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ABSTRACT
Most common network protocols (e.g., the Internet Proto-
col) work with variable size packets, whereas contemporary
switches still operate with fixed size cells, which are easier to
transmit and buffer. This necessitates packet segmentation
and reassembly modules, resulting in significant computa-
tion and communication overhead that might be too costly
as switches become faster and bigger. It is therefore im-
perative to investigate an alternative mode of scheduling,
in which packets are scheduled contiguously over the switch
fabric.

This paper investigates the cost of packet-mode schedul-
ing for the combined input output queued (CIOQ) switch
architecture.

We devise frame-based schedulers that allow a packet-
mode CIOQ switch with small speedup to mimic an ideal
output-queued switch with bounded relative queuing delay.
The schedulers are pipelined and are based on matrix de-
composition.

Our schedulers demonstrate a trade-off between the
switch speedup and the relative queuing delay incurred while
mimicking an output-queued switch. When the switch is al-
lowed to incur high relative queuing delay, a speedup arbi-
trarily close to 2 suffices to mimic an ideal output-queued
switch. This implies that packet-mode scheduling does not
require higher speedup than a cell-based scheduler. The rel-
ative queuing delay can be significantly reduced with just a
doubling of the speedup. We further show that it is impossi-
ble to achieve zero relative queuing delay (that is, a perfect
emulation), regardless of the switch speedup.

Finally, we show that a speedup arbitrarily close to 1
suffices to mimic an output-queued switch with a bounded
buffer size.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Packet-switching networks; C.2.6
[Computer-Communication Networks]: Internetwork-
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ing—Routers; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Prob-
lems—Routing and layout, Sequencing and scheduling
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1. INTRODUCTION
In many network protocols, from very large Wide Area

Networks (WANs) to small Networks on Chips (NoCs), traf-
fic is comprised of variable size packets. A prime example is
provided by IP datagrams whose sizes typically vary from
40 to 1500 bytes [23]. Real-life switches, however, operate
with fixed-size cells, which are easier to buffer and schedule
synchronously in an electronic domain.

Transmitting packets over cell-based switches requires the
use of packet segmentation and reassembly modules, result-
ing in a significant computation and communication over-
head [15]. Cell-based scheduling is expected to turn into
an even more crucial problem as the use of optics becomes
widespread, since future switches could deal with packets in
the optical spectrum and might be unable to afford their seg-
mentation and reassembly. Cell-based schedulers, unaware
of packet boundaries, may cause performance degradation;
indeed, packet-aware switches typically have better drop-
rate, since they may reduce the number of retransmissions
by ensuring that only complete packets are sent over the
switch fabric (cf. [31, Page 44]).

Packet mode schedulers [10, 21] bridge this gap by deliv-
ering packets contiguously over the switch fabric, implying
that until a packet is fully transmitted, neither its originat-
ing port nor its destination port can handle different packets.

It is imperative to explore whether packet-mode sched-
ulers can provide similar performance guarantees as cell-
based schedulers. We address this question by focusing on
Combined Input-Output Queued (CIOQ) switches and in-
vestigating whether a packet-mode CIOQ switch can mimic
an ideal Output-Queued (OQ) switch with bounded relative
queuing delay.

CIOQ switches with crossbar fabric (Figure 1) are widely
used today as the core of contemporary switches [8,11], since
they operate at the external line rate and can scale with
an increasing number of ports. Another reason for their
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Figure 1: Combined Input-Output Queued Switch
with Virtual Output-Queuing. The switch fabric op-
erates at rate S · R, where S is the speedup of the
switch.

popularity is the fact that cell-based CIOQ switches with
small speedup (that is, the ratio between the rate in which
the switch fabric operates and the external rate) of 2 can
emulate an OQ switch [5, 6, 18, 25, 27, 28], and therefore,
provide perfect performance guarantees.

Output-queued switch mimicking with relative queuing de-
lay R allows the CIOQ switch to deliver packets at most R
time-slots after they would have been delivered by an ideal
OQ switch. This should hold for arbitrary traffic patterns,
including adversarial traffic. Therefore, this performance
measure is entirely deterministic and is not burdened by
probabilistic assumptions on the incoming traffic that could
be unsubstantiated. In addition, the evaluation is worst-
case in nature, implying that QoS demands are guaranteed,
unlike probabilistic or empirical evaluations based on simu-
lations.

1.1 Our Results
This paper presents packet-mode schedulers for CIOQ

switches that mimic an OQ switch. Since such mimicking
requires CIOQ switches with a certain speedup, we further
investigate the trade-off between the speedup of the switch
and its relative queuing delay.

We devise pipelined frame-based schedulers, in which
scheduling decisions are done at the frame boundaries. Our
schedulers and their analysis rely on matrix decomposition
techniques. At each frame, a demand matrix, representing
the total size of packets between each input-output pair, is
decomposed into permutations that dictate the scheduling
decisions in the next frame. The major challenge in these
decompositions is ensuring contiguous packet delivery while
decomposing the demand matrix to as few permutations as
possible.

In this paper, we show that contrarily to a cell-based
CIOQ switch, a packet-mode CIOQ switch cannot exactly

emulate an OQ switch, whatever the speedup. However, once
we allow for a bounded additional relative queuing delay, we
find that a packet-mode CIOQ switch does not require a fun-
damentally higher speedup than a cell-based CIOQ switch.

Specifically, we show (Theorem 4.6) that a speedup of
2 + O( 1

R ) suffices to ensure that a packet-mode CIOQ
switch mimics an OQ switch with relative queuing delay
R = O(N · lcm(Lmax)) time-slots; here, Lmax is the maxi-
mum packet size, lcm(Lmax) is the least common multiple of
1, . . . , Lmax, and N is the number of input (output) ports.
This result also holds in the common case where only few
packet sizes are legal, and the resulting relative queuing de-
lay is O(N · lcm(L)) time-slots, where L is the restricted set
of legal packet sizes.

