof, our proof handles the
more complicated shared-memory model and exploits the
fact that in an asynchronous system, processes can be hid-
den in a one-round coin flipping game without having to fail
for the rest of the execution.

The layered approach was introduced by Moses and Ra-
jsbaum [25], who used it to study deterministic consensus.
They showed that the layered approach can unify the im-
possibility proof for asynchronous consensus [20,21,23] with
the lower bound on the number of rounds needed for solving
synchronous consensus [16, 19]. Their work considered the
message-passing model as well as the shared-memory model
with single-writer registers. We take the layered approach
one step further and extend it to randomized algorithms, de-
riving the lower bound on their total step complexity within

the same framework as the results for deterministic algo-
rithms. Besides incorporating randomization into the lay-
ered model, our proof also deals with the technical challenge
of allowing processes to access multi-writer registers.

Abrahamson [1] presented a randomized algorithm for
solving consensus in asynchronous systems using shared
memory, which had an exponential running time. The
first polynomial algorithm for solving randomized consen-
sus was presented by Aspnes and Herlihy [5]. They de-
scribed an algorithm that uses a shared coin in order to
reach agreement and has a total step complexity of O(n4).
The amount of shared memory required by this algorithm
was later bounded by Attiya, Dolev and Shavit [7]. Asp-
nes [2] presented an algorithm for randomized consensus
with O(n4) total step complexity, which also uses bounded
space. These algorithms were followed by an algorithm of
Saks, Shavit and Woll [26] with O(n3) total step complexity
and later, an algorithm of Bracha and Rachman [13] with
O(n2 log n) total step complexity.

Organization. In Section 2, we adapt the layered model to
incorporate randomization and a strong adversary. Section 3
defines the key notions used in our lower bound proof—
potence and valence—and proves that layered executions
in the multi-writer shared-memory model are potence con-
nected. The lower bound proof appears in Section 4, while
Section 5 presents the algorithm.

2. LAYERED MODEL FOR RANDOM-
IZED DISTRIBUTED ALGORITHMS

We consider a standard model of an asynchronous shared-
memory system, where n processes, p1, . . . , pn, communicate
by reading and writing to shared multi-writer multi-reader
registers (cf. [8, 24]).

Each step consists of some local computation, including
an arbitrary number of local coin flips (possibly biased) and
one shared memory event, which is a read or a write to some
register.

A configuration C consists of the local states of all the
processes, and the values of all the registers. Like many im-
possibility results, our proof relies on having configurations
that are indistinguishable to all processes, except some set

P . We denote C
¬P∼ C′ if the state of all processes that are

not in P is equal in both C and C′, and the values of all the

registers are equal. We write C
¬p∼ C′ when P = {p}.

For the purpose of the lower bound, we restrict our at-
tention to a constrained set of executions, which proceed in
layers. An f-layer is a sequence of at least n − f distinct
process id’s. When executing a layer L, each process p ∈ L
takes a step, in the order specified by the layer.

An f-execution τ = L1, L2, · · · is a (finite or infinite) se-
quence of f -layers. We will consider only configurations that
are reachable by finite f -executions, namely, after some fi-
nite sequence of f -layers.

Since we consider randomized algorithms, for each con-
figuration C there is a fixed probability for every step a
process will perform when next scheduled. Denote by XC

i

the probability space of the steps that process pi will pre-
form, if scheduled by the adversary. The probability space
XC

i depends only on the local state of pi in configuration C,
and therefore, delaying pi does not change this probability
space. Let XC = XC

1 × XC
2 × · · · × XC

n be the product



probability space. An element ~y ∈ XC represents a possible
result of the local coin flips from a configuration C.

We assume a strong adversary that observes the processes’
local coin flips, and chooses the next f -layer knowing what is
the next step each process will take. The adversary applies
a function σ to choose the next f -layer to execute for each
configuration C and ~y ∈ XC , i.e.,

σ : {(C, ~y) | C is a configuration and ~y ∈ XC}
→ {L | L is a layer}.

When the configuration C is clear from the context we
will use the abbreviation σ(~y) = L~y.

Denote by (C, ~y, L~y) the configuration that is reached by
applying steps of the processes in L~y, after a specific ~y ∈ XC

is chosen. Then C ◦ σ is a random variable whose values
are the configurations (C, ~y, L~y), when ~y is drawn from the
probability space XC .

An f-adversary α = σ1, σ2, · · · is a (finite or infinite) se-
quence of functions.

Given a configuration C and a finite prefix α` =
σ1, σ2, · · · , σ` of the adversary α, C ◦ α` is a random
variable whose values are the configurations that can be
reached by the algorithm. For every ~y1 ∈ XC let P (~y1) =
Pr[~y1 is chosen] denote the probability of ~y1 in the proba-
bility space XC . The probability that a configuration C′ is
reached is defined inductively1:

Pr[C ◦ α` is C′] =
X

~y1∈XC

P (~y1) · Pr[(C, ~y1, L~y1) ◦ α′` is C′],

where α′` is the remainder of the prefix after σ1, i.e., α′` =
σ2, · · ·σ`, and the basis of the induction for α1 = σ1 is:

Pr[C ◦ α1 is C′] =
X

~y1∈XC

P (~y1) · χC′(~y1),

where χC′(~y1) = χC′(C, α1, ~y1) characterizes whether the
configuration C′ is reached if ~y1 is chosen, i.e.,

χC′(~y1) =


1 (C, ~y1, L~y1) is C′

0 otherwise

The probability of deciding v when executing the al-
gorithm under α from the configuration C is defined as
follows: if C is a configuration in which there is a de-
cision v, then Pr[decision from C under α is v] = 1, if C
is a configuration in which there is a decision v̄, then
Pr[decision from C under α is v] = 0, otherwise,

Pr[decision from C under α is v] =X

~y1∈XC

P (~y1) · Pr[decision from (C, ~y1, L~y1) under α′ is v],

where α′ is the remainder of the adversary after σ1, i.e.,
α′ = σ2, σ3, · · · .

