
Counting-Based Impossibility Proofs

for Renaming and Set Agreement

Hagit Attiya and Ami Paz

Technion - Israel Institute of Technology

DISC 2012

This Work

Wait-free algorithms for n processes, using only reads and writes
I.e., all but one process may crash

New proofs for the impossibility of:

(n − 1)-set agreement

(2p −
⌈

p
n−1

⌉
)-adaptive renaming

(2n − 2)-renaming

This Work

Wait-free algorithms for n processes, using only reads and writes
I.e., all but one process may crash

New proofs for the impossibility of:

(n − 1)-set agreement

(2p −
⌈

p
n−1

⌉
)-adaptive renaming

(2n − 2)-renaming

This Work

Wait-free algorithms for n processes, using only reads and writes
I.e., all but one process may crash

New proofs for the impossibility of:

(n − 1)-set agreement

(2p −
⌈

p
n−1

⌉
)-adaptive renaming

(2n − 2)-renaming

This Work

Wait-free algorithms for n processes, using only reads and writes
I.e., all but one process may crash

New proofs for the impossibility of:

(n − 1)-set agreement

(2p −
⌈

p
n−1

⌉
)-adaptive renaming

(2n − 2)-renaming

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new
names from a smaller range

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new
names from a smaller range

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new
names from a smaller range

2n − 1 names are sufficient [Attiya et al., Borowsky and Gafni,

Attiya and Fouren, Gafni and Rajsbaum]

n + 1 names are necessary [Attiya et al.]

2n − 1 names are necessary [Herlihy and Shavit,

Herlihy and Rajsbaum, Attiya and Rajsbaum]

2n − 1 names are necessary for some values of n,
but not for others [Castañeda and Rajsbaum]

Theorem: (2n − 2)-renaming solvable ⇔
(n
1

)
, . . . ,

(n
n−1
)

relatively prime
⇔ n is not a prime power

This talk: n is a prime power ⇒ (2n − 2)-renaming is not solvable

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new
names from a smaller range

2n − 1 names are sufficient [Attiya et al., Borowsky and Gafni,

Attiya and Fouren, Gafni and Rajsbaum]

n + 1 names are necessary [Attiya et al.]

2n − 1 names are necessary [Herlihy and Shavit,

Herlihy and Rajsbaum, Attiya and Rajsbaum]

2n − 1 names are necessary for some values of n,
but not for others [Castañeda and Rajsbaum]

Theorem: (2n − 2)-renaming solvable ⇔
(n
1

)
, . . . ,

(n
n−1
)

relatively prime
⇔ n is not a prime power

This talk: n is a prime power ⇒ (2n − 2)-renaming is not solvable

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new
names from a smaller range

2n − 1 names are sufficient [Attiya et al., Borowsky and Gafni,

Attiya and Fouren, Gafni and Rajsbaum]

n + 1 names are necessary [Attiya et al.]

2n − 1 names are necessary [Herlihy and Shavit,

Herlihy and Rajsbaum, Attiya and Rajsbaum]

2n − 1 names are necessary for some values of n,
but not for others [Castañeda and Rajsbaum]

Theorem: (2n − 2)-renaming solvable ⇔
(n
1

)
, . . . ,

(n
n−1
)

relatively prime
⇔ n is not a prime power

This talk: n is a prime power ⇒ (2n − 2)-renaming is not solvable

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new
names from a smaller range

2n − 1 names are sufficient [Attiya et al., Borowsky and Gafni,

Attiya and Fouren, Gafni and Rajsbaum]

n + 1 names are necessary [Attiya et al.]

2n − 1 names are necessary [Herlihy and Shavit,

Herlihy and Rajsbaum, Attiya and Rajsbaum]

2n − 1 names are necessary for some values of n,
but not for others [Castañeda and Rajsbaum]

Theorem: (2n − 2)-renaming solvable ⇔
(n
1

)
, . . . ,

(n
n−1
)

relatively prime
⇔ n is not a prime power

This talk: n is a prime power ⇒ (2n − 2)-renaming is not solvable

Weak Symmetry Breaking (WSB)

Processes start with unique input values
Must decide on a single bit s.t.:

If all terminate,
both 0 and 1 are decided

If (2n − 2)-renaming is solvable,
then so is WSB

Suffices to show that WSB is unsolvable

Weak Symmetry Breaking (WSB)

Processes start with unique input values
Must decide on a single bit s.t.:

If all terminate,
both 0 and 1 are decided

If (2n − 2)-renaming is solvable,
then so is WSB

Suffices to show that WSB is unsolvable

Weak Symmetry Breaking (WSB)

