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Abstract This paper presents a novel approach for highly-concurrent nonblocking
implementations of doubly-linked lists, based on dynamically maintaining a coloring
of the nodes in the list. In these implementations, operations on non-adjacent nodes
in the linked-list proceed without interfering with each other. Roughly speaking, the
operations are implemented by acquiring nodes in the operation’s data set, in the
order of their colors, and then making the changes atomically. The length of wait-
ing chains is restricted, thereby increasing concurrency, because the colors are taken
from a small set. Operations carefully update the colors of the nodes they modify,
so neighboring nodes in the list have different colors. A helping mechanism ensures
progress in small neighborhoods of processes that keep taking steps.

We use this approach in two new algorithms: CAS-Chromo uses an unary condi-
tional primitive, CAS, and allows insertions anywhere in the linked list and removals
only at the ends, while DCAS-Chromo allows insertions and removals anywhere but
uses a stronger primitive, DCAS.
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1 Introduction

Many core problems in asynchronous multiprocessing systems can be captured as
concurrent data structures—abstract data structures that are concurrently accessed
by asynchronous processes. A prominent example is provided by list-based data
structures: A double-ended queue (deque) supports operations that insert and remove
nodes at the two ends of the queue; it provides a producer-consumer job queue [3].
A priority queue can be implemented as a doubly-linked list with removals only at
the ends, while nodes can be inserted anywhere at the queue; it can be used to queue
process identifiers for scheduling purposes. Finally, a generic doubly-linked list (here-
after, called simply a linked list) allows insertions and removals of nodes anywhere
in the list.

Concurrent data structures are implemented by applying primitives, provided by
the hardware or the operating system, to memory locations. These primitives usually
include CAS (compare&swap) or its multi-location variant, kCAS. These implementa-
tions are hard to get right, and even for relatively simple data structures, like deques,
significant compromises are made: In some implementations, removed nodes remain
in the list [14], others statically limit the data structure’s size [17] or do not allow
concurrent operations on both ends of the queue [21]. Even when DCAS (i.e., 2CAS)
is used, existing implementations either are inherently sequential [11, 12] or allow
access to chains of removed nodes [9].

Implementing concurrent data structures is simpler if an arbitrary number of loca-
tions can be accessed atomically. For example, removing a node from a doubly-linked
list is easy if one can atomically access three nodes—the node to be removed and the
two nodes before and after it (cf. [9]).

Known methods, such as [7, 24, 27], simulate this atomicity in software by using
CAS to acquire the nodes, one by one, and help processes that previously acquired a
desired node until it is released. In this way, some operation always completes within
a finite number of steps. In these methods, nodes are acquired according to the order
of their memory addresses. Unfortunately, as Sect. 6 shows, these implementations
have long waiting chains in some symmetric scenarios, creating interference among
operations and reducing the throughput. Although waiting chains can be shortened
by breaking symmetry, using colors [1, 4], randomization [13, 23] or DCAS [5], their
length is still non-constant (see Sect. 6).

This paper presents a novel approach for reducing the length of waiting chains
in concurrent implementations of linked lists. Our approach exploits the fact that
operations on the linked list access it in a predictable, well-organized manner, namely,
a small number of consecutive nodes in the list. Operations acquire nodes not by the
order of their memory addresses, but by the order of built-in colors, taken from a
small set, which are associated with the nodes. To avoid deadlocks and ensure short
waiting chains, the operations preserve the legality of the nodes’ colors when they
modify the linked list; this is possible since the implementation initializes the data
structure and provides operations that are the only means for manipulating it.

Our implementations are local nonblocking, namely, they ensure that when op-
erations access distant parts of the data structure, or are separated in time, they do
not interfere with each other. Formalizing this notion relies on defining the distance
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between operations to be the length of the shortest path between them in the con-
flict graph (defined in Sect. 2.3). In a d-local nonblocking implementation, whenever
an operation op takes an infinite number of steps, some operation, within distance
d from op, completes. This guarantees progress in components of the conflict graph
with diameter d , and ensures that operations are effectively isolated from other oper-
ations at distance >d .

The high-level idea is simple: a 3-coloring of the nodes determines the order in
which an operation acquires the nodes. After acquiring the nodes needed for a list
operation, its changes are applied in isolation. Equally-colored nodes are acquired by
their list order (from left to right) to ensure that there are no deadlocks and that some
operation makes progress at any time.

Our first algorithm, CAS-Chromo, allows removals only at the ends of the linked
list and uses CAS; it can be used as a simple deque or a priority queue. Since the
list is 3-colored, we can show that CAS-Chromo is 7-local nonblocking, namely, an
operation is delayed only due to operations on nodes close to its own nodes on the
linked list. When insertions are limited to occur at the ends (i.e., a deque), the analysis
can be further refined to show that the algorithm is 3-local nonblocking; in particular,
operations at the two ends of a deque containing at least three nodes do not delay
each other.

Our second algorithm, DCAS-Chromo, allows insertions and removals anywhere
in the list. Removals from the middle of the linked list are more difficult: a remove
operation must acquire three consecutive nodes, two of which may have the same
color. Thus, removing a node might entail recoloring one of its neighbors while en-
suring its neighbor’s color is not changed concurrently. To do this without creating
hold-and-wait chains we employ DCAS to atomically acquire two nodes with the same
color. DCAS-Chromo is 5-local nonblocking, namely, only operations on nodes that
are separated by fewer than four nodes may delay each other.

The rest of this paper is organized as follows. Section 2 presents the model of an
asynchronous shared-memory system, specifies the doubly-linked list data structure,
and defines locality properties in a dynamic setting. CAS-Chromo, a CAS-based pri-
ority queue, is presented in Sect. 3.1. Section 3.2 outlines the modifications needed to
obtain DCAS-Chromo, a DCAS-based linked list supporting removals anywhere. The
correctness proof of both algorithms is given in Sect. 4, while their locality properties
are analyzed in Sect. 5. Finally, we discuss related work in Sect. 6 and conclude, in
Sect. 7.