3. POTENCE AND VALENCE
OF CONFIGURATIONS

In order to derive our lower bound, we are interested in
the probability of reaching each of the possible decision val-
ues, from a given configuration. As the algorithm proceeds
1For simplicity, we assume that all the probability spaces are
discrete, but a similar treatment holds for arbitrary proba-
bility spaces.

towards a decision, we expect the probability of reaching a
decision to grow, where for a configuration in which a deci-
sion is reached, this probability is 1. Let k ≥ 0 be an integer,
and define

εk =
1

n
√

n
− k

(n− f)3
.

Our proof makes use of adversaries that have a probabil-
ity of 1 − εk for reaching a certain decision value. As the
layer number k increases, the value of εk decreases, and the
probability 1− εk required for a decision grows.

An adversary with a high probability of deciding is defined
as follows.

Definition 1. An f-adversary α from a configura-
tion C that is reachable from an initial configuration
by an f-execution with k ≥ 0 layers, is v-deciding if
Pr[decision from C under α is v] > 1− εk.

Next, we classify configurations according to the proba-
bilities of reaching each of the possible decisions from them.
We adapt the notion of potence [25] to fit randomized algo-
rithms.

Instead of considering all possible adversaries, we further
restrict our attention to a certain subset of them, which will
be specified later.

Definition 2. A configuration C is (v, k, S)-potent, for
v ∈ {0, 1} and a set S of f-adversaries, if there is a v-
deciding adversary α ∈ S from C.

Definition 3. A configuration is (v, k, S)-valent if it is
(v, k, S)-potent but not (v̄, k, S)-potent. Such a configuration
is (k, S)-univalent.

A configuration is (k, S)-bivalent if it is both (0, k, S)-
potent and (1, k, S)-potent.

A configuration is (k, S)-null-valent if it is neither
(0, k, S)-potent nor (1, k, S)-potent.

We often say that C is v-potent (v-valent, bivalent, null-
valent) with respect to S. Figure 1 illustrates the valence of
configurations.

Note that a configuration can have certain valency with
respect to one set of adversaries S and another valency with
respect to another set S′. For example, it can be univalent
with respect to S and null-valent with respect to S′; how-
ever, this cannot happen when S ⊆ S′. (Another example
appears in Lemma 1 below.) We will sometimes use the no-
tation v-potent or v-valent, when the set S and the layer
number k are clear from the context.

The set of f -adversaries we consider, denoted SP , is in-
duced by a subset of processes P ⊆ {p1, . . . , pn}. A layer
is P -free, for some set of processes P , if it does not include
any process p ∈ P . An adversary α is in SP , if all of the
layers it may choose are P -free. A layer is full with respect
to SP if it contains the n − |P | distinct process identifiers
{p1, . . . , pn} \ P ; otherwise, the layer is partial.

Restricting a set of adversaries can only eliminate possi-
ble adversaries, and therefore cannot introduce potence that
does not exist in the original set of adversaries, as formalized
in the following simple lemma.

Lemma 1. If a configuration C is v-valent with respect to
SP , then it is not v̄-potent with respect to SP∪{p} for any
process p.
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1− εk

1− εk

1

1

max
α

Pr[decision from C under α is 0]

max
α

Pr[decision from
C under α is 1]

null-valent

bivalent0-valent

1-valent

Figure 1: Classifying configurations according to
their valence.

Proof. Assume towards a contradiction, that there is a
process p such that C is v̄-potent with respect to SP∪{p}.
Then there exists a v̄-deciding adversary α in SP∪{p}, i.e.,

Pr[decision in C′ ◦ α is v̄] > 1− εk.

But α is also an adversary in SP because SP∪{p} ⊆ SP ,
which implies that C is v̄-potent also with respect to SP ,
contradicting the fact that C is v-valent with respect to
SP .

Let C be a configuration, and fix ~y1 ∈ XC . We consider
the configurations that can be reached by applying different
layers. We define a relation between these configurations,
based on their potence, which generalizes notions suggested
by Moses and Rajsbaum [25].

Definition 4. For a given ~y1, configurations (C, ~y1, L)
and (C, ~y1, L

′) have shared potence with respect to SP , if
they are both v-potent with respect to SP for some v ∈ {0, 1}.

Definition 5. For a given ~y1, configurations (C, ~y1, L)
and (C, ~y1, L

′) are potence connected with respect to SP , if
there is a sequence of layers L = L0, L1, . . . , Lh = L′ such
that for every i, 0 ≤ i < h, there exists a process p such that
the configurations (C, ~y1, Li) and (C, ~y1, Li+1) have shared
potence with respect to SP∪{p}.

Note that potence connectivity is a transitive relation.
Also, if (C, ~y1, L) and (C, ~y1, L

′) have shared potence with
respect to SP∪{p} for some process p, then, in particular,
they are potence connected.

The following claims show specific configurations that are
potence connected, under the assumption that for every
process p and layer L, the configuration (C, ~y1, L) is uni-
valent with respect to SP and SP∪{p}. This implies that

if (C, ~y1, L)
¬P∪{p}∼ (C, ~y1, L

′), then (C, ~y1, L) and (C, ~y1, L
′)

have shared potence with respect to SP∪{p}, since they must
have the same valence with respect to SP∪{p}, but are not
null-valent.

Claim 2. If L = [pi1 , pi2 , . . . , pi` ] is a layer where for
some j, 1 ≤ j < `, pij and pij+1 both write to the same reg-
ister R, and L′ = [pi1 , . . . , pij−1 , pij+1 , . . . , pi` ] is the layer
L after removing pij , then (C, ~y1, L) and (C, ~y1, L

′) have
shared potence with respect to SP∪{pij

}.

Proof. It is clear that (C, ~y1, L)
¬P∪{pij

}
∼ (C, ~y1, L

′),
which implies that (C, ~y1, L) and (C, ~y1, L

′) have shared po-
tence with respect to SP∪{pij

}.

Claim 3. If L = [pi1 , pi2 , . . . , pi` ] is a layer, p is a pro-
cess not in L, and L′ = [pi1 , pi2 , . . . , pi` , p] is the layer L af-
ter adding p at the end, then (C, ~y1, L) and (C, ~y1, L

′) have
shared potence with respect to SP∪{p}.