The relative queuing delay can be significantly reduced
with just a doubling of the speedup. We show (Theorem 4.5)
that a speedup of 4+O( 1

R ) suffices to ensure that a packet-
mode CIOQ switch mimics an OQ switch with a more rea-
sonable relative queuing delay of R = O(NLmax) time-slots.

The relative queuing delay can be further reduced to be
only Lmax−1 time-slots, if the speedup is increased to 2Lmax

(Theorem 3.2). In addition, we show (Theorem 3.1) that it
is impossible to achieve relative queuing delay of less than
Lmax/2 − 3, regardless of the speedup used. In particular,
packet-mode schedulers cannot emulate OQ switches (with
no relative queuing delay).

Finally, we consider mimicking an output-queued switch
with a bounded buffer size B at each output-port. Extend-
ing the matrix decomposition techniques, we show (Corol-
lary 5.3) that with a smaller speedup of 1 + O( 1

R ) and rela-
tive queuing delay R = O(B+N ·lcm(Lmax)), a packet-mode
CIOQ mimics OQ switch with buffer size B.

Figure 2 summarizes our results and demonstrates the
trade-off between the speedup required for OQ switch mim-
icking and the resulting relative queuing delay.

1.2 Related Work
Previous work [10, 21] considers packet-mode scheduling

in an input-queued (IQ) switch with crossbar fabric whose
speedup is 1 and proves analytically that packet-mode IQ
switches can achieve 100% throughput, provided that the
input-traffic is well-behaved; this matches earlier results on
cell-based scheduling [22]. Marsan et al. [21] also show that
under low load and small packet size variance, packet-mode
schedulers may achieve better average packet delay than cell-
based schedulers. A different line of research used competi-
tive analysis to evaluate packet-mode scheduling, when each
packet has a weight representing its importance and a dead-
line until which it should be delivered from the switch [12].

The ability of a cell-based CIOQ switch to emulate
an output-queued switch has been extensively investigated
(e.g., [5, 6, 18, 25, 27, 28]). For example, Chuang et al. [6]
introduce the critical cells first (CCF) algorithm, which al-
lows a CIOQ switch with speedup 2 to emulate (exactly) an
output-queued switch. In addition, they show that a CIOQ
switch needs speedup of at least 2− 1

N
in order to emulate

an output-queued switch. To the best of our knowledge,
the ability of packet-mode CIOQ switches to emulate OQ
switches has not been investigated before.

Recently, Turner [30] investigated packet-mode emulation
in buffered crossbar switches. Essentially, these are CIOQ
switches with additional buffers in the crosspoints: a cell ar-
riving at input-port i and destined for output-port j is first
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Figure 2: Summary of our results. The solid line represents emulation of OQ switch with unbounded buffer
size, while the dashed line represents emulation of OQ switch with buffer size B. Relative queuing delay scale
is logarithmic.

buffered at input-port i’s buffer, then it is sent to an (i, j)
crosspoint buffer and finally, it is forwarded from the cross-
point buffer to output-port j’s buffer. Turner shows that
a buffered crossbar switch with speedup 2 and crosspoint
buffers of size 5Lmax can mimic an output-queued switch
with relative queuing delay of (7/2)Lmax time-slots. The
algorithms rely on the fact that, unlike in CIOQ switches,
the buffers at the crosspoints introduce orthogonality be-
tween the operations of input-ports and output-ports. This
strong property simplifies the design of both cell-based
schedulers [7] and packet-mode schedulers [30]. The algo-
rithms proposed in [30] do not apply to the unbuffered switch
fabric we study.

Birkhoff von-Neumann matrix decomposition is used for
scheduling when the arrival rate can be estimated [1, 4, 13].
Other matrix decomposition heuristics are employed in
frame-based schedulers for optical switching and in satellite-
switched time-devision multiple access (SS/TDMA) sched-
ulers [16, 19, 29, 33]. These decompositions are not packet-
aware and may violate the contiguous delivery of cells cor-
responding to the same packet.

Weller and Hajek [33] show that a decomposition using
maximal matchings requires at most twice as many schedul-
ing decisions as a Birkhoff von-Neumann decomposition.
This property forms the basis for the analysis of our al-
gorithm described in Theorem 4.5.

1.3 Organization of the Paper
Section 2 defines CIOQ switches and packet-mode OQ

switch mimicking. Section 3 shows that CIOQ switches can-
not provide precise packet-mode emulation of OQ switches;
it further shows how to mimic an OQ switch with small
relative queuing delay when the speedup is very large. In
Section 4, we give the necessary background about ma-
trix decomposition, and introduce our main contributions—
scheduling algorithms that provide OQ switch mimicking for
packet-mode CIOQ switches with small speedup. This sec-
tion also describes the trade-off between the speedup of the
switch and its relative queuing delay. Mimicking a packet-

mode OQ switch with bounded buffer size is discussed in
Section 5. We conclude in Section 6 with a discussion of our
results.

2. PRELIMINARIES

2.1 Packet-Mode CIOQ Switch
We consider an N × N packet switch that routes pack-

ets arriving at N input-ports at rate R and destined for N
output-ports working at the same rate R, as illustrated in
Figure 1. Packets of variable size arrive at the input-ports
and leave the output-ports in a time-slotted manner (that
is, all the switch external lines are synchronized). For conve-
nience, we refer to each part of a packet that is transmitted
during a single slot as a fixed-size cell. Note that packets
are not really segmented into cells, and the cell abstraction
is used solely to simplify our description.