2 Preliminaries

2.1 A Model for Shared-Memory Systems

We consider a standard model for a shared memory system [6] in which a finite set of
asynchronous processes p1, . . . , pn communicate by applying primitive operations to
shared memory locations, l1, . . . , lm. A configuration specifies the local state of each
process and the value of each memory location. In the (unique) initial configuration,
every process is in its initial state and every location contains its initial value.
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boolean CAS(l, exp, new) {
// Atomically
if l = exp then

l ← new

return TRUE

return FALSE

}

boolean DCAS(l1, l2, e1, e2, n1, n2) {
// Atomically
if l1 = e1 and l2 = e2 then

l1 ← n1
l2 ← n2
return TRUE

return FALSE

}

Fig. 1 The CAS and DCAS primitives

An event is a computation step by a single process, consisting of some local com-
putation and the application of a primitive to the memory. We employ the following
primitives: READ(lj ) returns the value vj in location lj ; WRITE(lj , v) sets the value
of location lj to v; CAS(lj , exp,new) writes the value new to location lj if its value is
equal to exp, and returns a success or failure indication; DCAS is similar to CAS, but
operates on two independent memory locations (see Fig. 1).

An execution interval α is a (finite or infinite) alternating sequence C0, φ0,C1,

φ1,C2, . . . , where Ck is a configuration, φk is an event and the application of φk to
Ck results in Ck+1, for every k = 0,1, . . . . An execution is an execution interval in
which C0 is the unique initial configuration.

A data structure type supports a set of operations that provide the only means
to manipulate it. The sequential specification of an operation indicates how the data
structure is modified when operations are applied in a serial manner (in isolation). It
is given as a sequence of read and write instructions executed on a set of items, which
constitute the operation’s data set.

An implementation of a data structure type provides a specific representation for
the data of an instance as a set of memory locations, and protocols that processes
follow to carry out its operations, defined in terms of primitives applied to memory
locations. In order to apply an operation, a process executes the protocol associated
with the operation.

The interval of an operation op is the execution interval that starts at the first
event of op and ends at the last event of op, if there is one. If the operation does not
complete, its interval is infinite, and we say that it is pending.

Two operations overlap if their intervals overlap.
An execution is serial if operations do not overlap; this means that every operation

is executed to completion before another operation starts.
Two executions are equivalent if every process in these executions issues the same

operations in the same order and gets the same result for each operation.
We require the implementation to be linearizable [16], that is, any execution can

be extended by discarding some pending operations and completing the others, such
that the extended execution is equivalent to some serial execution, called its lineariza-
tion, which preserves the order of non-overlapping operations. Note that an execution
could have several linearizations.
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PushLeft(nd) {
nd.right ← LeftAnchor.right
nd.left ← LeftAnchor
LeftAnchor.right.left ← nd
LeftAnchor.right ← nd
return SUCCESS

}
(a) PushLeft: Insert nd to the right of the
left anchor and return SUCCESS

PopLeft() {
if empty list then

return EMPTY

subject ← LeftAnchor.right
LeftAnchor.right ← subject.right
LeftAnchor.right.left ← LeftAnchor
subject.right ← ⊥
subject.left ← ⊥
return SUCCESS

}
(b) PopLeft: If the linked list is not empty, then
remove the subject next to the left anchor and
return SUCCESS; otherwise, return EMPTY and
the linked list is unchanged

InsertRight(source,nd) {
if source is not in the list or

source is right anchor then
return INVALID

nd.right ← source.right
nd.left ← source
source.right.left ← nd
source.right ← nd
return SUCCESS

}
(c) InsertRight: If source is a node in
the list different from the right anchor,
then insert nd to the right of source and
return SUCCESS; otherwise, return IN-
VALID and the linked list is unchanged

Remove(source) {
if source is not in the list or source is an

anchor then
return INVALID

source.left.right ← source.right
source.right.left ← source.left
source.right ← ⊥
source.left ← ⊥
return SUCCESS

}
(d) Remove: If source is a node in the list dif-
ferent from an anchor, then remove source from
the linked list and return SUCCESS; otherwise,
return INVALID and the linked list is unchanged

Fig. 2 Sequential specification of the linked list operations

2.2 Doubly-Linked Lists

This paper considers a doubly-linked list data structure; the items are the nodes com-
posing the linked list. Each node has links to its left and right neighboring nodes. Two
special anchor nodes serve as the leftmost and rightmost nodes in the doubly-linked
list, denoted LA and RA; they cannot be removed from it, and have no left link or no
right link, respectively. A node is valid if it is either an anchor, or both its left link
and right link pointers are not null.

Figure 2 provides the sequential specification of the operations that can be applied
to the data structure, following the description of deque operations [2].

We concentrate on the following operations: PushLeft, PopLeft operations, which
inserts or removes, respectively, the node next to (to the right of) the left anchor. The
InsertRight operation, applied to a source node in the linked list, inserts a node to the
right of the source node. Finally, a Remove operation, applied to a source node in the
linked list, removes the source node. PushRight, PopRight and InsertLeft operations
are defined analogously.
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Fig. 3 Overlapping operations of a doubly-linked list, LA (RA) is the left (right) anchor

2.3 Locality Properties

The locality of an implementation is defined relative to a conflict graph, capturing
the distance between overlapping operations. In this graph, the nodes are concurrent
operations and there is an edge between two operations with intersecting data sets.
Formally defining the data set of an operation requires care since the data structure—
and hence the data sets of its operations—are dynamic. This means that the state of
the linked-list in a configuration is not uniquely determined when there are several
pending operations.

Consider, for example, Fig. 3, in which op1 is a PushLeft operation, op2 is a
PopLeft operation, op5 is a PushRight operation, op3 inserts a new node to the right
of m2, and op4 removes m4. Let α1α2α3 be the following execution of these opera-
tions: in the execution interval α1 every operation takes steps, but makes no changes
to the memory; then, in the execution interval α2 op2 takes steps alone until it suc-
cessfully removes m1; finally, in the execution interval α3 only op1 takes steps until
it completes. Let C1, C2, and C3 be the configurations at the end of the execution
intervals α1, α2, and α3, respectively.