Proof. If p performs a read operation, then

(C, ~y1, L)
¬P∪{p}∼ (C, ~y1, L

′), which implies that these
two configurations have shared potence with respect to
SP∪{p}, and the claim follows.

If p performs a write operation to register R, then the
states of all processes not in P∪{p} are the same in (C, ~y1, L)
and in (C, ~y1, L

′), but the value of R may be different.
If (C, ~y1, L) and (C, ~y1, L

′) do not have shared potence
with respect to SP∪{p}, then since we assume they are univa-
lent with respect to SP∪{p}, we have that for some v ∈ {0, 1},
(C, ~y1, L) is v-valent with respect to SP∪{p} and (C, ~y1, L

′)
is v̄-valent with respect to SP∪{p}.

In particular, there is a v̄-deciding adversary α ∈ SP∪{p}
from (C, ~y1, L

′). Adding p at the beginning of α yields a v̄-
deciding adversary from (C, ~y1, L), which is in SP . However,
by Lemma 1, (C, ~y1, L) is v-valent with respect to SP , which
is a contradiction.

Claim 4. If L = [pi1 , pi2 , . . . , pi` ] is a layer and L′ =
[pi1 , . . . , pij−1 , pij+1 , pij , pij+2 , . . . , pi` ] is the layer L after
swapping pij and pij+1 , then (C, ~y1, L) and (C, ~y1, L

′) are
potence connected with respect to SP .

Proof. If pij and pij+1 access different registers or if they

both read, then (C, ~y1, L)
¬P∼ (C, ~y1, L

′). If pij reads register

R and pij+1 writes to R, then (C, ~y1, L)
¬P∪{pij

}
∼ (C, ~y1, L

′).
Both cases imply that (C, ~y1, L) and (C, ~y1, L

′) are potence
connected with respect to SP . The remaining case is when
pij and pij+1 both write to the same register R, which is
proved by reverse induction on j.

Basis: If j = `−1, let L0 = L, L1 = [pi1 , . . . , pi`−2 , pi` ] be
the layer L after removing pi`−1 , and L2 = L′. By Claim 2,
(C, ~y1, L0) and (C, ~y1, L1) are potence connected with re-
spect to SP , and by Claim 3, (C, ~y1, L1) and (C, ~y1, L2) are
potence connected with respect to SP . By the transitiv-
ity of potence connectivity, this implies that (C, ~y1, L0) and
(C, ~y1, L2) are potence connected with respect to SP .

Induction step: Let

L0 = L = [pi1 , pi2 , . . . , pi` ]

and

L1 = [pi1 , . . . , pij−1 , pij+1 , pij+2 , . . . , pi` ]

be the layer L0 after removing pij . By Claim 2, (C, ~y1, L0)
and (C, ~y1, L1) are potence connected with respect to SP .
Let

L2 = [pi1 , . . . , pij−1 , pij+1 , pij+2 , . . . , pi` , pij ]

be the layer L1 after adding pij at the end. By Claim 3,
(C, ~y1, L1) and (C, ~y1, L2) are potence connected with re-
spect to SP .

For every m, 3 ≤ m ≤ `− j + 1, let

Lm = [pi1 , . . . , pij−1 , pij+1 , pij+2 , . . . , pij , pi`−m+3 , . . . , pi` ]



be the previous layer Lm−1 after swapping pij with the pro-
cess before it, until it reaches pij+1 . Specifically,

L`−j+1 = L′ = [pi1 , . . . , pij−1 , pij+1 , pij , pij+2 , . . . , pi` ].

By the induction hypothesis, (C, ~y1, Lm) and (C, ~y1, Lm+1)
are potence connected with respect to SP , for every m,
2 ≤ m < ` − j + 1. This implies that (C, ~y1, L0)
and (C, ~y1, L`−j+1) are potence connected with respect to
SP .

The following lemma shows that given a configuration C
and a ~y ∈ XC , if there is a layer that extends C into a
v-valent configuration and a layer that extends C into a v̄-
valent configuration, then there is a layer that extends C
into a non-univalent configuration, possibly by failing one
additional process.

Lemma 5. Let C be a configuration and ~y1 ∈ XC . If
there are layers Lv and Lv̄, such that (C, ~y1, Lv) is (v, k +
1, SP )-valent and (C, ~y1, Lv̄) is (v̄, k + 1, SP )-valent, then
there is a layer L such that (C, ~y1, L) is either not (k+1, SP )-
univalent or not (k + 1, SP∪{p})-univalent, for some process
p.

Proof. Assume towards a contradiction that for every
layer L and every process p, the configuration (C, ~y1, L) is
univalent with respect to both SP and SP∪{p}. Let LF be
the full layer with respect to SP consisting of all processes
not in P , according to the order of their id’s. Then, LF is
univalent with respect to SP , say it is (v̄, k + 1, SP )-valent.
(Otherwise, we follow the same proof with Lv̄.)

Assume Lv = [pi1 , . . . , pi` ] and consider the layer L′ =
[pi1 , . . . , pi` , . . . ] that is full with respect to SP , and has Lv

as a prefix.
We start with the layer LF and repeatedly swap processes

until we reach the layer L′, in a chain of configurations
which, by Claim 4, are potence connected with respect to
SP . From L′, we repeatedly remove the last process until
reaching the layer Lv, in a chain of configurations which, by
Claim 3, are potence connected with respect to SP . This im-
plies that (C, ~y1, L

F ) and (C, ~y1, Lv) are potence connected
with respect to SP .

Since (C, ~y1, Lv) is (v, k +1, SP )-valent, and (C, ~y1, L
F ) is

(v̄, k + 1, SP )-valent, it follows that there are layers L1 and
L2 such that (C, ~y1, L1) is (v, k + 1, SP )-valent, (C, ~y1, L2)
is (v̄, k + 1, SP )-valent, and (C, ~y1, L1) and (C, ~y1, L2) have
shared potence with respect to SP∪{p} for some process p.

By Lemma 1 and our assumption, (C, ~y1, L1) is (v, k +
1, SP∪{p})-valent, and (C, ~y1, L2) is (v̄, k+1, SP∪{p})-valent,
and hence, they cannot have shared potence with respect
to SP∪{p}. This yields a contradiction and proves the
lemma.