The packet size is measured in cell-units, where the min-
imal packet size is one cell and the maximum packet size is
Lmax cells. All cells of the same packet arrive at the switch
contiguously in the same input-port and are destined for the
same output-port. Therefore, we refer to a packet simply as
a sequence of cells and assume that its size is known upon
arrival of its first cell (e.g., the total size is written in the
header).

For every cell c, we denote by orig(c) and dest(c) the
input-port at which c arrives and the output-port for which
c is destined. In addition, packet(c) denotes the packet that
corresponds to cell c; first(p), last(p) are the first and last
cells of packet p.

In a combined input-output queued (CIOQ) switch with
speedup S, packets arriving at rate R are first buffered in
the input side and then forwarded over the switch fabric
to the output-side as dictated by a scheduling algorithm
(recall Figure 1). Packets that arrive at input-port i and
are destined for output-port j are stored in the input side
of the switch in a separate buffer, which is called virtual
output-queue and denoted by V OQij .
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Figure 3: Illustration of the proof of Theorem 3.1; white packets are destined for output-port 1 and the gray
packet is destined for output-port 2.

The switch fabric operates at rate S · R, where S is
the speedup of the switch, implying that the switch has
S scheduling opportunities (or scheduling decisions) every
time-slot.1 When S > 1, some buffering should be done also
in the output side of the switch.

A packet-mode CIOQ switch ensures that if a packet
p from input-port i to output-port j consists of the cells
(c1, . . . , c`) then after cell c1 is transmitted across the switch
fabric, no cells of packets other than p are transmitted from
input port i or to output port j until cell c` is transmitted.
Naturally, cells of the same packet are transmitted in order.

It is possible that some input-port i starts transmitting
cells of a packet p before all the cells of packet p arrived
at the switch. Since the speedup of the switch is typically
greater than 1, this may cause the switch to under-utilize
its speedup. For example, suppose that the first cell c1 of
a packet p = (c1, c2, . . . , c`) arrives at input-port i at time-
slot t and is immediately sent to output-port j in the first
scheduling opportunity of time-slot t. Since cell c2 arrives at
the switch only at time-slot t + 1, no cells can be sent from
input-port i or to output-port j for the next S−1 scheduling
opportunities (even if there are cells of other packets in one
of the relevant buffers).

2.2 Mimicking a Packet-Mode OQ Switch
The first requirement from a packet-mode OQ switch is to

ensure that cells of the same packet are contiguous; that is,
cells of the same packet should leave the switch one after the
other with no interleaving of cells from other packets. We
denote by tOQ(c) the time-slot at which cell c is delivered
by the output-queued switch. Therefore, for any packet p =
(c1, . . . c`), tOQ(ci) = tOQ(cj) + (i− j) for 1 ≤ j ≤ i ≤ `.

As in previous works on OQ switch mimicking (e.g. [6, 7,
14]), a packet-mode OQ switch should also provide a relaxed
notion of a first-come-first-serve (FCFS) discipline. If the
last cell of packet p arrives at the switch before the first cell
of packet p′ and both packets share the same output-port,
then all cells of packet p should leave the switch before the
cells of packet p′. We denote this partial order of packets by
p ≺ p′ (i.e., packet p should be handled before packet p′).

Finally, OQ switches, and in particular packet-mode OQ
switches, should also be work-conserving : Namely, if a cell
is pending for output port j at time-slot t, then some cell
leaves the switch from output-port j at time-slot t. [6,17,18].

We now define the stability criterion used in this paper:

1For non-integral speedup values, the speedup S is the aver-
age number of such scheduling decisions per time-slot, where
at each time slot the switch makes between bSc and dSe
scheduling decisions [11].

Definition 1. (Output-queued switch mimick-
ing [14]) A switch mimics an output-queued switch with
relative queuing delay R if, under identical input traffic,
every cell leaves the switch at most R time-slots after it
would have left the output-queued switch, where R is a
constant independent of the elapsed time.

We say that a switch emulates an OQ switch if it mimics
it without relative queuing delay (i.e., R = 0) [6]. Since an
output-queued switch is a work-conserving switch, it implies
that any switch that emulates an output-queued switch is
work-conserving.

3. SIMPLE UPPER AND LOWER BOUNDS
ON THE RELATIVE QUEUING DELAY

We show that a packet-mode CIOQ switch cannot mimic
with a small relative queuing delay an OQ switch, regard-
less of the CIOQ switch speedup. In particular, and quite
surprisingly, this result implies that a packet-mode CIOQ
cannot exactly emulate an OQ switch, whatever the speedup
used. This runs against the conventional wisdom that “a
speedup N solves every problem”.

Theorem 3.1. A packet-mode CIOQ switch cannot
mimic an OQ switch with a relative queuing delay
R < Lmax/2− 3 time-slots.

Proof. Assume towards a contradiction that the CIOQ
switch mimics an OQ switch with relative queuing delay
R < Lmax/2−3, and consider the following traffic, compris-
ing of only three packets (see Figure 3): At time-slot 1 a
packet p1 of size Lmax arrives at input-port 1, destined for
output-port 1. At time-slot R+ 2, another packet, denoted
p2, of size 1 arrives at input-port 2, destined for output-port
1. At time-slot R + 3, a packet p3 of size Lmax arrives at
input-port 2, destined for output-port 2.

At time-slot 1, packet p1 is the only packet destined for
output-port 1; since the OQ switch is work-conserving, the
first cell of p1 is delivered by the OQ switch at time-slot
1, implying it must be delivered by the CIOQ switch by
time-slot R+1. Packet-scheduling restricts the switch from
delivering cells of other packets to output-port 1 until the
last cell of packet p1 is delivered. Since the last cell of packet
p1 arrives at the switch at time-slot Lmax, then output-port
1 is busy handling p1 at least until time-slot Lmax.

