Counting-Based Impossibility Proofs for Renaming and Set Agreement

Hagit Attiya and Ami Paz

Technion - Israel Institute of Technology
DISC 2012

This Work

Wait-free algorithms for n processes, using only reads and writes

This Work

Wait-free algorithms for n processes, using only reads and writes
l.e., all but one process may crash

This Work

Wait-free algorithms for n processes, using only reads and writes
l.e., all but one process may crash

New proofs for the impossibility of:

- ($n-1$)-set agreement

This Work

Wait-free algorithms for n processes, using only reads and writes
l.e., all but one process may crash

New proofs for the impossibility of:

- $(n-1)$-set agreement
- $\left(2 p-\left\lceil\frac{p}{n-1}\right\rceil\right)$-adaptive renaming
- $(2 n-2)$-renaming

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new names from a smaller range

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new names from a smaller range

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new names from a smaller range

- $2 n-1$ names are sufficient [Attiya et al., Borowsky and Gafni, Attiya and Fouren, Gafni and Rajsbaum]
- $n+1$ names are necessary [Attiya et al.]
- $2 n-1$ names are necessary [Herlihy and Shavit, Herlihy and Rajsbaum, Attiya and Rajsbaum]

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new names from a smaller range

- $2 n-1$ names are sufficient [Attiya et al., Borowsky and Gafni, Attiya and Fouren, Gafni and Rajsbaum]
- $n+1$ names are necessary [Attiya et al.]
- $2 n-1$ names are necessary [Herlihy and Shavit, Herlihy and Rajsbaum, Attiya and Rajsbaum]
- $2 n-1$ names are necessary for some values of n, but not for others [Castañeda and Rajsbaum]

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new names from a smaller range

- $2 n-1$ names are sufficient [Attiya et al., Borowsky and Gafni, Attiya and Fouren, Gafni and Rajsbaum]
- $n+1$ names are necessary [Attiya et al.]
- $2 n-1$ names are necessary [Herlihy and Shavit, Herlihy and Rajsbaum, Attiya and Rajsbaum]
- $2 n-1$ names are necessary for some values of n, but not for others [Castañeda and Rajsbaum]

Theorem: $(2 n-2)$-renaming solvable $\Leftrightarrow\binom{n}{1}, \ldots,\binom{n}{n-1}$ relatively prime $\Leftrightarrow n$ is not a prime power

Renaming [Attiya et al.]

Processes start with unique inputs; must decide on unique new names from a smaller range

- $2 n-1$ names are sufficient [Attiya et al., Borowsky and Gafni, Attiya and Fouren, Gafni and Rajsbaum]
- $n+1$ names are necessary [Attiya et al.]
- $2 n-1$ names are necessary [Herlihy and Shavit, Herlihy and Rajsbaum, Attiya and Rajsbaum]
- $2 n-1$ names are necessary for some values of n, but not for others [Castañeda and Rajsbaum]

Theorem: $(2 n-2)$-renaming solvable $\Leftrightarrow\binom{n}{1}, \ldots,\binom{n}{n-1}$ relatively prime $\Leftrightarrow n$ is not a prime power

This talk: n is a prime power $\Rightarrow(2 n-2)$-renaming is not solvable

Weak Symmetry Breaking (WSB)

Processes start with unique input values Must decide on a single bit s.t.:

- If all terminate,
both 0 and 1 are decided

Weak Symmetry Breaking (WSB)

Processes start with unique input values Must decide on a single bit s.t.:

- If all terminate,
both 0 and 1 are decided

If $(2 n-2)$-renaming is solvable, then so is WSB

Weak Symmetry Breaking (WSB)

Processes start with unique input values Must decide on a single bit s.t.:

- If all terminate,
both 0 and 1 are decided

If $(2 n-2)$-renaming is solvable, then so is WSB

Suffices to show that WSB is unsolvable

Strong Symmetry Breaking (SSB)

Processes start with unique input values Must decide on a single bit s.t.:

- If all terminate,
both 0 and 1 are decided
- In any execution, 1 is decided

Strong Symmetry Breaking (SSB)

Processes start with unique input values Must decide on a single bit s.t.:

- If all terminate,
both 0 and 1 are decided
- In any execution, 1 is decided

If $\left(2 p-\left\lceil\frac{p}{n-1}\right\rceil\right)$-adaptive renaming is solvable, then so is SSB

Strong Symmetry Breaking (SSB)

Processes start with unique input values Must decide on a single bit s.t.:

- If all terminate,
both 0 and 1 are decided
- In any execution, 1 is decided

If $\left(2 p-\left\lceil\frac{p}{n-1}\right\rceil\right)$-adaptive renaming is solvable, then so is SSB