4. THE LOWER BOUND
A deciding configuration has to be univalent, so our

proof aims to avoid univalent configurations. We first show
that some initial configuration is not univalent (Lemma 6);
namely, it is either bivalent or null-valent.

Ideally, we would like to prove that a non-univalent config-
uration can be extended by a single layer to a non-univalent
configuration, by (permanently) failing at most one more
process. Doing so would allow us to construct a layered ex-
ecution with f layers, each containing at least n− f process
steps, which implies the desired lower bound.

However, while this can be done (with high probability) in
the case of a null-valent configuration (see Lemma 11), this
is not true in the case of a bivalent configuration. From a
bivalent configuration, we have both a v-deciding adversary
and a v̄-deciding adversary. However, we cannot use them
in Lemma 5 to obtain a non-univalent configuration, since
the first layer of a v-deciding adversary may lead to a v̄-
valent configuration. Such a v̄-valent configuration, which
is reached while following a v-deciding adversary, will be
called v̄-switching.

We prove that a bivalent configuration can be extended
by a single layer to a non-univalent or switching configura-
tion, by failing at most one more process (Lemma 7). We
also prove that there is a small probability of deciding in
a switching configuration and thus, the execution can be
extended (with high probability) from a switching configu-
ration by at least one layer (Lemma 8).

We extend the execution in this manner, with high prob-
ability, for f layers. Since n − f processes take a step in
each layer, we obtain the bound of an expected Ω(f(n− f))
steps (Theorem 12).

4.1 Initial Configurations
We start by applying Lemma 1 to prove that some initial

configuration is not univalent.

Lemma 6. There exists an initial configuration C that is
not univalent with respect to either S∅ or S{p}, for some
process p.

Proof. Assume that all initial configurations are univa-
lent with respect to S∅. Consider the initial configurations
C0, C1, · · · , Cn such that in Ci, 0 ≤ i ≤ n, the input of
process pj is 1 if j ≤ i and 0, otherwise. By the valid-
ity condition, C0 is (0, 0, ∅)-valent and Cn is (1, 0, ∅)-valent.
Therefore, there is an i, 1 ≤ i ≤ n, such that Ci−1 is (0, 0, ∅)-
valent and Ci is (1, 0, ∅)-valent. Clearly, Ci−1

¬pi∼ Ci, and
hence, Ci−1 and Ci have the same valence with respect to
S{pi}. By Lemma 1, Ci−1 is not 1-potent with respect to
S{pi}, and Ci is not 0-potent with respect to S{pi}. Hence,
they are null-valent with respect to S{pi}.

4.2 Bivalent and Switching Configurations
We formally define switching configurations as follows.

Definition 6. Let C be a (v, k, SP )-potent configuration,
α = σ1, σ2, . . . be a v-deciding adversary from C in SP ,
and ~y1 ∈ XC such that the configuration (C, ~y1, σ1(~y1)) is
(v̄, k + 1, SP )-valent. Then (C, ~y1, σ1(~y1)) is a v̄-switching
configuration with respect to SP from C by ~y1 and α.

Lemma 5 implies that a bivalent configuration can be ex-
tended with one layer to a configuration which is either v-
switching or not univalent.

Lemma 7. If a configuration C reachable by an f-
execution is (k, SP )-bivalent, then there is an adversary σ
such that for every ~y1 ∈ XC , (C, ~y1, σ(~y1)) is either v-
switching, or not (k+1, SP )-univalent or not (k+1, SP∪{p})-
univalent, for some process p.

Proof. Assume that for every layer L and every process
p, the configuration (C, ~y1, L) is univalent with respect to
SP and SP∪{p}.



Consider the extension of C with LF . Fix ~y1 ∈ XC and
assume that D = (C, ~y1, L

F ) is (v̄, k + 1, SP )-valent. Since
C is bivalent, there is a v-deciding adversary α = σ1, σ2, · · ·
in SP . Consider the configuration C′ = (C, ~y1, σ1(~y1)). By
the assumption, C′ is univalent. If it is (v̄, k + 1, SP )-valent
then it is v̄-switching with respect to SP from C by ~y1 and α.
Otherwise, it is (v, k+1, SP )-valent. Since D is (v̄, k+1, SP )-
valent, by Lemma 5, there exists a layer L and a process p
such that (C, ~y1, L) is either not (k+1, SP )-univalent or not
(k + 1, SP∪{p})-univalent.

Handling switching configurations is more delicate, and it
is done in the next lemma.

Lemma 8. Let C′ be a v̄-switching configuration with re-
spect to SP from C by ~y1 and α. Then with probability at
least 1− 1

n
√

n
, C′ can be extended with at least one layer to

a configuration which is either v-switching, or not univalent
with respect to SP , or not univalent with respect to SP∪{p},
for some process p.

Proof. Let α = σ1σ2 . . .; note that C′ = (C, ~y1, σ1(~y1)).
Denote C0 = C, C1 = C′ and for every k ≥ 2 fix ~yk ∈ XCk−1

and let Ck = (Ck−1, ~yk, σk(~yk)).
Assume that for every k ≥ 1, Ck is univalent, and let C`

be the first configuration which is v-valent with respect to
SP . If such a configuration does not exist then the execu-
tion either reaches a configuration that decides v̄, or does
not reach any decision. Since α is v-deciding from C, the
probability that C` does not exist is at most εk ≤ 1

n
√

n
.

Since C` is the first configuration which is v-valent, C`−1

is v̄-valent. Therefore, there is a v̄-deciding adversary
β = ρ1, ρ2, . . . from C`−1 in SP . Consider the configura-
tion D = (C`−1, ~y`, ρ1(~y`)). If D is not (k + `, SP )-univalent
then we are done. If D is v̄-valent, then since C` is v-valent,
by Lemma 5, there exists a layer L such that (C`−1, ~y`, L)
is either not (k + `, SP )-univalent or not (k + `, SP∪{p})-
univalent, for some process p, in which case we are also done.
Otherwise D is v-valent, which implies that it is v-switching
with respect to SP from C`−1 by ~y` and β.