Using the same arguments, the first cell of packet p3 must
be delivered to output-port 2 at time-slot 2R+3, and input-
port 2 is busy handling p3 at least until time-slot Lmax +
R+ 2.

Since Lmax > 2R + 3, packet p2 cannot be delivered to
output-port 1 until time slot Lmax +R+2. But, packet p2 is



delivered by the OQ switch in time-slot Lmax + 1, implying
that its relative queuing delay is at least R+1, contradicting
the assumption.

Note that this result holds since the CIOQ switch waits
for the cells of the different packets to arrive, and therefore
under the situation described in the proof of Theorem 3.1,
the switch in fact degrades to work at the external line rate
(i.e., with S = 1), as an IQ switch. The result is there-
fore consistent with the known result that IQ switches, with
speedup 1, cannot emulate output-queued switches [6].

We now show that a CIOQ switch can mimic an OQ
switch with relative queuing delay of Lmax − 1 time-slots
provided it has a sufficiently large speedup of 2Lmax. The al-
gorithm closely follows the CCF algorithm, which emulates
(precisely) a cell-based OQ switch with speedup S = 2 [6].

Intuitively, multiplying the speedup by the maximum
packet size Lmax reduces the problem of packet-mode switch-
ing to cell-based switching: each cell-based scheduling de-
cision can be mapped to Lmax contiguous packet-mode
scheduling decisions, implying that a packet can be trans-
mitted contiguously. In addition, a relative queuing delay
of Lmax − 1 time-slots allows the scheduler to wait until a
packet fully arrives at the switch before it is scheduled. The
following theorem captures this simple result:

Theorem 3.2. A packet-mode CIOQ switch with speedup
S = 2Lmax can mimic an OQ switch with relative queuing
delay of Lmax − 1 time-slots.

Proof. For each time-slot t, let traffic T (t) be the col-
lection of cells that arrive at the switch by time-slot t and
let T ′(t) ⊆ T (t) be a traffic comprising only of cells in T (t)
that are the first cells of their corresponding packets. De-
note by CCF′(c) the time-slot in which the CCF algorithm
with speedup S = 2 schedules a cell c of traffic T ′(t) over
the switch fabric, and let t′OQ(c) be the time-slot in which c
leaves a cell-based OQ switch that handles traffic T ′.

The packet-mode CCF algorithm (PM-CCF) simulates
the behavior of a cell-based CCF: For each packet p of
traffic T (t), PM-CCF forwards the entire packet p con-
tiguously over the switch fabric in time-slot tPM−CCF =
CCF′(first(p)) + Lmax − 1.

Since the cell-based CCF works with speedup S = 2, for
each time-slot t there are at most two cells which share the
same input or output port and are forwarded over the switch
fabric by the cell-based CCF in time-slot t. PM-CCF works
correctly since it has 2Lmax scheduling opportunities at each
time-slot and therefore can schedule the packets correspond-
ing to these two cells entirely in the same time-slot t. In ad-
dition, the contiguous arrival of packets at the input-ports
ensures that packet p has fully arrived to the switch by time-
slot CCF′(first(p)) + Lmax − 1.

For each cell c of traffic T , tOQ(c) denotes the time-slot
in which c leaves the packet-mode OQ switch. Note that
tOQ(c) ≥ tOQ(first(packet(c))) ≥ t′OQ(first(packet(c))),
because cells corresponding to the same packet are delivered
in order and traffic T ′ is a subset of traffic T . Since the cell-
based CCF emulates cell-based OQ switch, it follows that
for each cell c of traffic T :

tOQ(c) ≥ t′OQ(first(packet(c)))

≥ CCF′(first(packet(c)))

= tPM−CCF (c)− (Lmax − 1)

This implies that every cell c can be delivered from a
CIOQ switch with packet-mode CCF at time-slot tOQ(c) +
Lmax − 1, and the claim follows.

This result only demonstrates the possibility of OQ mim-
icking with bounded delay, since a speedup S = 2Lmax is
unreasonable in practical switches. In the rest of the paper,
we show how to provide OQ mimicking with small speedup.

4. TRADEOFFS BETWEEN THE SPEEDUP
AND THE RELATIVE QUEUING DELAY

Our scheduling algorithms operate in a frame-based
pipelined manner, with scheduling decisions done only at
the frame boundaries. At each frame boundary, the al-
gorithms first construct some demand matrices, and then
decompose these matrices into some permutations (or sub-
permutations). The algorithms satisfy the demands by
scheduling the cells in the next frame according to the re-
sulting permutations.

The algorithms and their analysis rely on some results of
matrix theory, which are presented next.

4.1 Matrix Decomposition

Definition 2. A permutation P is a 0-1 matrix such
that the sum of each row and the sum of each column is
exactly 1. A sub-permutation P is a 0-1 matrix such that
the sum of each row and the sum of each column is at most
1.

In the rest of the paper, for simplicity, we refer to sub-
permutations as permutations. The following definition cap-
tures the fact that the number of cells that should be sched-
uled from a single input-port or to a single output-port is
bounded:

Definition 3. A matrix A ∈ INN×N is C-bounded if the
sum of each row and each column in A is at most C.

A classical result says that any C-bounded matrix A can
be decomposed into C permutations, whose sum dominates
A:

Theorem 4.1. (Birkhoff von-Neumann decomposi-
tion [3, 9, 32]) If a matrix A∈ INN×N is C-bounded by an
integer C, then there are C permutations P1, . . . , PC such
that A ≤

∑C
i=1 Pi.

The Birkhoff von-Neumann decomposition implies that
every C-bounded demand matrix can be scheduled, cell
by cell, in C scheduling opportunities (or, equivalently,
in dC/Se time-slots) when permutation Pi dictates the
scheduling in opportunity i. However, such a scheduling
may violate the packet-mode restrictions, since there is no
relation between adjacent permutations in the sequence. For
reasons that will become clear shortly, we are interested in
the following class of permutations:

Definition 4. A maximal matching for a matrix A =
[aij ] is a permutation matrix P = [pij ] ≤ A such that if
pij = 0 and aij > 0 then there exist i′ such that pi′j = 1 or
j′ such that pij′ = 1.