Processes start with unique input values
Must decide on a single bit s.t.:

If all terminate,
both 0 and 1 are decided

If (2n − 2)-renaming is solvable,
then so is WSB

Suffices to show that WSB is unsolvable

Strong Symmetry Breaking (SSB)

Processes start with unique input values
Must decide on a single bit s.t.:

If all terminate,
both 0 and 1 are decided

In any execution, 1 is decided

If (2p −
⌈

p
n−1

⌉
)-adaptive renaming is

solvable, then so is SSB

Suffices to show that SSB is unsolvable

Strong Symmetry Breaking (SSB)

Processes start with unique input values
Must decide on a single bit s.t.:

If all terminate,
both 0 and 1 are decided

In any execution, 1 is decided

If (2p −
⌈

p
n−1

⌉
)-adaptive renaming is

solvable, then so is SSB

Suffices to show that SSB is unsolvable

Strong Symmetry Breaking (SSB)

Processes start with unique input values
Must decide on a single bit s.t.:

If all terminate,
both 0 and 1 are decided

In any execution, 1 is decided

If (2p −
⌈

p
n−1

⌉
)-adaptive renaming is

solvable, then so is SSB

Suffices to show that SSB is unsolvable

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB
W.l.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions

Show that one of them is univalued, e.g., all processes decide 0,
by counting the number of such executions

Estimate their number with the univalued signed count

Define a trimmed version of the algorithm,
preserving the univalued signed count

Prove that the univalued signed count of the trimmed
algorithm is 6= 0

⇒ The univalued signed count of the algorithm is 6= 0

⇒ The algorithm has a univalued execution

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB
W.l.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions

Show that one of them is univalued, e.g., all processes decide 0,
by counting the number of such executions

Estimate their number with the univalued signed count

Define a trimmed version of the algorithm,
preserving the univalued signed count

Prove that the univalued signed count of the trimmed
algorithm is 6= 0

⇒ The univalued signed count of the algorithm is 6= 0

⇒ The algorithm has a univalued execution

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB
W.l.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions

Show that one of them is univalued, e.g., all processes decide 0,
by counting the number of such executions

Estimate their number with the univalued signed count

Define a trimmed version of the algorithm,
preserving the univalued signed count

Prove that the univalued signed count of the trimmed
algorithm is 6= 0

⇒ The univalued signed count of the algorithm is 6= 0

⇒ The algorithm has a univalued execution

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB
W.l.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions

Show that one of them is univalued, e.g., all processes decide 0,
by counting the number of such executions

Estimate their number with the univalued signed count

Define a trimmed version of the algorithm,
preserving the univalued signed count

Prove that the univalued signed count of the trimmed
algorithm is 6= 0

⇒ The univalued signed count of the algorithm is 6= 0

⇒ The algorithm has a univalued execution

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB
W.l.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions

Show that one of them is univalued, e.g., all processes decide 0,
by counting the number of such executions

Estimate their number with the univalued signed count

Define a trimmed version of the algorithm,
preserving the univalued signed count

Prove that the univalued signed count of the trimmed
algorithm is 6= 0

⇒ The univalued signed count of the algorithm is 6= 0

⇒ The algorithm has a univalued execution

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB
W.l.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions

Show that one of them is univalued, e.g., all processes decide 0,
by counting the number of such executions

Estimate their number with the univalued signed count

Define a trimmed version of the algorithm,
preserving the univalued signed count

Prove that the univalued signed count of the trimmed
algorithm is 6= 0

⇒ The univalued signed count of the algorithm is 6= 0

⇒ The algorithm has a univalued execution

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB
W.l.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions

Show that one of them is univalued, e.g., all processes decide 0,
by counting the number of such executions

Estimate their number with the univalued signed count

Define a trimmed version of the algorithm,
preserving the univalued signed count

Prove that the univalued signed count of the trimmed
algorithm is 6= 0

⇒ The univalued signed count of the algorithm is 6= 0

⇒ The algorithm has a univalued execution

Immediate Atomic Snapshot Executions

Induced by a sequence of blocks of processes

The processes in each block, first write, then scan

sign(α) =

{
+1 α has an even number of even-sized blocks

−1 α has an odd number of even-sized blocks

Odd-sized blocks do not affect the sign

Lemma [Attiya and Rajsbaum, extended]

Immediate snapshot executions can be paired (α, α′) s.t.:

Exactly one process distinguishes between α and α′

sign(α) = − sign(α′)