4.3 One-Round Coin-Flipping Games
The remaining part of the lower bound proof deals with

null-valent configurations, and it relies on results about one-
round coin-flipping games. Formally, a U-valued one-round
coin flipping game of m players is a function

g : {X1∪⊥}×{X2∪⊥}×· · ·×{Xm∪⊥} −→ {1, 2, . . . , U},
where Xi, 1 ≤ i ≤ m, is the i-th probability space.

A t-hiding adversary may hide at most t of the random
choices in X1, · · · , Xm, by replacing them with a ⊥. For-
mally, let X = X1 × · · · × Xm be the product probability
space. For every ~y ∈ X, and I ⊆ {1, · · · , m}, the vector
reached when the adversary hides the coordinates of I is
defined as follows:

~yI(i) =

8
<
:

~y(i), i /∈ I

⊥, i ∈ I.

For every possible outcome of the game u ∈ {1, . . . , U},
define the set of all vectors in X for which no t-hiding ad-
versary can force the outcome of the game to be u, as

W u = {~y ∈ X|g(~yI) 6= u for every I ⊆ {1, · · · , m}
such that |I| ≤ t } .

We prove that there is high probability for hiding values
in a way that forces one of the outcomes when U = 3, i.e.,
for some u ∈ {1, 2, 3}, Pr[~y ∈ W u] is very small. The proof
relies on an isoperimetric inequality, following a result of
Schechtman [27].

The space (X, d) is a finite metric space where for every ~x
and ~y in X, d(~x, ~y) is the Hamming distance between ~x and
~y (the number of coordinates in which ~x and ~y differ). For
A ⊆ X, B(A, t) is the ball of radius t around the set A, i.e.,

B(A, t) = {~y ∈ X| there is ~z ∈ A such that d(~y, ~z) ≤ t}.
Lemma 9. Let X = X1×· · ·×Xm be a product probability

space and A ⊆ X such that Pr[~x ∈ A] = c. Let λ0 =q
2m log 2

c
, then for ` ≥ λ0,

Pr[~x ∈ B(A, `)] ≥ 1− 2e−
(`−λ0)2

2m .

Proof. Consider an element ~x as a random function
~x : D = {1, . . . , m} → X1 ∪ · · · ∪Xm such that ~x(i) ∈ Xi.
Define a sequence of partial domains ∅ = D0 ⊂ D1 ⊂ · · · ⊂
Dm = D such that Di = {1, . . . , i}. Let f : X → R be
a function that measures the distance of elements from the
given subset A ⊆ X, i.e., f(~x) = d(A, ~x).

Choose a random element of ~w ∈ X according to the
given distribution. Define the sequence Y0, . . . , Ym by Yi =
E[f(~x) | ~x|Di = ~w]. Specifically, Y0 = E[f(~x)] with prob-
ability 1, and Ym = f(~w) with the probability of choosing
~w. It is well known that Y0, . . . , Ym is a Doob martingale
(see [18, Chapter VI]).

Notice that X1, ..., Xm are independent and therefore for
every i ∈ D, the random variable ~x(i) is independent of
other values of ~x.

The function f satisfies the Lipschitz condition, i.e., for
every ~x, ~y that differ only in Di \Di−1 for some i, we have
|f(~x)−f(~y)| ≤ 1, by the triangle inequality of the Hamming
metric d. This implies that the martingale Y0, . . . , Ym satis-
fies the martingale Lipschitz condition, i.e., |Yi − Yi−1| ≤ 1
for every i, 0 < i ≤ m.

By Azuma’s inequality we have that

Pr[|f(~x)− E[f(~x)]| > λ] < 2e−
λ2
2m .

We now claim that E[f(~x)] ≤ λ0. Assume the contrary,

that E[f(~x)] > λ0. Since λ0 =
q

2m log 2
c
, we have that

2e−
λ2
0

2m = c. For every ~x ∈ A we have f(~x) = 0, therefore

Pr[|f(~x)− E[f(~x)]| > λ0] ≥ Pr[f(~x) = 0] = c,

which contradicts Azuma’s inequality.
Hence, for every ` ≥ λ0 we have

Pr[~x /∈ B(A, `)] = Pr[f(~x) > `]

≤ Pr[|f(~x)− E[f(~x)]| > `− λ0] < 2e−
(`−λ0)2

2m ,

which completes the proof.

Lemma 10. In a 3-valued one-round coin-flipping game
of m players, for t = 6

p
2m log(m3) there exists a t-hiding

adversary and u ∈ {1, 2, 3}, such that the adversary can
force the outcome of the game to u with probability greater
than 1− 1

m3 .

Proof. Recall that for every u ∈ {1, 2, 3}, the set W u is
the set of all vectors in X for which no t-hiding adversary



can force the outcome of the game to be u. So our goal is
to prove that Pr[~y ∈ W u] < 1

m3 for some u ∈ {1, 2, 3}.
Denote Bu = B(W u, t

3
).

Assume that Pr[~y ∈ W u] ≥ 1
m3 for all u ∈ {1, 2, 3}.

Clearly,
T

u∈{1,2,3}W u = ∅, otherwise the value of the

game is undefined for that point. Moreover, we claim
that

T
u∈{1,2,3}Bu is empty. Assume there exists ~z ∈T

u∈{1,2,3}Bu. For every u ∈ {1, 2, 3}, let ~xu ∈ W u and

Iu ⊆ {1, . . . , m} a set of indices, such that |Iu| ≤ t
3

and
~zIu = ~xu

Iu
. Let I =

S
u∈{1,2,3} Iu. Since ~xu ∈ W u, we have

that g(~xu
I ) 6= u, and so g(~zI) 6= u. This implies that g(~zI) is

undefined, and therefore
T

u∈{1,2,3}Bu = ∅.
We now apply Lemma 9, with A = W u. Notice that

the results of the local flips of each player are independent
random variables. We have that Pr[~y ∈ W u] ≥ c where

c = 1
m3 , and therefore λ0 =

p
2m log (2m3). Hence, for

` = t
3

= 2
p

2m log (2m3) = 2λ0, we have

Pr[~y ∈ Bu] ≥ 1− 2e−
(t−λ0)2

2m

= 1− 2e−
2m log (2m3)

2m

= 1− 2e− log (2m3) = 1− 1

m3
.