Observe that the data set of op1 in C1 is {LA,m1}, but after m1 is removed, in C2,
the data set of op1 is {LA,m2}; altogether, the data set of op1 is {LA,m1,m2}. The
next definition captures such scenarios.

Definition 1 Let C be the configuration after an execution prefix α, in which an
operation op is pending. The data set of op in C is the union, over all possible
linearizations αS of α that do not include op, of the set of items accessed by op

when executed after αS . The data set of op is the union of its data sets in all the
configurations during its execution interval.

The conflict graph of a configuration C is an undirected graph in which vertices
represent operations, and an edge connects two operations whose data sets intersect.
The conflict graph of an execution interval α is the union of the conflict graphs of all
configurations C in α; that is, the vertices (edges, respectively) in the graph are the
union of the vertices (edges, respectively) of all these conflict graphs.

The distance between two operations, op �= op′, in a conflict graph, is the length
(in edges) of the shortest path between op and op′; the distance from an operation to
itself is zero. The distance between two operations is one if their data sets intersect; if
there is no path between the operations, the distance is infinity. The d-neighborhood
of an operation op contains all the operations within distance d from op.
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Fig. 4 The conflict graph of the
execution interval α1α2α3 of the
operations from Fig. 3

Figure 4 depicts the conflict graph of α1α2α3, the interval of the operation op1

from Fig. 3. In configuration C1, the distance between op1 and op2 is one, the dis-
tance between op1 and op3 is two, the distance between op1 and op4 is three, and
the distance between op1 and op5 is ∞. After op2 completes in configuration C2, the
distance between op1 and other operations is decreased by one, since at this configu-
ration the data set of op1 includes m2. During the interval of op1, the distance between
op1 and op3 is one, the distance between op1 and op4 is two, and the distance be-
tween op1 and op5 remains ∞. Therefore, the 1-neighborhood of op1 includes op1,
op2, and op3; the 2-neighborhood of op1 includes op1, op2, op3 and op4; there is no
d such that op5 is in the d-neighborhood of op1.

The next definition ensures progress in the neighborhood of an operation.

Definition 2 An algorithm is d-local nonblocking if whenever a process takes an in-
finite number of steps in an operation op, then some operation in the d-neighborhood
of op completes.

3 Algorithms Using Built-in Coloring

3.1 CAS-Chromo: Priority Queue and Deque

CAS-Chromo is a doubly-linked list implementation that allows insertions anywhere
(PushLeft, PushRight, InsertRight, and InsertLeft) and removals only at the ends
(PopLeft, and PopRight); see Fig. 2. Our description focuses on the PushLeft and
PopLeft operations.

3.1.1 Overview

We follow a known scheme [7, 24, 27] for systematically deriving implementations
of concurrent data structures: An operation first acquires the nodes in its data set
(ACQUIRE phase), and then applies its changes atomically on these nodes (APPLY

phase); finally, the operation releases the nodes (RELEASE phase). As in a lock-based
solution, other operations cannot modify a node when it is owned by an operation.
During the ACQUIRE phase, an operation may own one or more nodes while waiting
for another operation to release a node. The latter operation might also be waiting for
a third operation to release a node, leading to a hold-and-wait chain of operations.

The key novelty of our approach is in acquiring nodes by colors, in order to shorten
the hold-and-wait chains. The nodes of the linked-list are legally colored (so that
neighboring nodes have different colors) with three ordered colors, c1 < c2 < c3. (In
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Fig. 5 Example: two operations
competing on a single node;
anchors have the same color

Fig. 3, the items are colored with three colors, yellow < blue < red.) Since an opera-
tion acquires its data set in an increasing order of colors, and the colors of neighbor-
ing nodes are different, hold-and-wait chains have (strictly) increasing colors from a
small set, and hence, are short.

Push and insert operations access exactly two neighboring nodes in the list, which
must have different colors. Pop operations access three consecutive nodes, two of
which may have the same color. To avoid hold-and-wait cycles, pop operations ac-
quire monochromatic nodes according to their order in the list, from left to right.

For example, consider a doubly-linked list containing a single node as depicted in
Fig. 5, where the two anchors have the same color. When the PopLeft and PopRight
operations compete on removing the single node in the list, both of them try to acquire
the left anchor first, and at least one of them (that succeeds in acquiring the left
anchor) succeeds in popping the last item. Moreover, pop operations occur only at
the ends of the list, and hence, each of them adds at most one edge to a hold-and-wait
chain (one edge at each end of the chain) in addition to at most three edges connecting
operations that have conflicts on nodes with increasing colors. This is used to show
that the length of a hold-and-wait chain is at most 5 (see Theorem 4).

Helping The simple algorithm described so far may block if a process stops taking
steps while owning a node. An operation op1 is blocked if one of its nodes is already
owned by another blocking operation op2. Helping guarantees that some operation
makes progress at any time while preserving the locality properties of the implemen-
tation. This means that instead of waiting, the process executing op1 helps op2 to
complete by executing its steps. Helping is recursive: if, while helping op2, the pro-
cess executing op1 discovers that op2 is blocked by a third operation op3, then the
process helps op3 to complete, and so on. In this way, hold-and-help chains replace
hold-and-wait chains, and it is possible to prove that their length is bounded by the
number of colors (see Lemma 4). For example, assume that operation op3 in Fig. 3
owns m2 and then tries to acquire m3, with color red. If m3 is already held by op4,
then op3 helps op4. However, red is the largest color, implying that op4 already owns
all the nodes in its data set. Thus, when helping op4, op3 only needs to apply the
changes of op4, and not recursively help additional operations.

Synchronization We use two known techniques to guarantee that processes work in
harmony, and do not override the modifications done by other processes. An operation
acquires the nodes it needs to modify, and it uses CAS for all modifications it applies
to these nodes, to verify that the nodes have not changed since they were acquired.
Acquiring nodes is required to avoid conflicts between different operations; changing
the nodes by applying CAS is required to avoid races between different processes
executing the same operation, due to the helping mechanism.