Suffices to show that SSB is unsolvable

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB W.I.o.g, a process alternates between write and scan (read all)

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB W.I.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB W.I.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions
Show that one of them is univalued, e.g., all processes decide 0 , by counting the number of such executions

- Estimate their number with the univalued signed count

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB W.I.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions
Show that one of them is univalued, e.g., all processes decide 0 , by counting the number of such executions

- Estimate their number with the univalued signed count
- Define a trimmed version of the algorithm, preserving the univalued signed count

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB W.I.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions
Show that one of them is univalued, e.g., all processes decide 0 , by counting the number of such executions

- Estimate their number with the univalued signed count
- Define a trimmed version of the algorithm, preserving the univalued signed count
- Prove that the univalued signed count of the trimmed algorithm is $\neq 0$

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB W.I.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions
Show that one of them is univalued, e.g., all processes decide 0 , by counting the number of such executions

- Estimate their number with the univalued signed count
- Define a trimmed version of the algorithm, preserving the univalued signed count
- Prove that the univalued signed count of the trimmed algorithm is $\neq 0$
\Rightarrow The univalued signed count of the algorithm is $\neq 0$

SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB W.I.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions
Show that one of them is univalued, e.g., all processes decide 0 , by counting the number of such executions

- Estimate their number with the univalued signed count
- Define a trimmed version of the algorithm, preserving the univalued signed count
- Prove that the univalued signed count of the trimmed algorithm is $\neq 0$
\Rightarrow The univalued signed count of the algorithm is $\neq 0$
\Rightarrow The algorithm has a univalued execution

Immediate Atomic Snapshot Executions

- Induced by a sequence of blocks of processes
- The processes in each block, first write, then scan

Immediate Atomic Snapshot Executions

- Induced by a sequence of blocks of processes
- The processes in each block, first write, then scan

Lemma [Attiya and Rajsbaum, extended]

Immediate snapshot executions can be paired (α, α^{\prime}) s.t.:

- Exactly one process distinguishes between α and α^{\prime}

Immediate Atomic Snapshot Executions

- Induced by a sequence of blocks of processes
- The processes in each block, first write, then scan

$\operatorname{sign}(\alpha)= \begin{cases}+1 & \alpha \text { has an even number of even-sized blocks } \\ -1 & \alpha \text { has an odd number of even-sized blocks }\end{cases}$
- Odd-sized blocks do not affect the sign

Lemma [Attiya and Rajsbaum, extended]

Immediate snapshot executions can be paired (α, α^{\prime}) s.t.:

- Exactly one process distinguishes between α and α^{\prime}

Immediate Atomic Snapshot Executions

- Induced by a sequence of blocks of processes
- The processes in each block, first write, then scan

$\operatorname{sign}(\alpha)= \begin{cases}+1 & \alpha \text { has an even number of even-sized blocks } \\ -1 & \alpha \text { has an odd number of even-sized blocks }\end{cases}$
- Odd-sized blocks do not affect the sign

Lemma [Attiya and Rajsbaum, extended]

Immediate snapshot executions can be paired (α, α^{\prime}) s.t.:

- Exactly one process distinguishes between α and α^{\prime}
- $\operatorname{sign}(\alpha)=-\operatorname{sign}\left(\alpha^{\prime}\right)$

The Univalued Signed Count of an Algorithm

only 1 is decided in α
$+$ only 0 is decided in α

The Univalued Signed Count of an Algorithm

$$
\sum_{\text {only } 1 \text { is decided in } \alpha} \operatorname{sign}(\alpha)+\sum_{\text {only } 0 \text { is decided in } \alpha} \operatorname{sign}(\alpha)
$$

The Univalued Signed Count of an Algorithm

$$
(-1)^{n-1} \cdot \sum_{\text {only } 1 \text { is decided in } \alpha} \operatorname{sign}(\alpha)+\sum_{\text {only } 0 \text { is decided in } \alpha} \operatorname{sign}(\alpha)
$$

The Univalued Signed Count of an Algorithm

$$
(-1)^{n-1} \cdot \sum_{\text {only } 1 \text { is decided in } \alpha} \operatorname{sign}(\alpha)+\sum_{\text {only } 0 \text { is decided in } \alpha} \operatorname{sign}(\alpha)
$$

In WSB and in SSB, the univalued signed count has to be 0

A Trimmed Version $T(S)$, of an SSB Algorithm S

- Write your input and scan
- If all processes have arrived, decide 0
- Repeat: Simulate a step of S, write and scan
- If all processes have arrived, decide 1
- If S decides, decide the same

Does not claim to solve SSB!