Immediate Atomic Snapshot Executions

Induced by a sequence of blocks of processes

The processes in each block, first write, then scan

sign(α) =

{
+1 α has an even number of even-sized blocks

−1 α has an odd number of even-sized blocks

Odd-sized blocks do not affect the sign

Lemma [Attiya and Rajsbaum, extended]

Immediate snapshot executions can be paired (α, α′) s.t.:

Exactly one process distinguishes between α and α′

sign(α) = − sign(α′)

Immediate Atomic Snapshot Executions

Induced by a sequence of blocks of processes

The processes in each block, first write, then scan

sign(α) =

{
+1 α has an even number of even-sized blocks

−1 α has an odd number of even-sized blocks

Odd-sized blocks do not affect the sign

Lemma [Attiya and Rajsbaum, extended]

Immediate snapshot executions can be paired (α, α′) s.t.:

Exactly one process distinguishes between α and α′

sign(α) = − sign(α′)

Immediate Atomic Snapshot Executions

Induced by a sequence of blocks of processes

The processes in each block, first write, then scan

sign(α) =

{
+1 α has an even number of even-sized blocks

−1 α has an odd number of even-sized blocks

Odd-sized blocks do not affect the sign

Lemma [Attiya and Rajsbaum, extended]

Immediate snapshot executions can be paired (α, α′) s.t.:

Exactly one process distinguishes between α and α′

sign(α) = − sign(α′)

The Univalued Signed Count of an Algorithm

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

In WSB and in SSB, the univalued signed count has to be 0

The Univalued Signed Count of an Algorithm

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

In WSB and in SSB, the univalued signed count has to be 0

The Univalued Signed Count of an Algorithm

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

In WSB and in SSB, the univalued signed count has to be 0

The Univalued Signed Count of an Algorithm

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

In WSB and in SSB, the univalued signed count has to be 0

A Trimmed Version T(S), of an SSB Algorithm S

Write your input and scan
I If all processes have arrived, decide 0

Repeat: Simulate a step of S , write and scan
I If all processes have arrived, decide 1
I If S decides, decide the same

Does not claim to solve SSB!

A Trimmed Version T(S), of an SSB Algorithm S

Write your input and scan
I If all processes have arrived, decide 0

Repeat: Simulate a step of S , write and scan
I If all processes have arrived, decide 1
I If S decides, decide the same

A Trimmed Version T(S), of an SSB Algorithm S

Write your input and scan
I If all processes have arrived, decide 0

Repeat: Simulate a step of S , write and scan
I If all processes have arrived, decide 1
I If S decides, decide the same

By properties of IAS executions and the extended AR Lemma:

Lemma: S and T(S) have the same univalued signed count

A Trimmed Version T(S), of an SSB Algorithm S

Write your input and scan
I If all processes have arrived, decide 0

Repeat: Simulate a step of S , write and scan
I If all processes have arrived, decide 1
I If S decides, decide the same

No execution in which only 1 is decided
Since last process to arrive always decide 0

All processes show up together ⇒ only 0 is decided

No other execution in which only 0 is decided

A Trimmed Version T(S), of an SSB Algorithm S

Write your input and scan
I If all processes have arrived, decide 0

Repeat: Simulate a step of S , write and scan
I If all processes have arrived, decide 1
I If S decides, decide the same

No execution in which only 1 is decided
Since last process to arrive always decide 0

All processes show up together ⇒ only 0 is decided

No other execution in which only 0 is decided:
If a process takes a simulation step, some process decides 1

A Trimmed Version T(S), of an SSB Algorithm S

Write your input and scan
I If all processes have arrived, decide 0

Repeat: Simulate a step of S , write and scan
I If all processes have arrived, decide 1
I If S decides, decide the same

No execution in which only 1 is decided
Since last process to arrive always decide 0

All processes show up together ⇒ only 0 is decided

No other execution in which only 0 is decided:
If a process takes a simulation step, some process decides 1

⇒ The univalued signed count of T(S) is 6= 0

By the lemma, S and T(S) have the same univalued signed count

Theorem: There is no algorithm solving SSB

Recall, SSB and WSB

Weak Symmetry Breaking
(WSB)

Unique input values
Must decide on a single bit s.t.:

If all terminate,
both 0 and 1 are decided

Strong Symmetry Breaking
(SSB)

Unique input values
Must decide on a single bit s.t.:

If all terminate,
both 0 and 1 are decided

In any execution,
1 is decided

What about a WSB algorithm, W ?

Write your input and scan
I If all processes have arrived, decide 0

Repeat: Simulate a step of W , write and scan
I If all processes have arrived, decide 1
I If W decides, decide the same

Lemma: W and T(W) have the same univalued signed count

No execution in which only 1 is decided

All processes show up together ⇒ only 0 is decided

But...
there could be other executions in which only 0 is decided!