Author's personal copy



Theory Comput Syst

Fig. 6 The state transitions of an operation: the lower part of the state is the result of the current round;
the dashed line indicates a new round. The best-case scenario, encountering no contention, appear at the
top. If the list is empty during a pop operation, then the operation completes without changing the linked
list. If the source node is removed during the INIT phase of an operation, then the operation need not apply
its changes. If there is contention during the ACQUIRE phase, the operation releases its nodes and it is
re-invoked

Maintaining a Legal Coloring Since operations apply their changes in exclusion,
they can ensure that the coloring is legal at all times, by careful color changes during
the APPLY phase.

The operations use a temporary color c0 < c1, which is white in the figures, to
simplify the task of maintaining the coloring legal: In the PushLeft operation, the
color of the new node is c0. After the new node is in the list, and while the data set
is not released yet, the new node is assigned with a color different than its neighbors.
In the PopLeft and PopRight operations, after the data set is acquired, the color of the
right neighbor of the node to be removed is changed to c0. After the node is removed,
the color of the right neighbor is changed to be different from its neighbors’ colors.

Dynamic Aspects The algorithm accommodates a dynamic data structure, that is,
after an operation reads the data set and verifies that the nodes are valid, another op-
eration may modify the nodes and even the list structure, changing the data set of op.
In a manner similar to [15], a data set memento, holding a view of the data set when
the operation is started, traces inconsistencies in the data set due to changes by con-
current operations. If, while acquiring the data set, an operation discovers that a node
in its data set memento is invalid or inconsistent with its memento, it restarts. That is,
the operation skips the APPLY phase and goes directly to the RELEASE phase where it
releases all the nodes it already acquired and re-invokes the operation. Otherwise, the
operation completes its ACQUIRE phase, and the nodes it has acquired are consistent
with the data set memento, so the operation can continue with the APPLY phase as in
a static scheme.

This causes the operation to go through several rounds, trying to acquire the nodes,
until the operation completes. Figure 6 shows the state transition diagram of one
round of an operation.
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define LEFT = 0, MIDDLE = 1, RIGHT = 2
define Phase = {INIT, ACQUIRE, APPLY, RELEASE, FINAL}
define Result = {NULL, SUCCESS, CONTENTION, INVALID, EMPTY}

structure State {int seq, Phase phase, Result result} // seq—for repeated rounds
structure NodePtr {Node node, int aba}
structure Color {int c, int aba}
structure Owner {Operation op, int seq, int aba} // seq—operation’s round number

structure Node {
Data data,
NodePtr left,
NodePtr right,
Color color,
Owner owner

}

structure NodeMemento {
Node node,
NodePtr left,
NodePtr right,
Color color

}

class Operation {
State state // initially 〈0,INIT,NULL〉
Node source // in push/pop operations the source is an anchor
Node subject // either the new node or the node to be removed
NodeMemento[3] datasetMemento
int[3] colorSet

}

Fig. 7 Types, structures and classes definitions

3.1.2 Data Structures

Figure 7 lists the main types and data structures used in the algorithm.
Operations are objects, whose structure and behavior are defined in the Operation

class. An operation object is initialized with all the data required for its execution,
specifically the source node on which the operation is applied, and the subject node
to be inserted to the list (in insert or push operations).

Nodes are also objects. In addition to its data attribute, a node contains two point-
ers left and right, a color and an owner. The owner keeps a reference to the operation
instance that owns the node, to facilitate helping. A node memento is composed of a
reference to the node itself, node, and a copy of the node’s meta data except for the
owner, so the node is consistent with its memento even if the node is acquired and
released arbitrarily, as long as the other attributes do not change.

Due to helping, several processes may execute the same operation op; these are the
executing processes of op. One of the executing processes—the one that first called
the execute method of op—is the initiator of op.

Since an operation may have several rounds, its execution goes through alternat-
ing phases of acquiring and releasing nodes. The state of an operation is a tuple
〈seq,phase, result〉: seq is the round number, an integer, initially 0, that is incre-
mented when the initiator re-invokes the operation; phase is the scheme phase within
the round, set to INIT at the beginning of a round; result is the result of the current
round, set to NULL at the beginning of a round.
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The CAS primitive suffers from the ABA problem [18]; namely, a process p may
read a value A from some memory location l, then other processes change l to B
and then back to A, later p applies CAS on l and the comparison succeeds whereas
it should have failed. We avoid this problem by associating each attribute with a
monotonically increasing ABA counter. The attribute and the counter fit into a single
memory location and are manipulated atomically; the counter is incremented when-
ever the attribute is updated. Assuming that the counter has enough bits, the CAS

succeeds only if the counter has not changed since the process read the attribute.

3.1.3 Implementation

Pseudocodes 1, 2, 3 and 4 present the code for CAS-Chromo. The reserved word self
in the pseudocode denotes the operation object of the operation whose code is being
executed.

The initiator starts the execution with the execute method and as long as it suffers
from contention and is unable to complete (line 15), the process repeatedly tries to
clear the attributes (line 3) and re-invoke the operation. It generates the new data set
memento (line 11), and then “helps” itself to follow the scheme (line 13): acquire
nodes in its data set (line 20), apply its changes (line 23), and release the data set
(line 25).

In the acquireColor method, an operation op repeatedly tries to acquire all nodes
with a given color c in its current data set memento; The operation reads the owners
of the nodes (line 36); after verifying the nodes are valid and consistent with their
mementos (line 37), op tries to acquire the nodes (line 40). If op discovers that none
of these nodes is owned by another operation, when failing to acquire them, it simply
retries to acquire their nodes. Otherwise, op finds that a node in its data set is owned
by another, blocking operation op′ (line 45), and helps op′ to complete (line 46).

During the execution of an operation, a process applies validity checks to ensure
the consistency of the execution, as well as other properties of the implementation,
such as locality. We now describe these tests and their motivation, and explain what
steps are taken in case of a failure, i.e., when the result of the test is negative.