A Trimmed Version $T(S)$, of an SSB Algorithm S

- Write your input and scan
- If all processes have arrived, decide 0
- Repeat: Simulate a step of S, write and scan
- If all processes have arrived, decide 1
- If S decides, decide the same

A Trimmed Version T(S), of an SSB Algorithm S

- Write your input and scan
- If all processes have arrived, decide 0
- Repeat: Simulate a step of S, write and scan
- If all processes have arrived, decide 1
- If S decides, decide the same

By properties of IAS executions and the extended AR Lemma:
Lemma: S and $T(S)$ have the same univalued signed count

A Trimmed Version T(S), of an SSB Algorithm S

- Write your input and scan
- If all processes have arrived, decide 0
- Repeat: Simulate a step of S, write and scan
- If all processes have arrived, decide 1
- If S decides, decide the same
- No execution in which only 1 is decided Since last process to arrive always decide 0
- All processes show up together \Rightarrow only 0 is decided
- No other execution in which only 0 is decided

A Trimmed Version T(S), of an SSB Algorithm S

- Write your input and scan
- If all processes have arrived, decide 0
- Repeat: Simulate a step of S, write and scan
- If all processes have arrived, decide 1
- If S decides, decide the same
- No execution in which only 1 is decided Since last process to arrive always decide 0
- All processes show up together \Rightarrow only 0 is decided
- No other execution in which only 0 is decided:

If a process takes a simulation step, some process decides 1

A Trimmed Version T(S), of an SSB Algorithm S

- Write your input and scan
- If all processes have arrived, decide 0
- Repeat: Simulate a step of S, write and scan
- If all processes have arrived, decide 1
- If S decides, decide the same
- No execution in which only 1 is decided Since last process to arrive always decide 0
- All processes show up together \Rightarrow only 0 is decided
- No other execution in which only 0 is decided: If a process takes a simulation step, some process decides 1
\Rightarrow The univalued signed count of $\mathrm{T}(S)$ is $\neq 0$
By the lemma, S and $\mathrm{T}(S)$ have the same univalued signed count

Theorem: There is no algorithm solving SSB

Recall, SSB and WSB

Weak Symmetry Breaking (WSB)

Unique input values Must decide on a single bit s.t.:

- If all terminate, both 0 and 1 are decided

Strong Symmetry Breaking (SSB)

Unique input values
Must decide on a single bit s.t.:

- If all terminate, both 0 and 1 are decided
- In any execution, 1 is decided

What about a WSB algorithm, W?

- Write your input and scan
- If all processes have arrived, decide 0
- Repeat: Simulate a step of W, write and scan
- If all processes have arrived, decide 1
- If W decides, decide the same

Lemma: W and $T(W)$ have the same univalued signed count

What about a WSB algorithm, W?

- Write your input and scan
- If all processes have arrived, decide 0
- Repeat: Simulate a step of W, write and scan
- If all processes have arrived, decide 1
- If W decides, decide the same

Lemma: W and $\mathrm{T}(W)$ have the same univalued signed count

- No execution in which only 1 is decided
- All processes show up together \Rightarrow only 0 is decided

What about a WSB algorithm, W?

- Write your input and scan
- If all processes have arrived, decide 0
- Repeat: Simulate a step of W, write and scan
- If all processes have arrived, decide 1
- If W decides, decide the same

Lemma: W and $\mathrm{T}(W)$ have the same univalued signed count

- No execution in which only 1 is decided
- All processes show up together \Rightarrow only 0 is decided
- But... there could be other executions in which only 0 is decided!

What about a WSB algorithm, W?

- Write your input and scan
- If all processes have arrived, decide 0
- Repeat: Simulate a step of W, write and scan
- If all processes have arrived, decide 1
- If W decides, decide the same

Lemma: W and $\mathrm{T}(W)$ have the same univalued signed count

- No execution in which only 1 is decided
- All processes show up together \Rightarrow only 0 is decided
- But... there could be other executions in which only 0 is decided!

Assume the algorithm is rank based

Rank-Based Algorithms

Rank-Based Algorithms

Have the same outputs in symmetric executions:

Rank-Based Algorithms

Have the same outputs in symmetric executions:
Same block structure
The ranks of all processes in all blocks are the same

Rank-Based Algorithms

Have the same outputs in symmetric executions:
Same block structure
The ranks of all processes in all blocks are the same

Note: Symmetric executions have the same sign

The univalued signed count

$$
(-1)^{n-1} \cdot \sum_{\text {only } 1 \text { is decided in } \alpha} \operatorname{sign}(\alpha)+
$$

$$
\sum_{\text {only } 0 \text { is decided in } \alpha} \operatorname{sign}(\alpha)
$$