Intuitively, a permutation P ≤ A is a maximal matching
for a matrix A if no element can be added to P , resulting in
a matrix that is still a permutation and is dominated by A.

The next theorem shows that if a matrix is decomposed
by any sequence of maximal matchings then the number of
permutations needed is at most twice the number needed in
Theorem 4.1. The decomposition procedure of a C-bounded
matrix A works iteratively: In each iteration m, a maximal
matching P (m) for the matrix A(m− 1) is found and then
subtracted from A(m−1) to form A(m) (negative values are
treated as zeros). The procedure stops when A(m) = 0. We
next show that this happens after at most 2C−1 iterations,
regardless of the choice of the maximal matching in each
iteration, implying that the matrix A is decomposed into
less than 2C permutations.

Theorem 4.2. ([33, Theorem 2.2]) For every C-
bounded matrix A ∈ INN×N , the decomposition procedure
described above stops after at most 2C − 1 iterations.

Proof. Denote A(0) = A and let P (m) = [p(m)ij ] be
the maximal matching found in iteration m. Let A(m) =
[a(m)ij ] be the matrix, resulting from subtracting the per-
mutation P (m) from the matrix A(m− 1).

If A(2C − 1) 6= 0 then there exist i,j such that a(2C −
1)ij > 0. Let a(2C − 1)ij = k and a(0)ij = `. This implies
that p(m)ij = 1 in exactly ` − k permutations P (m) (1 ≤
m ≤ 2C − 1), and therefore p(m)ij = 0 in (2C − 1)− ` + k
such permutations.

Note that for every m ≤ 2C − 1, a(m)ij > 0. Therefore,
Definition 4 yields that if p(m)ij = 0 then there are either
i′ such that p(m)i′j = 1 or j′ such that p(m)ij′ = 1.

However, the sum of either row i or column j, excluding
a(0)ij , is at most C − `. This implies that 2(C − `) ≥
(2C − 1)− ` + k, which is a contradiction since `, k ≥ 1.

4.2 Mimicking an Output-Queued Switch
with SpeedupS ≈ 4

Our schedulers operate by constructing a demand matrix
at each frame boundary, and then using the result of de-
composing this matrix for scheduling decisions in the next
frame. The relative queuing delay of the schedulers cor-
responds to the size of the frame, while the speedup of the
switch is determined by the ratio between the frame size and
the number of permutations obtained in the decomposition.

A key insight is that packet-mode OQ switches can be
implemented by a push-in-first-out (PIFO) cell-based OQ
switch. In such OQ switches, arriving cells are placed in
an arbitrary location in their destination’s buffer, and the
switch always outputs the cells at the head of its buffers [6].
The PIFO policy is an extension of the first-in-first-out
(FIFO) policy that can also implement QoS-aware (Quality-
of-Service-aware) algorithms, such as WFQ and strict pri-
ority. In our case, it allows us to implement packet-mode
OQ switches as follows: The first cell of a packet p arriv-
ing at the switch is placed at the end of the relevant OQ
switch buffer. Each consecutive cell ci of packet p is placed
immediately after cell ci−1; in each time-slot, the cell at the
head of the buffer departs from the switch. Since cells of
the same packet are placed one after the other in the buffer,
they leave the OQ switch contiguously. In addition, if p ≺ p′

then the last cell of packet p is placed in the buffer before
the first cell of packet p′, implying that packet p is served
before packet p′.

Notice that, using the CCF algorithm, a cell-based CIOQ
switch with speedup S = 2 can emulate cell-based OQ
switch with any PIFO discipline [6], and in particular the
above-mentioned discipline. Our next algorithms use this
underlying CCF in order to construct the demand matrix of
each frame.

Let CCF(c) be the time-slot in which a cell c is forwarded
over the switch fabric by this CCF algorithm. Clearly,
CCF(c) ≤ tOQ(c). We have the next lemma:

Lemma 4.3. If a scheduling algorithm ALG schedules the
cell last(p) of every packet p by time-slot CCF(last(p)) + δ
then the maximum relative queuing delay of ALG is at most
δ + Lmax − 1, where Lmax is the maximum packet size.

Proof. Consider a cell c, let k be its place in packet(c),
and let ` be the size of packet(c). The contiguous packet
delivery in the output-queued switch dictates that tOQ(c) =
tOQ(last(packet(c))− (`− k). Let tALG(c) be the time-slot
in which ALG forwards cell c over the switch fabric. Since
both ALG and CCF forward the cells of packet(c) in their
order within the packet,

tALG(c) ≤ tALG(last(packet(c))

≤ CCF(last(packet(c)) + δ

≤ tOQ(last(packet(c)) + δ

= tOQ(c) + δ + `− k

≤ tOQ(c) + δ + `− 1

≤ tOQ(c) + δ + Lmax − 1

This implies that every cell c is in the output-side of the
switch by time-slot tOQ(c) + δ + Lmax − 1, and therefore
ALG can output cell c from the CIOQ switch at time-slot
tOQ(c) + δ + Lmax − 1. Notice that ALG does not transmit
two cells c, c′ at the same time-slot from the same output-
port, since tOQ(c) + δ + Lmax − 1 = tOQ(c′) + δ + Lmax − 1
implies that tOQ(c) = tOQ(c′), contradicting the definition
of an output-queued switch.