Before helping op′, the executing process of op verifies (again) that the nodes are
consistent with their mementos (line 43). This ensures that the color of the node did
not decrease, which is crucial for the locality properties of the algorithm. Lemma 4
shows that the length of helping chains is bounded by the number of colors, by prov-
ing that a process helps along a chain with monotonically increasing colors. Without
this verification, a process may help along an unbounded chain with colors alternately
increasing and decreasing.

The state attribute is used to synchronize the executing processes of an operation.
It is possible that a delayed (slow) process, executing a previous round, tries to ac-
quire nodes that are associated with this previous round or releases nodes that were
re-acquired in the current round. Therefore, an executing process verifies, before ac-
quiring a node, that the round number of its execution matches the one in the state
of the operation (line 38). Furthermore, if an executing process detects inconsistency
between the node and the operation’s memento (line 37 or line 43) then it violates
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Pseudocode 1 CAS-Chromo
1: Result execute() {
2: do
3: clear memento and color set
4: toInitState()
5: if source is invalid then
6: owner ← source.owner
7: owner.op.help(owner.seq)
8: toFinalInvalidState()
9: if state.result = INVALID then return

10: else // new round
11: cloneDataset()
12: toAcqState()
13: help(state.seq) // help myself
14: toFinalState()
15: while state.result = CONTENTION

16: return state.result
17: }

18: help(int seq) {
19: for each color c by increasing or-

der do
20: acquireColor(c,seq)
21: toApplyState(seq)
22: if state.phase = APPLY then
23: applyChanges()
24: toReleaseState()
25: releaseDataset(seq)
26: }

27: releaseDataset(int seq) {
28: for each Node nd in seq-th memento do
29: owner ← nd.owner
30: if owner = 〈self, seq, t〉 then and state.phase = RELEASE

31: CAS(nd.owner, owner, 〈⊥,⊥, t + 1〉)
32: }

33: acquireColor(Color c, int seq) {
34: {ndi} ← c-colored nodes in seq-th memento
35: while true do
36: {owneri} ← get all owners from {ndi}
37: checkNodes({ndi},seq)
38: if state != 〈seq, ACQUIRE, NULL〉 then return
39: for each ndi from left to right do // acquire all equally colored nodes
40: if owneri = 〈⊥,⊥, t〉 then CAS(ndi .owner, owneri , 〈self, seq, t + 1〉)

// check if owns all c-colored nodes or blocked
41: owner ← get owner from {ndi}// returns self only if the operation owns all nodes
42: if owner.op = self then return // succeeded
43: checkNodes({ndi},seq)
44: if state != 〈seq, ACQUIRE, NULL〉 then return
45: if owner.op != ⊥ then
46: owner.op.help(owner.seq) // blocked by owner.op—help it
47: }

48: checkNodes(Set〈Node〉 {ndi}, int seq) {
49: if invalid node or inconsistent memento then
50: for each i do // “touch” the ABA counter of the owner
51: li ← ndi .owner
52: CAS(ndi .owner, li , 〈li .op, li .seq, li .aba + 1〉)
53: toReleaseContentionState(seq)
54: }
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Pseudocode 2 CAS-Chromo: Code for the clone methods
56: PushLeft::cloneDataset() {

// subject is pushed, source is the left anchor
57: cloneNode(source, LEFT)
58: cloneNode(subject, MIDDLE)
59: right ← datasetMemento[LEFT].right.node
60: cloneNode(right, RIGHT)
61: }

62: PopLeft::cloneDataset() {
// subject is popped, source is the left anchor

63: cloneNode(source, LEFT)
64: subject ← datasetMemento[LEFT].right.node
65: cloneNode(subject, MIDDLE)
66: right ← datasetMemento[MIDDLE].right.node
67: cloneNode(right, RIGHT)
68: }

69: cloneNode(Node nd, int i) {
70: if nd = ⊥ then return

// Assume atomic assignment
71: datasetMemento[i] ← 〈nd,nd.left,nd.right,nd.data,nd.color〉
72: add nd’s memento color to the color set
73: }

the owners of these nodes by “touching” them1 (line 52) before advancing the oper-
ation to the RELEASE phase. This prevents other delayed processes from acquiring
the nodes when the operation is not in the ACQUIRE phase (see Lemma 2(5) in the
appendix).

To prevent a process from releasing nodes acquired in a later round, the operation
adds the round number to any node it acquires (line 40); before a process releases a
node, it verifies (line 30) that the round numbers of the owner and its own parameter
are equal (see Lemma 2(4)).

Different operations extending the Operation class, refine the protocols for cloning
and manipulating the data set, according to their specifications. Pseudocode 2 shows
how the data set memento (the source node and both or one of its neighbors) is cre-
ated. The applyChanges method changes the nodes according to the specification of
the operation and maintains a legal coloring. Pseudocode 3 describes the implemen-
tation of these methods for the PushLeft and PopLeft operations.

The coloring of the nodes is kept legal by updating their color in the UP-
DATECOLOR method. The operation peeks at the colors of the neighboring nodes
(lines 111–112) and sets a new color different from its neighbors (line 115). While
it is possible that not both neighboring nodes are owned by the operation, it is guar-

1This is similar to the way an operation is invalidated before releasing its nodes in [4].
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Pseudocode 3 CAS-Chromo: Detailed code for the apply-changes methods
74: PushLeft::applyChanges() {

// MIDDLE is the new node,
// LEFT is the left anchor

75: updateRight(MIDDLE,RIGHT)
76: updateLeft(MIDDLE,LEFT)

// the new node is now valid
77: updateColor(MIDDLE)
78: updateLeft(RIGHT,MIDDLE)
79: updateRight(LEFT,MIDDLE)
80: }

81: PopLeft::applyChanges() {
// MIDDLE is popped
// LEFT is the left anchor

82: if empty list then
83: toReleaseEmptyState()
84: if state.result = EMPTY then return
85: setTempColor(RIGHT)
86: updateRight(LEFT,RIGHT)
87: updateLeft(RIGHT,LEFT)
88: updateRight(MIDDLE,⊥)