Assume the algorithm is rank based

What about a WSB algorithm, W ?

Write your input and scan
I If all processes have arrived, decide 0

Repeat: Simulate a step of W , write and scan
I If all processes have arrived, decide 1
I If W decides, decide the same

Lemma: W and T(W) have the same univalued signed count

No execution in which only 1 is decided

All processes show up together ⇒ only 0 is decided

But...
there could be other executions in which only 0 is decided!

Assume the algorithm is rank based

What about a WSB algorithm, W ?

Write your input and scan
I If all processes have arrived, decide 0

Repeat: Simulate a step of W , write and scan
I If all processes have arrived, decide 1
I If W decides, decide the same

Lemma: W and T(W) have the same univalued signed count

No execution in which only 1 is decided

All processes show up together ⇒ only 0 is decided

But...
there could be other executions in which only 0 is decided!

Assume the algorithm is rank based

What about a WSB algorithm, W ?

Write your input and scan
I If all processes have arrived, decide 0

Repeat: Simulate a step of W , write and scan
I If all processes have arrived, decide 1
I If W decides, decide the same

Lemma: W and T(W) have the same univalued signed count

No execution in which only 1 is decided

All processes show up together ⇒ only 0 is decided

But...
there could be other executions in which only 0 is decided!

Assume the algorithm is rank based

Rank-Based Algorithms

Have the same outputs in symmetric executions:
Same block structure
The ranks of all processes in all blocks are the same

Note: Symmetric executions have the same sign

Rank-Based Algorithms

Have the same outputs in symmetric executions:
Same block structure
The ranks of all processes in all blocks are the same

Note: Symmetric executions have the same sign

Rank-Based Algorithms

Have the same outputs in symmetric executions:
Same block structure
The ranks of all processes in all blocks are the same

Note: Symmetric executions have the same sign

Rank-Based Algorithms

Have the same outputs in symmetric executions:
Same block structure
The ranks of all processes in all blocks are the same

Note: Symmetric executions have the same sign

The univalued signed count of T(W)

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

Executions deciding only 0Single execution in which
all processes arrive together

I Contributes ±1 to the count

Execution in which m < n processes
take steps in W

I All symmetric executions decide 0
and have the same sign

There are
(n
m

)
such executions

When n = pe , they contribute 0 (mod p) to the count

The univalued signed count of T(W) is ±1 (mod p) ⇒ 6= 0.

The univalued signed count of T(W)

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

Executions deciding only 0Single execution in which
all processes arrive together

I Contributes ±1 to the count

Execution in which m < n processes
take steps in W

I All symmetric executions decide 0
and have the same sign

There are
(n
m

)
such executions

When n = pe , they contribute 0 (mod p) to the count

The univalued signed count of T(W) is ±1 (mod p) ⇒ 6= 0.

The univalued signed count of T(W)

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

Executions deciding only 0Single execution in which
all processes arrive together

I Contributes ±1 to the count

Execution in which m < n processes
take steps in W

I All symmetric executions decide 0
and have the same sign

There are
(n
m

)
such executions

When n = pe , they contribute 0 (mod p) to the count

The univalued signed count of T(W) is ±1 (mod p) ⇒ 6= 0.

The univalued signed count of T(W)

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

Executions deciding only 0Single execution in which
all processes arrive together

I Contributes ±1 to the count

Execution in which m < n processes
take steps in W

I All symmetric executions decide 0
and have the same sign

There are
(n
m

)
such executions

When n = pe , they contribute 0 (mod p) to the count

The univalued signed count of T(W) is ±1 (mod p) ⇒ 6= 0.

The univalued signed count of T(W)

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

Executions deciding only 0Single execution in which
all processes arrive together

I Contributes ±1 to the count

Execution in which m < n processes
take steps in W

I All symmetric executions decide 0
and have the same sign

There are
(n
m

)
such executions

When n = pe , they contribute 0 (mod p) to the count

The univalued signed count of T(W) is ±1 (mod p) ⇒ 6= 0.

The univalued signed count of T(W)

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

Executions deciding only 0Single execution in which
all processes arrive together

I Contributes ±1 to the count

Execution in which m < n processes
take steps in W

I All symmetric executions decide 0
and have the same sign

There are
(n
m

)
such executions

When n = pe , they contribute 0 (mod p) to the count

The univalued signed count of T(W) is ±1 (mod p) ⇒ 6= 0.