We now explore the trade-off between the speedup S in
which the CIOQ switch operates and its relative queuing
delay. We devise a frame-based scheduler in which the de-
mand matrix in each frame is built according to the times in
which the underlying CCF algorithm forwards cells over the
switch fabric. In addition, packets that were not fully for-
warded by the CCF algorithm until the frame boundary are
queued in the input-side of the switch until the next frame,
as captured by the next definition:

Definition 5. For every input-port i, output-port j,
frame size T and frame number k > 0, the set of eligi-
ble cells of frame k, denoted aij(T, k), includes all cells
c 6∈

⋃
k′<k aij(T, k′) such that all cells c′ ∈ packet(c) have

CCF(c′) ≤ kT . By convention, aij(T, 0) = ∅.
Notice that by definition, all the cells of a packet p are in

the same set of eligible cells.
The next lemma bounds the number of cells, sharing

an input-port or an output-port, that should be scheduled
within the same frame:

Lemma 4.4. For every input-port i, output-port j, frame
size T and frame number k > 0,∑N

j′=1 |aij′(T, k)| ≤ 2T + N (Lmax − 1) and∑N
i′=1 |ai′j(T, k)| ≤ 2T + N (Lmax − 1)



Proof. Note that the CCF algorithm works with CIOQ
switch with speedup 2. Thus, the number of cells c that
share the same input-port (output-port) and have been for-
warded by the CCF within frame k (namely, (k − 1)T <
CCF(c) ≤ kT ) is at most 2T .

Since in each virtual output-queue V OQi,j , all cells of
the same packet p are stored one after the other, there is
no cell of a different packet that is forwarded by CCF be-
tween cells of packet p. Therefore, only cells of one packet
are in aij(T, k) and were forwarded by CCF before time-slot
(k−1)T ; we next bound the number of such cells: Since the
maximum packet size is Lmax and the last cell of each packet
was forwarded by the CCF after time-slot (k− 1)T , at most
Lmax − 1 such cells share the same input-port and the same
output-port. Thus, the number of such cells that share an
input-port (output-port) is at most N(Lmax − 1). This im-

plies that both
∑N

j′=1 |aij′(T, k)| and
∑N

i′=1 |ai′j(T, k)| are

bounded by 2T + N(Lmax − 1).

Lemma 4.4 and Theorem 4.1 imply that the eligible cells
of each frame can be scheduled within 2T + N(Lmax − 1)
scheduling opportunities. Unfortunately, the decomposition
described in Theorem 4.1 does not ensure that the packet-
mode scheduling constraints are satisfied and therefore can-
not be used directly. For example, consider the matrix

A = [aij ] =


3 1 2 0
0 2 2 2
1 2 2 1
2 1 0 3

 ,

in which, for example, element a1,1 represents a single packet
of size 3 and elements a2,2,a2,3,a2,4 represent packets of size
2. The following decomposition of A into six permutations

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

+


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



+


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

+


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

+


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0


violates the packet-mode constraints: Contiguous transmis-
sion of packet a1,1 requires that the first three permutations
are scheduled contiguously. On the other hand, each permu-
tation i (i ∈ {1, 2, 3}) must also be adjacent to permutation
i + 3 in order to ensure contiguous transmission of packet
a2,i+1. These requirements cannot be satisfied simultane-
ously, since it yields that at least one permutation must be
adjacent to three permutations.

To circumvent this problem, we introduce a different de-
composition algorithm, which guarantees contiguous packet
delivery but requires twice as much scheduling opportuni-
ties: At each frame boundary, the algorithm counts the
number of cells in each set aij(T, k) and constructs a matrix
B(k) = [bij ] accordingly (namely, bij = |aij(T, k)|). Then,
the algorithm repeatedly builds maximal matchings for ma-
trix B(k) and keeps contiguous packet delivery in the follow-
ing manner: If a cell from input-port i to output-port j is
forwarded in some iteration of the algorithm, and there are
more cells from i to j that were not forwarded yet, then the
algorithm keeps the matching between i and j for the next

Algorithm 1 Coarse-Grained Maximal Matchings

Local Variables:
B: matrix of values in IN, initially B = B(k)
P : matrix of values in {0, 1}, initially 0

1: procedure schedule(matrix B)
2: while B 6= 0 do
3: for all P [i][j] do
4: if P [i][j] = 1 and B[i][j] = 0 then
5: P [i][j] = 0
6: P := max-match(B, P ) . returns a maximal match-

ing of B that dominates P
7: for all P [i][j] do
8: if P [i][j] = 1 and B[i][j] > 0 then
9: forward a cell from input i to output j
10: B := B − P
11: for all B[i][j] do . avoid negative values in B
12: B[i][j] := max{B[i][j], 0}

13: matrix procedure max-match(matrix B, matrix P )
14: while there are i, j such that B[i][j] = 1 and∑N

j′=1 P [i][j′] = 0 and
∑N

i′=1 P [i′][j] = 0 do

15: P [i][j] = 1
16: return P

iteration. (This procedure is sometimes called exhaustive
service matching [20].)

Since the algorithm uses only maximal matchings, Theo-
rem 4.2 yields that the algorithm needs twice as many it-
erations as Birkhoff von-Newmann decomposition in order
to decompose matrix B(k). In particular, for every frame
size T , the algorithm needs at most 4T + 2N(Lmax − 1)
iterations to complete. This implies that it can mimic an
output-queued switch with a speedup arbitrarily close to 4,
while attaining a relative queuing delay of O(NLmax).

Theorem 4.5. A packet-mode CIOQ switch with speedup

S = 4 + 2N(Lmax−1)−1
T

can mimic an OQ switch with a rel-
ative queuing delay of 2T + Lmax − 2 time-slots.

Proof. Fix a frame size T and let B(k) = [bij ] be the
N×N matrix such that bij = |aij(T, k)|. Lemma 4.4 implies
that the sum of each row and each column of B(k) is at most
2T + N(Lmax − 1).