// the popped node is now invalid
89: updateLeft(MIDDLE,⊥)
90: updateColor(RIGHT)
91: }

92: updateRight(int i, int j ) {
93: nmi ← get i-th node mementos
94: nmj ← get j -th node mementos
95: nd ← nmi .node
96: newr ← nmj .node
97: rt ← nmi .right
98: CAS(nd.right, rt, 〈newr,rt.aba+1〉)
99: }

100: updateLeft(int i, int j ) {
101: nmi ← get i-th node mementos
102: nmj ← get j -th node mementos
103: nd ← nmi .node
104: newl ← nmj .node
105: lft ← nmi .left
106: CAS(nd.left, lft, 〈newl,lft.aba+1〉)
107: }

108: updateColor(int i) {
109: nm ← get i-th node memento
110: nd ← nm.node
111: lftc ← nd.left.node.color
112: rtc ← nd.right.node.color
113: newc ← color not in {lftc,rtc}
114: clr ← nm.color
115: CAS(nd.color, clr, 〈newc,clr.aba+1〉)
116: }

117: setTempColor(int i) {
118: nm ← get i-th node memento
119: nd ← nm.node
120: clr ← nm.color
121: CAS(nd.color, clr, 〈c0,clr.aba+1〉)
122: }

anteed that their color does not change. We prove that nodes in the list are legally
colored at all times (see Lemma 3).

Finally, the methods of Pseudocode 4 apply the state transitions of the operations,
as depicted in the state transition diagram in Fig. 6.

3.2 DCAS-Chromo: A Doubly-Linked List Algorithm

We now describe the extensions needed to obtain DCAS-Chromo, which allows re-
movals from the middle of the list. This may create long helping chains, as demon-
strated in Fig. 8, which shows a long linked-list of nodes with alternating colors: red,
yellow, red, yellow, . . . . Consider a set of concurrent operations, each of which is try-
ing to remove a different yellow-colored node (at even positions), by acquiring the
node and its two red-colored neighbors. If the two red-colored nodes are acquired one
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Pseudocode 4 CAS-Chromo: Detailed code for state transitions
123: toInitState() {
124: s ← state
125: CAS(state,s,〈s.seq+1,INIT,NULL〉)
126: }

127: toAcqState() {
128: s ← state
129: if s.phase != INIT then return
130: CAS(state,s,〈s.seq,ACQUIRE,NULL〉)
131: }

132: toApplyState(int seq) {
133: s ← state
134: if s != 〈seq,ACQUIRE,NULL〉 then
135: return
136: CAS(state,s,〈seq,APPLY,SUCCESS〉)
137: }

138: toReleaseState() {
139: s ← state
140: if s.phase != APPLY then return

// linearization point—LP2
141: CAS(state,s,〈s.seq,RELEASE,s.result〉)
142: }

143: toFinalState() {
144: s ← state
145: if s.phase != RELEASE then return
146: CAS(state,s,〈s.seq,FINAL,s.result〉)
147: }
148: toFinalInvalidState() {
149: s ← state
150: if s.phase != INIT then return

// linearization point—LP1
151: CAS(state,s,〈s.seq,FINAL,INVALID〉)
152: }

153: toReleaseContentionState(int seq) {
154: s ← state
155: if s != 〈seq,ACQUIRE,NULL〉 then return
156: CAS(state,s,〈seq,RELEASE,CONTENTION〉)
157: }

158: toReleaseEmptyState() {
159: s ← state
160: if s != 〈seq,APPLY,SUCCESS〉 then
161: return

// linearization point—LP3
162: CAS(state,s,〈seq,RELEASE,EMPTY〉)
163: }

Fig. 8 Example: a symmetric scenario; each operation removes a different yellow-colored node (at even
positions), and accesses the node and its two red-colored neighbors

at a time, in the same order, e.g., first the left neighbor, it is possible that an operation
holds its left red node, and needs to help all operations to its right, in order to acquire
the right left node.

One might suggest to extend the notion of a legal coloring and require that any
triple of neighboring nodes is assigned different colors. This certainly allows to fol-
low the color-based scheme, but how can we preserve this extended coloring prop-
erty? In particular, when a node is removed, it is necessary to acquire four nodes in
order to legally re-color the remaining three nodes; this requires to further extend the
coloring property to any four consecutive nodes, which in turn requires to acquire five
nodes and so on; this unlimited expansion of the coloring property seems inevitable.

Our way to break out of this vicious circle is to acquire equally-colored nodes
atomically. An operation accesses at most three consecutive nodes, which are legally
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colored, so at most two of them have the same color. We use DCAS to atomically
acquire these nodes, e.g., the two red-colored nodes in the scenario of Fig. 8, and to
break the symmetry.

Pseudocode 5 presents the code for the additional operation Remove, for removing
a non-anchor valid node (the source node) from the list. The applyChanges method is
very similar to the pop operations (removing nodes from the ends) except that it does
not handle the case where the list is empty. The most important modification, relative
to CAS-Chromo, is in the acquireColor method, which now uses DCAS when acquir-
ing two nodes with the same color. That is, instead of acquiring the nodes one by one
(Pseudocode 1, lines 39–40) DCAS acquires both nodes atomically (Pseudocode 5,
lines 177–178).

4 Safety Proof: Linearizability

In this section, we prove that CAS-Chromo and DCAS-Chromo are linearizable (The-
orem 1). The proof does not assume that DCAS is used, and thus it holds for both
algorithms. Using DCAS is critical only for proving the locality properties of DCAS-
Chromo, in Sect. 5.1.

The linearizability of both algorithms hinges on showing that the implementation
follows the scheme. Namely, the executing processes preserve the correct phase tran-
sitions of the operation—acquiring, changing and releasing nodes—and take steps in
accordance with the operations’ phase. Most importantly, nodes in the data set are
changed only while all of them are acquired. This is somewhat more complicated
than in previous work [1, 4, 7, 24, 27], since the data set is dynamic.