Since
T

u∈{1,2,3}Bu = ∅ we have that Pr[~y ∈ B1 ∩ B2] +

Pr[~y ∈ B1 ∩ B3] + Pr[~y ∈ B2 ∩ B2] ≤ 1
2
·Pu∈{1,2,3} Pr[~y ∈

Bu], which implies that

Pr[~y ∈ ∪u∈{1,2,3}B
u] =

X

u∈{1,2,3}
Pr[~y ∈ Bu]

−
X

u 6=u′∈{1,2,3}
Pr[~y ∈ Bu ∩Bu′ ]

+Pr[~y ∈ ∩u∈{1,2,3}B
u]

≥ 1

2
·
X

u∈{1,2,3}
Pr[~y ∈ Bu]

≥ 3

2
· (1− 1

m3
)

> 1

This contradiction implies that for some u ∈ {1, 2, 3} we
have Pr[~y ∈ W u] < 1

m3 .

4.4 Null-Valent Configurations
We use one-round coin-flipping games to show that, with

high probability, a null-valent configuration C can be ex-
tended with one f -layer to a null-valent configuration. In
order to achieve the above, we may need to hide up to
6
p

2n log (2n3) processes in the layer other than the pro-
cesses in P , although they are not permanently failed.
Therefore, we assume that f ≥ 12

p
2n log (2n3), and will

always make sure that |P | ≤ f
2
. This will allow us to hide

f
2
≥ 6
p

2n log (2n3) additional processes (not in P ), in exe-
cutions in SP .

Lemma 11. If a configuration C reachable by an f-
execution is (k, SP )-null-valent, then with probability at least
1− 1

(n−|P |)3 , there is an f-adversary σ1 such that C ◦ σ1 is

(k + 1, SP )-null-valent.

Proof. Let C be a (k, SP )-null-valent configuration, and
let LF be an f -layer that is full with respect to SP . For

every ~y1 ∈ XC , we classify the configurations (C, ~y1, L
F )

into three categories:

1. The configuration (C, ~y1, L
F ) is (0, k + 1, SP )-potent.

2. The configuration (C, ~y1, L
F ) is (1, k + 1, SP )-valent.

3. The configuration (C, ~y1, L
F ) is (k+1, SP )-null-valent.

This can be considered as a 3-valued one-round coin-
flipping game of m players, where m = n − |P |. This im-
plies that n − f ≤ m ≤ n. By Lemma 10, we can hide
6
p

2m log(2m3) processes and force the resulting configu-
ration into one of the above categories with probability at
least 1− 1

m3 . Hiding processes is done by choosing a partial
layer L~y1 in SP that does not contain any step by the hidden
processes, but only a step of each process that is not hidden.
We define an adversary σ1 that for each ~y1 ∈ X, chooses the
corresponding partial layer, i.e., σ1(~y1) = L~y1 .

Our claim is that the category that can be forced is the
third one. Assume, towards a contradiction, that the cate-
gory that can be forced is the first one.

This implies that the probability over ~y1 ∈ X that
(C, ~y1, L~y1) is (0, k+1, SP )-potent is at least 1− 1

m3 . There-

fore with probability at least 1− 1
m3 , a ~y1 ∈ X is chosen such

that there exists a 0-deciding adversary α′ from (C, ~y1, L~y1)
for which:

Pr[decision from (C, ~y1, L~y1) under α′ is 0] > 1− εk+1

Therefore with probability at least 1− 1
m3 , there exists an

adversary α = σ1, α
′ from C such that:

Pr[decision from C under α is 0]

=
X

~y1∈X

P (~y1) · Pr[decision from (C, ~y1, L~y1) under α′ is 0]

>

„
1− 1

m3

«
· (1− εk+1)

≥
„

1− 1

(n− f)3

«
·
„

1− 1

n
√

n
+

k + 1

(n− f)3

«

= 1− 1

n
√

n
+

k

(n− f)3
+

1

(n− f)3 n
√

n
− k + 1

(n− f)6

> 1− 1

n
√

n
+

k

(n− f)3
= 1− εk,

where the last inequality holds for sufficiently large n, since
(n− f)6 ≥ (n− f)3 n

√
n and k = O(n).

This contradicts the assumption that C is (k, SP )-null-
valent. A similar argument holds for the second category.

Hence, with probability at least 1− 1
m3 , the third category

can be forced, namely, we can reach a configuration that is
(k + 1, SP )-null-valent.

4.5 Putting the Pieces Together
We can now put the pieces together and prove the lower

bound on the total step complexity of any randomized con-
sensus algorithm.

Theorem 12. The total step complexity of any f-tolerant
randomized consensus algorithm in an asynchronous system,
where n−f ∈ Ω(n) and f ≥ 12

p
2n log (2n3), is Ω(f(n−f)).

Proof. We show that the probability of forcing the al-
gorithm to continue f

2
layers is at least 1 − 1√

n
. Therefore



the expected number of layers is at least (1− 1√
n
) · f

2
. Each

of these layers is an f -layer containing at least n− f steps,
implying that the expected total number of steps is at least
Ω((1 − 1√

n
) · f

2
· (n − f)), which is in Ω(f(n − f)) since

n− f ∈ Ω(n).
We argue that for every k, 0 ≤ k ≤ f

2
, with probability at

least 1−k 1
n
√

n
, there is a configuration C reachable by an f -

execution with at least k layers, which is either v-switching
or non-univalent with respect to SP where |P | ≤ k+1. Once
the claim is proved, the theorem follows by taking k = f

2
,

since the probability of having an f -execution with more
than f

2
layers is at least 1− f

2
1

n
√

n
> 1− 1√

n
.

We prove the claim by induction on k.
Basis: k = 0. By Lemma 6, there exists an initial config-

uration C that is not univalent with respect to S∅ or S{p},
for some process p.