Algorithm 1 works by repeatedly constructing maximal
matchings P for matrix B(k). If a cell in the set aij(T, k)
is forwarded in some iteration of the algorithm, and there
are more cells in aij(T, k) to be forwarded, the algorithm
keeps the matching between input-port i and output-port
j for the next iteration. Therefore, cells of a specific set
are forwarded contiguously; Hence, Definition 5 implies that
Algorithm 1 forwards all the cells corresponding to a specific
packet contiguously: this clearly satisfies the packet-mode
scheduling constraints.

All matchings used by Algorithm 1 are maximal and the
sum of each column and each row in B(k) is at most 2T +
N(Lmax − 1). Theorem 4.2 implies that Algorithm 1 needs
at most

2 · (2T + N(Lmax − 1))− 1 = 4T + 2N(Lmax − 1)− 1

iterations to complete. Thus, with speedup 4+ 2N(Lmax−1)−1
T

the algorithm schedules all cells corresponding to B(k)
within the next frame, that is, by time-slot (k + 1)T .

Consider the last cell last(p) of some packet p. Def-
inition 5 implies that if last(p) ∈ aij(T, k) then
CCF (last(p)) > (k − 1)T . Since Algorithm 1 schedules



last(p) by time-slot (k + 1)T , it follows that the relative
queuing delay of last(p) is at most 2T − 1. By Lemma 4.3,
the relative queuing delay is at most 2T + Lmax − 2.

Notice that for switch speedup S > 4, the relative queuing

delay induced by this algorithm is 2N(Lmax−1)−1
S−4

+ Lmax − 2
time-slots.

4.3 Mimicking an Output-Queued Switch
with SpeedupS ≈ 2

Notice that for each frame, the scheduler described in The-
orem 4.5 schedules all eligible cells with the same origin and
the same destination contiguously, implying that in fact it
considers them as a single packet. Using a more fine-grained
scheduler and the Birkhoff von-Neumann decomposition, we
now show that a smaller speedup, arbitrarily close to 2, suf-
fices albeit with larger relative queuing delay.

This is done in the context of the common situation where
packet size are restricted to be from the set L (cf. [23, 26]).
Notice that this case generalizes the unrestricted packet size
case, where L = {1, . . . , Lmax}. Let lcm(L) be the least
common multiple of all elements in L.

Theorem 4.6. A packet-mode CIOQ switch with speedup

S = 2 +
N(Lmaxlcm(L)−1)

T
can mimic an OQ switch with a

relative queuing delay of 2T + Lmax − 2 time-slots.

Proof. Fix a frame size T . For every packet size ` ∈ L,
let aij(T, `, k) ⊆ aij(T, k) be the set of eligible cells (re-
call Definition 5) that correspond to packets of size `. Let
B(`, k) = [b(`, k)ij ] be the matrix with values b(`, k)ij =
|aij(T,`,k)|

`
, that is, the number of eligible packets of size ` in

frame k.
For every packet size `, the algorithm first tries to con-

catenate lcm(L)/` packets one after the other in order
to get one mega-packet of size lcm(L), each such mega-
packet consists of packets of the same size. The matrix
B(lcm(L), k) = [b((lcm(L), k)ij ] counts the number of such
mega-packets:

b ((lcm(L), k)ij =
∑
`∈L

⌊
` · b(`, k)ij

lcm(L)

⌋
We first bound the sum of each row and each column of

the matrix B(lcm(L), k). Consider some row i of the matrix
(the proof for a column j follows analogously):

N∑
j=1

b ((lcm(L), k)ij =

N∑
j=1

∑
`∈L

⌊
` · b(`, k)ij

lcm(L)

⌋

≤
N∑

j=1

∑
`∈L

` · b(`, k)ij

lcm(L)

=
1

lcm(L)

N∑
j=1

∑
`∈L

|aij(T, `, k)|

=
1

lcm(L)

N∑
j=1

|aij(T, k)|

≤ 1

lcm(L)
· (2T + N(Lmax − 1))

by Lemma 4.4

By Theorem 4.1, the matrix B(lcm(L), k) can be de-

composed into 2T+N(Lmax−1)

lcm(L)
permutations. Denote by

P(lcm(L), k) the set of these permutations.
We now turn to deal with leftover packets. Let the ma-

trices B′(`, k) = [b′(`, k)]ij count the number of packets of
size ` that are not concatenated into mega-packets. Note
that b′(`, k)ij ≤ (lcm(L)− 1)/`, since it is the remainder of
dividing b(`, k)ij by lcm(L)/`. This implies that the sum of
each row and each column of matrix B′(`, k) is bounded by
N(lcm(L) − 1)/`. By Theorem 4.1, the matrix B′ can be

decomposed into
N·(lcm(L)−1)

`
permutations. Let P(`, k) be

the set of the permutations used to decompose the matrix
B′(`, k).

After obtaining these sets of permutations, the algorithm
forwards contiguously all the mega-packets by holding each
permutation P ∈ P(lcm(L), k) for lcm(L) consecutive iter-
ations. Then for every ` ∈ L, the algorithm holds each per-
mutation P ∈ P(`, k) for ` consecutive iterations. Clearly,
all the cells of a specific packet are forwarded contiguously,
and the algorithm satisfies the packet-mode scheduling con-
straints.

The number of iterations needed for the algorithm to com-
plete is bounded by:

lcm(L) 2T+N(Lmax−1)

lcm(L)
+

∑
`∈L `

N·(lcm(L)−1)
`

≤ 2T + N(Lmax − 1) + N · Lmax · (lcm(L)− 1)

Thus, with a speedup of 2+
N·(Lmaxlcm(L)−1)

T
the algorithm

schedules all cells correspond to frame k within the next
frame. This implies that for each packet p the maximum
relative queuing delay of cell last(p) is less than two frame
sizes, namely at most 2T − 1 time-slots. Hence, Lemma 4.3
implies that the maximum relative queuing delay is at most
2T + Lmax − 2.