The methods of Pseudocode 4 are the only way to make state transitions, and
they imply that the state transitions of an operation follow the diagram in Fig. 6.
Moreover, the round number is increased before every round. Hence, no operation
makes a transition to the same state tuple more than once.

The following terminology is used in the proofs. The ACQUIRE phase of the r-th
round is called the r-th ACQUIRE phase, and similarly for the other phases. The code
implies that an operation is in the APPLY phase at most once (since all transitions
from it are to a final state), in which case the operation completes and will not be
re-invoked again; this is called the last round. Only the initiator generates the data set
memento, once per round (line 11); the data set memento written in the r-th round is
called the r-th data set memento; the data set memento of the last round is called the
last data set memento.

Several executing processes can make the transitions to the APPLY and RELEASE

phases concurrently, but other transitions are only made by the initiator. A transition
to the APPLY phase only occurs once, in the last round; the method implementing
a state transition to the RELEASE phase in case of contention takes as argument the
round number, to ensure the transition occurs only if it is executed for the correct
round.

The main invariants of the algorithm are as follows: nodes are only modified by
the applyChanges, after the operation acquired all locks on them; modifications are
done using a CAS, that verifies that the attribute being changed has not been modified
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Pseudocode 5 Code changes for DCAS-Chromo
164: Remove::cloneDataset() {
165: cloneNode(source, MIDDLE)
166: left ← datasetMemento[MIDDLE].left.node
167: cloneNode(left, LEFT)
168: right ← datasetMemento[MIDDLE].right.node
169: cloneNode(right, RIGHT)
170: }

171: Operation::acquireColor(Color c, int seq) {
172: {ndi} ← get all nodes with color c from the seq-th memento
173: while true do
174: {owneri} ← get owners from {ndi}
175: checkNodes({ndi},seq)
176: if state != 〈seq,ACQUIRE,NULL〉 then return

// atomically acquire two equally colored nodes
177: if for each ndi , owneri = 〈⊥,⊥,ti〉 then
178: DCAS(nd1.owner, nd2.owner, owner1, owner2, 〈self,seq,owner1.aba+1〉,

〈self,seq,owner2.aba+1〉)
179: owner ← get owner from {ndi} // check if succeeded or blocked
180: if owner.op = self then return// acquired all c-colored nodes
181: checkNodes({ndi},seq)
182: if state != 〈seq,ACQUIRE,NULL〉 then return
183: if owner.op != ⊥ then // blocked by owner.op operation
184: owner.op.help(owner.seq)// help blocking operation
185: }

186: Remove::applyChanges() {
// the MIDDLE node in the memento is removed

187: setTempColor(RIGHT)
188: updateRight(LEFT,RIGHT)
189: updateLeft(RIGHT,LEFT)
190: updateRight(MIDDLE,⊥) // the removed node is now invalid
191: updateLeft(MIDDLE,⊥)
192: updateColor(RIGHT)
193: }

since it was cloned before the lock was acquired. These invariants protect the list
from both concurrent changes by other contending operations, and from concurrent
changes by helping processes.

The next two lemmas formalize the guarantees these techniques provide. Their
proofs are deferred to Appendix A.

Lemma 1 An operation op successfully applies changes only when it is in APPLY

phase, and only to nodes in op’s last data set memento.

Lemma 2 The following claims all hold for every operation op:
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1. If op acquires a node t in the r-th round, then the r-th memento of t in op’s data
set is valid and t , excluding t’s owner, has not changed after it was cloned by op

in the r-th round.
2. op advances from the r-th ACQUIRE phase to the r-th APPLY phase only if all

the nodes in its data set are consistent with the r-th data set memento, and are
acquired by op.

3. op only applies changes to nodes that are acquired by it.
4. op releases nodes only when it is in RELEASE phase, and during its r-th RELEASE

phase it only releases nodes it has acquired in the r-th round.

Linearizability of CAS-Chromo and DCAS-Chromo immediately follows.

Theorem 1 CAS-Chromo and DCAS-Chromo are linearizable.

Proof We identify, for every operation, a linearization point inside its interval, so
that the operation appears to occur atomically at this point. The linearization point of
an operation opi is either at the transition to state 〈last,FINAL,INVALID〉 (line 8), at
the transition to state 〈last,RELEASE,SUCCESS〉 (line 24), or at the transition to state
〈last,RELEASE,EMPTY〉 (line 83); that is, when the CAS of the transition is applied
successfully (line 151, marked LP1, line 141, marked LP2, or line 162, marked LP3,
respectively). This is well defined, since only one of these points can occur.

In the first case, opi discovers that the source node is invalid, since another oper-
ation opj removes it. Before its transition to the FINAL phase, opi helps opj (line 7).
By Lemma 1, the transition to the APPLY phase of opj already occurred and opi helps
it to complete in case it has not completed yet. Thus, opi need not apply its changes,
and it is linearized after opj .

In the second case, the pop operation opi discovers that the list is empty (line 82)
while owning both anchors. At this point no other operation can insert a node to the
list, and the transition to the RELEASE phase with an EMPTY result is the linearization
point of opi .

In the third case, Lemma 2 (1) and (2) imply that when the transition to the AP-
PLY phase occurs, all the nodes in the data set memento of opi are valid, have not
changed since they were cloned (except for their owners) and they are acquired by
opi . By Lemma 2(4), these nodes are not released while opi is in the APPLY phase,
which means, by Lemma 2(3), that no other operation changes these nodes and they
are modified only by opi during the execution of the APPLY phase. Finally, the pseu-
docode of the applyChanges methods and the use of CAS together with the ABA-
prevention counter for any change applied to the nodes, guarantee that the executing
processes of the operation preserves the specification of the corresponding doubly-
linked list operations. �

5 CAS-Chromo and DCAS-Chromo Are Local Nonblocking

The legality of the coloring is now used to show that the algorithms are local non-
blocking. Recall that a node is legally colored if its color differs from the colors of
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its neighbors; the left anchor is legally colored if its color is different from its right
neighbor, and the right anchor is legally colored if its color is different from its left
neighbor.