Induction step: Assume C is a configuration reachable
by an f -execution with at least k layers, that is either v-
switching or non-univalent with respect to SP where |P | ≤
k + 1. We prove that with probability at least 1 − 1

n
√

n
, C

can be extended with at least one layer to a configuration
C′ that is either v-switching or non-univalent with respect
to SP ′ where |P ′| ≤ k + 2. This implies that C′ exists with
probability (1− k 1

n
√

n
)(1− 1

n
√

n
) ≥ 1− (k + 1) 1

n
√

n
.

If C is bivalent, then by Lemma 7, there exists an adver-
sary σ and a process p such that C ◦ σ is either v-switching
or not (k+1, SP )-univalent or not (k+1, SP∪{p})-univalent.

If C is v-switching, then by Lemma 8, there exists a finite
adversary α` and a process p such that with probability at
least 1− 1

n
√

n
, C ◦ α` is either v̄-switching, or not univalent

with respect to SP , or not univalent with respect to SP∪{p}.
If C is null-valent, then by Lemma 11, there exists an

adversary σ1 such that the configuration C ◦ σ1 is not (k +
1, SP )-univalent with probability at least 1− 1

m3 . Since m ≥
n − f ∈ Ω(n), we have that 1 − 1

m3 ≥ 1 − 1
(n−f)3

> 1 −
1

n
√

n
.

Finally, taking f ∈ Ω(n) and n−f ∈ Ω(n), we get a lower
bound of Ω(n2) on the total step complexity.

5. A MATCHING UPPER BOUND
This section presents a randomized consensus algorithm

with O(n2) total step complexity, by introducing a shared
coin algorithm with a constant agreement parameter and
O(n2) total step complexity. In a shared coin algorithm
with agreement parameter δ, each process outputs a decision
value −1 or +1, such that for every v ∈ {−1, +1}, there is a
probability of at least δ for all processes to output the same
value v [5]. Using a shared coin algorithm with O(n2) total
step complexity and a constant agreement parameter, in the
framework of Aspnes and Herlihy [5], implies a randomized
consensus algorithm with O(n2) total step complexity.

As in previous shared coin algorithms [13, 26], in our al-
gorithm the processes flip coins until the amount of coins
that were flipped reaches a certain threshold. An array of
n single-writer multi-reader registers records the number of
coins each process has flipped, and their sum. A process
reads the whole array in order to track the total number of
coins that were flipped.

Each process decides on the value of the majority of the
coin flips it reads. Our goal is for the processes to read simi-
lar sets of coins, in order to agree on the same majority value.

Algorithm 1 Shared coin algorithm: code for process pi.

local integer num, initially 0
1: while not done do
2: num + +
3: flip = random(−1,+1) // a fair local coin
4: A[i].〈count, sum〉 = 〈count + +, sum + flip〉

// atomically
5: if num = 0 mod n then // check if time to terminate
6: collect A // n read operations
7: if A[1].count + ... + A[n].count > n2 then

done = true // raise termination flag
end while

8: collect A // n read operations
9: return sign(

Pn
j=1 A[j].sum) // return +1 or −1,

// depending on the majority value of the coin flips

For this to happen, we bound the total number of coins that
are flipped (by any process) after some process observes that
the threshold was exceeded. A very simple way to guarantee
this property is to have processes frequently read the array
in order to detect quickly that the threshold was reached.
This, however, increases the total step complexity.

The novel idea of our algorithm in order to overcome this
conflict, is to utilize a multi-writer register called done that
serves as a binary termination flag; it is initialized to false.
A process that detects that enough coins were flipped, sets
done to true. This allows a process to read the array only
once in every n of its local coin flips, but check the register
done before each local coin flip.

The pseudocode appears in Algorithm 1. In addition to
the binary register done, it uses an array A of n single-writer
multi-reader registers, each with the following components
(all initially 0):

count: how many flips the process performed so far.

sum: the sum of coin flips values so far.

For the proof, fix an execution α of the algorithm. We will
show that all processes that terminate agree on the value 1
for the shared coin with constant probability; by symmetry,
the same probability holds for agreeing on −1, which implies
the algorithm has a constant agreement parameter.

The total count of a specific collect is the sum of
A[1].count, . . . , A[n].count, as read in this collect. Note that
the total count in Line 8 is ignored, but it can still be used
for the purpose of the proof.

Although we only maintain the counts and sums of coin
flips, we can (externally) associate them with the set of coin
flips they reflect; we denote by FC the collection of coin
flips that are written in the shared memory by the first time
that true is written to done. The size of FC can easily be
bounded, since each process flips at most n coins before
checking A.

Lemma 13. FC contains at least n2 coins and at most
2n2 coins.

For a set of coins F we let Sum(F ) be the sum of the
coins in F . We denote by Fi the set of coin flips read by the
collect of process pi in Line 8. This is the set according to
which the process pi decides on its output, i.e., pi returns



Sum(Fi). Since each process may flip at most one more coin
after true is written to done, we can show:

Lemma 14. For every i, FC ⊆ Fi, and Fi \ FC contains
at most n− 1 coins.

We now show that there is at least a constant probability
that Sum(FC) ≥ n. In this case, by Lemma 14 all processes
that terminate agree on the value 1, since Fi contains at
most n− 1 additional coins.

We partition the execution into three phases. The first
phase ends when n2 coins are written. We assume a stronger
adversary that can choose these n2 coins out of n2 + n − 1
coins that were flipped. The second phase ends when true
is written to done. In the third phase, each process reads
the whole array A and returns a value for the shared coin.

Since FC is the set of coins written when done is set to
true, then it is exactly the set of coins written in the first and
second phases. Let Ffirst be the first n2 coins that are writ-
ten, and Fsecond = FC \Ffirst. (See Figure 2.) This implies
that Sum(FC) = Sum(Ffirst) + Sum(Fsecond). Therefore,
we can bound (from below) the probability that Sum(FC) ≥
n by bounding the probabilities that Sum(Ffirst) ≥ 3n and
Sum(Fsecond) ≥ −2n.