The univalued signed count of T(W)

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

Executions deciding only 0Single execution in which
all processes arrive together

I Contributes ±1 to the count

Execution in which m < n processes
take steps in W

I All symmetric executions decide 0
and have the same sign

There are
(n
m

)
such executions

When n = pe , they contribute 0 (mod p) to the count

The univalued signed count of T(W) is ±1 (mod p) ⇒ 6= 0.

The univalued signed count of T(W)

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

Executions deciding only 0Single execution in which
all processes arrive together

I Contributes ±1 to the count

Execution in which m < n processes
take steps in W

I All symmetric executions decide 0
and have the same sign

There are
(n
m

)
such executions

When n = pe , they contribute 0 (mod p) to the count

The univalued signed count of T(W) is ±1 (mod p) ⇒ 6= 0.

The univalued signed count of T(W)

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

Executions deciding only 0Single execution in which
all processes arrive together

I Contributes ±1 to the count

Execution in which m < n processes
take steps in W

I All symmetric executions decide 0
and have the same sign

There are
(n
m

)
such executions

When n = pe , they contribute 0 (mod p) to the count

The univalued signed count of T(W) is ±1 (mod p) ⇒ 6= 0.

The univalued signed count of T(W)

(−1)n−1 ·
∑

only 1 is decided in α

sign(α) +
∑

only 0 is decided in α

sign(α)

Executions deciding only 0Single execution in which
all processes arrive together

I Contributes ±1 to the count

Execution in which m < n processes
take steps in W

I All symmetric executions decide 0
and have the same sign

There are
(n
m

)
such executions

When n = pe , they contribute 0 (mod p) to the count

The univalued signed count of T(W) is ±1 (mod p) ⇒ 6= 0.

Wrap Up

The univalued signed count of T(W) is ±1 (mod p)

⇒ The univalued signed count of T(W) is 6= 0

T(W) and W have same univalued signed count

⇒ The univalued signed count of W is 6= 0

⇒ W has a univalued execution

⇒ W does not solve WSB!

Wrap Up

The univalued signed count of T(W) is ±1 (mod p)

⇒ The univalued signed count of T(W) is 6= 0

T(W) and W have same univalued signed count

⇒ The univalued signed count of W is 6= 0

⇒ W has a univalued execution

⇒ W does not solve WSB!

Wrap Up

The univalued signed count of T(W) is ±1 (mod p)

⇒ The univalued signed count of T(W) is 6= 0

T(W) and W have same univalued signed count

⇒ The univalued signed count of W is 6= 0

⇒ W has a univalued execution

⇒ W does not solve WSB!

Wrap Up

The univalued signed count of T(W) is ±1 (mod p)

⇒ The univalued signed count of T(W) is 6= 0

T(W) and W have same univalued signed count

⇒ The univalued signed count of W is 6= 0

⇒ W has a univalued execution

⇒ W does not solve WSB!

Wrap Up

The univalued signed count of T(W) is ±1 (mod p)

⇒ The univalued signed count of T(W) is 6= 0

T(W) and W have same univalued signed count

⇒ The univalued signed count of W is 6= 0

⇒ W has a univalued execution

⇒ W does not solve WSB!

Summary

This paper:

Simple impossibility proof for (n − 1)-set agreement

Simple impossibility proof for (2p −
⌈

p
n−1

⌉
)-adaptive renaming

n is a prime-power ⇒ (2n − 2)-renaming impossible

Future research:

When n is not a prime-power:
I Explicit algorithm for (2n − 2)-renaming; complexity
I (2n − 3)-renaming and below

Other models: message passing, partial synchrony

Other colored tasks?

Summary

This paper:

Simple impossibility proof for (n − 1)-set agreement

Simple impossibility proof for (2p −
⌈

p
n−1

⌉
)-adaptive renaming

n is a prime-power ⇒ (2n − 2)-renaming impossible

Future research:

When n is not a prime-power:
I Explicit algorithm for (2n − 2)-renaming; complexity
I (2n − 3)-renaming and below

Other models: message passing, partial synchrony

Other colored tasks?

Summary

This paper:

Simple impossibility proof for (n − 1)-set agreement

Simple impossibility proof for (2p −
⌈

p
n−1

⌉
)-adaptive renaming

n is a prime-power ⇒ (2n − 2)-renaming impossible

Future research:

When n is not a prime-power:
I Explicit algorithm for (2n − 2)-renaming; complexity
I (2n − 3)-renaming and below

Other models: message passing, partial synchrony

Other colored tasks?

	Preliminaries
	Introduction

	Impossibility of SB
	SB
	Measuring Executions