The univalued signed count of $\mathrm{T}(W)$

only 1 is decided in α

only 0 is decided in α

The univalued signed count of $\mathrm{T}(W)$

only 1 is decided in α

Executions deciding only 0

The univalued signed count of $\mathrm{T}(W)$

only 1 is decided in α

- Single execution in which all processes arrive together
- Contributes ± 1 to the count

Executions deciding only 0

The univalued signed count of $\mathrm{T}(W)$

only 1 is decided in α

- Single execution in which all processes arrive together
- Contributes ± 1 to the count
- Execution in which $m<n$ processes take steps in W

Executions deciding only 0

The univalued signed count of $\mathrm{T}(W)$

only 1 is decided in α

- Single execution in which all processes arrive together
- Contributes ± 1 to the count
- Execution in which $m<n$ processes take steps in W
- All symmetric executions decide 0 and have the same sign

Executions deciding only 0

The univalued signed count of $\mathrm{T}(W)$

only 1 is decided in α

- Single execution in which all processes arrive together
- Contributes ± 1 to the count
- Execution in which $m<n$ processes take steps in W
- All symmetric executions decide 0 and have the same sign
- There are $\binom{n}{m}$ such executions

Executions deciding only 0

The univalued signed count of $\mathrm{T}(W)$

only 1 is decided in α
only 0 is decided in α

- Single execution in which all processes arrive together
- Contributes ± 1 to the count
- Execution in which $m<n$ processes take steps in W
- All symmetric executions decide 0 and have the same sign

Executions deciding only 0

- There are $\binom{n}{m}$ such executions
- When $n=p^{e}$, they contribute $0(\bmod p)$ to the count

The univalued signed count of $\mathrm{T}(W)$

only 1 is decided in α

- Single execution in which all processes arrive together
- Contributes ± 1 to the count
- Execution in which $m<n$ processes take steps in W
- All symmetric executions decide 0 and have the same sign

Executions deciding only 0

- There are $\binom{n}{m}$ such executions
- When $n=p^{e}$, they contribute $0(\bmod p)$ to the count

The univalued signed count of $\mathrm{T}(W)$

only 1 is decided in α

- Single execution in which all processes arrive together
- Contributes ± 1 to the count
- Execution in which $m<n$ processes take steps in W
- All symmetric executions decide 0 and have the same sign

Executions deciding only 0

- There are $\binom{n}{m}$ such executions
- When $n=p^{e}$, they contribute $0(\bmod p)$ to the count

The univalued signed count of $T(W)$ is $\pm 1(\bmod p) \Rightarrow \neq 0$.

Wrap Up

- The univalued signed count of $T(W)$ is $\pm 1(\bmod p)$

Wrap Up

- The univalued signed count of $T(W)$ is $\pm 1(\bmod p)$
\Rightarrow The univalued signed count of $\mathrm{T}(W)$ is $\neq 0$

Wrap Up

- The univalued signed count of $T(W)$ is $\pm 1(\bmod p)$
\Rightarrow The univalued signed count of $\mathrm{T}(W)$ is $\neq 0$
- $T(W)$ and W have same univalued signed count

Wrap Up

- The univalued signed count of $T(W)$ is $\pm 1(\bmod p)$
\Rightarrow The univalued signed count of $\mathrm{T}(W)$ is $\neq 0$
- $\mathrm{T}(W)$ and W have same univalued signed count
\Rightarrow The univalued signed count of W is $\neq 0$

Wrap Up

- The univalued signed count of $T(W)$ is $\pm 1(\bmod p)$
\Rightarrow The univalued signed count of $\mathrm{T}(W)$ is $\neq 0$
- $T(W)$ and W have same univalued signed count
\Rightarrow The univalued signed count of W is $\neq 0$
$\Rightarrow W$ has a univalued execution
$\Rightarrow W$ does not solve WSB!

Summary

This paper:

- Simple impossibility proof for $(n-1)$-set agreement
- Simple impossibility proof for $\left(2 p-\left\lceil\frac{p}{n-1}\right\rceil\right)$-adaptive renaming

Summary

This paper:

- Simple impossibility proof for $(n-1)$-set agreement
- Simple impossibility proof for ($2 p-\left\lceil\frac{p}{n-1}\right\rceil$)-adaptive renaming
- n is a prime-power $\Rightarrow(2 n-2)$-renaming impossible

Summary

This paper:

- Simple impossibility proof for $(n-1)$-set agreement
- Simple impossibility proof for ($2 p-\left\lceil\frac{p}{n-1}\right\rceil$)-adaptive renaming
- n is a prime-power $\Rightarrow(2 n-2)$-renaming impossible

Future research:

- When n is not a prime-power:
- Explicit algorithm for ($2 n-2$)-renaming; complexity
- $(2 n-3)$-renaming and below
- Other models: message passing, partial synchrony
- Other colored tasks?