Consider the sum of the first n2 + n− 1 coin flips. After
these coins are flipped, the adversary has to write at least n2

of them, which will be the coins in Ffirst. If the sum of the
first n2 + n− 1 coin flips is at least 4n then Sum(Ffirst) ≥
3n. We bound the probability that this happens using the
Central Limit Theorem.

Lemma 15. The probability that Sum(Ffirst) ≥ 3n is at
least 1

8
√

2π
e−8.

Proof. There are N = n2 + n− 1 coins flipped when n2

coins are written to Ffirst. By the Central Limit Theorem,

the probability for the sum of these coins to be at least x
√

N ,

converges to 1 − Φ(x), where Φ(x) =
1√
2π

Z x

−∞
e−

1
2 y2

dy

is the normal distribution function. By Feller [17, Chap-

ter VII], we have 1−Φ(x) > ( 1
x
− 1

x3 ) 1√
2π

e−
1
2 x2

. Substitut-

ing x = 4 we have that with probability at least 1

8
√

2π
e−8

the sum of these N coins is at least 4
√

N , which is more
than 4n, and hence Sum(Ffirst) ≥ 3n.

We now need to bound Sum(Fsecond). Unlike Ffirst,
whose size is determined, the adversary may have control
over the number of coins in Fsecond, and not only over which
coins are in it. However, by Lemma 13 we have |FC | ≤ 2n2,
therefore |Fsecond| ≤ n2, which implies that Fsecond must
be some prefix of n2 additional coin flips. We consider the
partial sums of these n2 additional coin flips, and show that
with high probability, all these partial sums are greater than
−2n, and therefore in particular Sum(Fsecond) > −2n.

n2 coins
are written

true is written
to done

Ffirst Fsecond

pi collects
in Line 8

FC

Figure 2: Phases of the shared coin algorithm.

Formally, for every i, 1 ≤ i ≤ n2, let Xi be the i-
th additional coin flip, and denote Sj =

Pj
i=1 Xi. Since

|Fsecond| ≤ n2, there exist k, 1 ≤ k ≤ n2, such that
Sk = Sum(Fsecond). If Sj > −2n for every j, 1 ≤ j ≤ n2,
then specifically Sum(Fsecond) = Sk > −2n.

The bound on the partial sums is derived using Kol-
mogorov’s inequality.

Lemma 16. The probability that Sj > −2n for all j, 1 ≤
j ≤ n2, is at least 3

4
.

Proof. The results of the n2 coin flips are indepen-
dent random variables X1, . . . Xn2 , with E[Xi] = 0 and
V ar[Xi] = 1, for every i, 1 ≤ i ≤ n2. Since Sj is the
sum of j independent random variables, its expectation is
E[Sj ] =

Pj
i=1 E[Xi] = 0, and its variance is V ar[Sj ] =Pj

i=1 V ar[Xi] = j. Kolmogorov’s inequality [17, Chap-
ter IX] implies that |Sj | < 2n, for all j, 1 ≤ j ≤ n2, with
probability at least 3

4
.

This bounds the probability of agreeing on the same value
for the shared coin as follows.

Lemma 17. Algorithm 1 is a shared coin algorithm with
agreement parameter δ = 3

32
√

2π
e−8.

Proof. By Lemma 15, the probability that
Sum(Ffirst) ≥ 3n is at least 1

8
√

2π
e−8, and by Lemma 16,

the probability that Sum(Fsecond) ≥ −2n is at least
3
4
. Since Sum(FC) = Sum(Ffirst) + Sum(Fsecond), this

implies that the probability that Sum(FC) ≥ n is at least
3

32
√

2π
e−8.

By Lemma 14, for every i, Fi \FC contains at most n− 1
coins, which implies that if Sum(FC) ≥ n then Sum(Fi) ≥
1, and therefore if pi terminates, then it will decide 1. Hence
with probability at least 3

32
√

2π
e−8, Sum(FC) ≥ n and all

processes which terminate agree on the value 1.
By symmetry, all processes which terminate agree on the

value −1 with at least the same probability.

Clearly, Algorithm 1 flips O(n2) coins. Moreover, all work
performed by processes in reading the array A can be at-
tributed to coin flips. This can be used to show that Algo-
rithm 1 has O(n2) total step complexity.

Using Algorithm 1 in the framework of Aspnes and Her-
lihy [5] implies:

Theorem 18. There is a randomized consensus algo-
rithm with O(n2) total step complexity.

6. DISCUSSION
We have proved that Θ(n2) is a tight bound on the total

step complexity of solving randomized consensus, under a
strong adversary, in an asynchronous shared-memory system
using multi-writer registers.

Aspnes [3] shows an Ω( n2

log2 n
) lower bound on the expected

total number of coin flips. Our layering approach as pre-
sented here, does not distinguish between a deterministic
step and a step involving a coin flip, leaving open the ques-
tion of the optimal number of coin flips.

Our algorithm exploits the multi-writing capabilities of
the register. The best known randomized consensus algo-
rithm using single-writer registers [13] has O(n2 log n) total



step complexity, and it is intriguing to close the gap from
our lower bound.

In addition to settling the open question of the asymptotic
total step complexity, we consider an important contribution
of this paper to be in introducing new techniques for investi-
gating randomized consensus algorithms. These techniques
provide a new context and opportunities for exploring sev-
eral research directions, two of which are discussed next.

One direction is to study the individual step complexity
of randomized consensus; namely, the expected number of
steps performed by a single process. Aspnes and Waarts [6]
present a shared coin algorithm in which each process per-
forms O(n log2 n) expected number of steps; their algorithm
has O(n2 log2 n) total step complexity. Their shared coin
algorithm is similar to [13], but the local flips of a process
are assigned increasing weights, which allows fast processes
to terminate earlier. We believe that the individual step
complexity can be reduced using multi-writer registers.

Our results may also provide new insight into the ex-
pected step complexity of randomized consensus under weak
adversaries that cannot observe the local flips or the con-
tents of the shared memory. Several papers presented
randomized consensus algorithms for this type of adver-
saries, e.g., [9–11, 14, 15], with the best algorithms having
O(n polylog(n)) total step complexity and O(polylog(n)) in-
dividual step complexity. It will be intriguing to find tight
bounds for this model as well.
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