Notice that for switch speedup S > 2, the relative queu-

ing delay induced by this algorithm is
N·(Lmaxlcm(L)−1)

S−2
+

Lmax − 2 time-slots.

5. MIMICKING AN OQ SWITCH WITH
BOUNDED BUFFERS

In many practical applications, CIOQ switches are re-
quired to emulate OQ switches with bounded buffer size.
We show that smaller speedup suffices for mimicking an
OQ switch with output buffer B. Intuitively, the reason for
this better performance is that an OQ switch with bounded
buffers cannot handle all incoming traffic types without
dropping cells. Therefore, by using the extra information
about the legal incoming traffic types, the CIOQ switch can
optimize its scheduling decisions, resulting in a simpler and
more efficient scheduling algorithm.

Unlike the previous algorithms, algorithms for bounded
mimicking do not rely on the CCF algorithm, and use the
following definition and lemma, which are adapted from Def-
inition 5 and Lemma 4.4:

Definition 6. For every input-port i, output-port j,
frame size T and frame number k > 0, the set of eligi-
ble cells of frame k, denoted aij(T, k), is the set of cells
c that are delivered successfully by the output-queued switch,



c 6∈
⋃

k′<k aij(T, k′), and all cells c′ ∈ packet(c) arrive at the
switch before time-slot kT . By convention, aij(T, 0) = ∅.

As in Definition 5, all the cells of each packet p are in the
same set of eligible cells. The next lemma bounds the size
of these sets.

Lemma 5.1. For every input-port i, output-port j, frame
size T and frame number k > 0,∑N

j′=1 |aij′(T, k)| ≤ T + B + N (Lmax − 1) and∑N
i′=1 |ai′j(T, k)| ≤ T + B + N (Lmax − 1)

Proof. Clearly, at most T cells arrive at each input-port
between time-slot (k − 1)T and kT . We next show that
at most T + B cells arrive between time-slot (k − 1)T and
kT , destined for a single output-port j, and are successfully
delivered by the OQ switch.

Assume, by way of contradiction, that `1 > T + B cells
destined for output-port j arrive at the switch within frame
k and are not dropped by the OQ switch. Let `2 ≥ 0 be the
number of cells stored in the buffer of output-port j in time-
slot (k−1)T . By the definition of an output-queued switch,
at most T cells are delivered from output-port j between
time-slots (k − 1)T and kT , hence the number of cells that
are stored in the buffer by the end of frame k is at least
`1 + `2 − T > B cells, contradicting the fact that the buffer
size is B.

Since all cells of the same packet p arrive at the switch
contiguously, only cells of one packet are in aij(T, k) and
arrived at the switch before time-slot (k − 1)T . Since the
maximum packet size is Lmax and the last cell of each packet
arrives after time-slot (k − 1)T , the number of such cells
that share the same input-port and the same output-port
is bounded by Lmax − 1. Thus, the number of such cells
that share the same input-port (output-port) is bounded by
N(Lmax − 1), and the sum is therefore bounded by T + B +
N(Lmax − 1).

In order to mimic an output-queued switch, the CIOQ
switch drops all cells that are dropped by the OQ switch.
By employing Lemma 5.1 in the proofs of Theorems 4.5
and 4.6, we get the following results:

Corollary 5.2. A packet-mode CIOQ switch with

speedup S = 2 + 2B+2N(Lmax−1)−1
T

can mimic an OQ
switch with buffer size B with a relative queuing delay of
2T + Lmax − 2 time-slots.

Corollary 5.3. A packet-mode CIOQ switch with

speedup S = 1 +
B+N·(Lmax·lcm(L)−1)

T
can mimic an OQ

switch with buffer size B with a relative queuing delay of
2T + Lmax − 2 time-slots.

6. DISCUSSION
This paper shows that strong performance guarantees can

be provided in packet-mode CIOQ switches, regardless of the
incoming traffic. These guarantees are provided by mim-
icking, with bounded relative queuing delay, an ideal OQ
switch.

Packet-mode scheduling imposes very confining restric-
tions on scheduling algorithms. Unlike cell-based CIOQ
switches with speedup N that are in fact output-queued

switches, packet-mode CIOQ switches cannot exactly em-
ulate output-queued switches, regardless of their speedup.
On the other hand, if relative queuing delay can be toler-
ated, a speedup arbitrarily close to 2 suffices for such mim-
icking. This result matches the same result regarding cell-
based scheduling, implying that, somewhat surprisingly, no
additional speedup is required in order to keep packets con-
tiguous over the switch fabric.

These packet-mode schedulers induce high relative queu-
ing delay, which can be prohibitive for real-life switches.
We therefore study the trade-off between the relative queu-
ing delay and the speedup of the switch, and prove that
a reasonable relative queuing delay can be achieved by a
CIOQ switch with speedup close to 4. Based on preliminary
simulations, we expect this algorithm to incur even smaller
relative queuing delay with speedup smaller than 2, under
real Internet traffic traces.

Scheduling algorithm complexity is often seen as the main
performance limitation of CIOQ switches [2]: Scheduling
decisions are typically done every time-slot, requiring the
scheduling algorithm to be as fast as the external line rate.
Frame-based algorithms [2, 24], like those presented here,
overcome this obstacle because scheduling decisions are done
only at frame boundaries.

This paper presents upper bounds on the speedup re-
quired to achieve a given relative queuing delay, leaving the
question of their optimality for future research. Note that
by Theorem 3.1, Lmax/2−3 is a lower bound on the relative
queuing delay, regardless of the switch speedup.
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