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SSB and WSB are Impossible: Proof Overview

Assume to the contrary, that some algorithm solves SSB / WSB
W.l.o.g, a process alternates between write and scan (read all)

Consider only its immediate atomic snapshot (IAS) executions

Show that one of them is univalued, e.g., all processes decide 0,
by counting the number of such executions

Estimate their number with the univalued signed count

Define a trimmed version of the algorithm,
preserving the univalued signed count

Prove that the univalued signed count of the trimmed
algorithm is 6= 0

⇒ The univalued signed count of the algorithm is 6= 0

⇒ The algorithm has a univalued execution
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A Trimmed Version T(S), of an SSB Algorithm S

Write your input and scan
I If all processes have arrived, decide 0

Repeat: Simulate a step of S , write and scan
I If all processes have arrived, decide 1
I If S decides, decide the same

No execution in which only 1 is decided
Since last process to arrive always decide 0

All processes show up together ⇒ only 0 is decided

No other execution in which only 0 is decided:
If a process takes a simulation step, some process decides 1

⇒ The univalued signed count of T(S) is 6= 0

By the lemma, S and T(S) have the same univalued signed count

Theorem: There is no algorithm solving SSB
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(−1)n−1 ·
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Execution in which m < n processes
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and have the same sign

There are
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)
such executions

When n = pe , they contribute 0 (mod p) to the count

The univalued signed count of T(W ) is ±1 (mod p) ⇒ 6= 0.
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