5.1 DCAS-Chromo

It is simple to see that all operations change at most three consecutive nodes in the
linked list and access at most four consecutive nodes, and that each operation only
changes the color of a single node: insert and push operations change the color of
the new node, and a pop and remove operations change the color of the right node
in their data set. No operation changes the color of the left node in its data set. Since
an operation changes a node only when owning it, this ensures that the colors of two
neighboring nodes is not changed at the same time, even if concurrent operations
access them.

By Theorem 1, we can assume that the changes are applied in isolation from other
operations. Therefore, the proof of the next lemma, which appears in Appendix B, is
merely a step-by-step sequential analysis of the applyChanges methods of the various
operations.

Lemma 3 All valid nodes are legally colored.

An operation owns at most three consecutive nodes, and by the lemma, at most
two of them have the same color, hence, DCAS suffices to acquire equally colored
nodes in the operations’ data set.

The proof that the algorithm is local nonblocking starts by showing that a process
only helps operations within constant distance of the operation it is executing. The
proof considers the number of help methods a process started executing but have not
yet completed, and shows that this is a lower bound on the color already acquired by
the operations the process helps to execute.

Lemma 4 Consider process p that called h > 0 help methods and completed h′ < h

of them. If the last call is the help(ri ) method of an operation opi , then during its ri -th
round, opi only has to acquire nodes in its data set with color greater than or equal
to ch−h′ .

Proof The proof is by induction on k = h − h′. The base case is when k = 1, that
is, h′ = h − 1; in this case, p has only called the help method for its own operation.
A node has color c0 if it is a new node that is created by the operation during its
initialization (omitted from the pseudo-code), or if it is the right node in a remove
operation, which is colored c0 during the APPLY phase. In both cases, the node is not
acquired with color c0. This means that only nodes with color greater than or equal
to c1 have to be acquired.

In the induction step, k > 1, implying that h′ < h − 1. Hence, p called the help
method for at least one operation other than itself and did not complete. Assume the
penultimate help method called and not completed by p is for operation opj . By
the induction assumption, when the help method of opj is called, opj has to acquire
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node t with color c ≥ ck−1. Process p reads t’s owner (line 41), and discovers opj

failed to acquire t (line 42) and that t is consistent with its memento (lines 43–44),
i.e., its color did not change. Then, p discovers that opj is blocked by operation opi

(different than opj ) in its ri -th round (line 45) and calls the last help method (line 46).
Since equally colored nodes are acquired atomically, opi acquired color c and only
has to acquire nodes with color greater than or equal to ck , and the lemma follows. �

Note that h − h′ − 1 bounds from above the distance to operations that a process
helps. Thus, Lemma 4 implies:

Corollary 1 If opi helps opj , at distance d , then opj only has to acquire nodes with
color greater than cd . In particular, opj is in the 3-neighborhood of opi , and if d = 3
then opj completed the ACQUIRE phase.

Afek et al. [1] define the next notion, capturing the locality of implementations in
terms of memory contention:

Definition 3 An algorithm has d-local contention if two processes, p1 and p2, access
the same memory location in operations op1 and op2, respectively, only if op1 and
op2 are within distance d .

Theorem 2 (Local contention) DCAS-Chromo has 7-local contention.

Proof Two processes pi and pj access the same memory location if they help ex-
ecute operations, opk and opl respectively, within distance one of each other. By
Corollary 1, opi is in the 3-neighborhood of opk and opj is in the 3-neighborhood of
opl . Thus, the distance between opi and opj is at most 7. �

Once an operation is in its APPLY phase, it is straightforward that it completes after
one of its executing processes takes a constant number of steps. It remains to prove
that if the operation is blocked outside the APPLY phase, then some “nearby” opera-
tion (in a sense made precise by Lemma 5) completes. We do so by considering ex-
ecutions of the loop of acquireColor(c, r) method (lines 35–46), called a c-acquiring
iteration. Lemma 5 below shows that in every acquiring iteration of an executing
process, whether successful or not, some “nearby” operation makes progress.

Fix an arbitrary operation opb initiated by process pb; progress in the neighbor-
hood of opb is tracked by three counters:

– The completed operations counter, denoted co, initially 0, is increased whenever
an operation in the 4-neighborhood of opb completes.

– The color counter, denoted cl, holds the color of the last acquiring iteration that
the initiator of opb executed.

– The changes counter, denoted ch, initially 0, is increased whenever an operation
in the 5-neighborhood of opb changes an item in its data set.

The values of the counters in a configuration C are denoted co(C), cl(C), ch(C);
co and ch are nondecreasing, but cl is not necessarily monotone.
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Assume that process pb takes an infinite number of steps, executing infinitely
many acquiring iterations, without completing opb. Let the configurations at the start
of the acquiring iterations of pb be denoted C0,C1, . . . ,Ct , . . . , in the order they
occur. The next lemma argues that each configuration Ct is a milestone in the progress
of the operations in opb’s neighborhood.

Lemma 5 For every t > 0, either co(Ct ) > co(Ct+1), or cl(Ct ) > cl(Ct+1), or
ch(Ct ) > ch(Ct+1).

Proof Assume that process pb starts a c-acquiring iteration at Ct−1, during an ac-
quireColor(c, r) method of op, the j -th operation of pi , and a c′-acquiring iteration
at Ct , during an acquireColor(c′, r ′) method of op′, the j ′-th operation of pi′ . By
Corollary 1, op and op′ are in the 3-neighborhood of opb.

First, assume that i �= i′, i.e., the operations have different initiators.
If op completes before the second iteration, then co(Ct−1) < co(Ct ). Otherwise,

the first acquiring iteration of op failed. If the failure is due to contention, then some
operation opl at distance one from op applied a change to its data set; since opl

is in the 4-neighborhood of opb, ch(Ct−1) < ch(Ct ). Otherwise, the first acquiring
iteration of op failed since op′ blocked it. That is, op fails to acquire a node t with
color c since it is already owned by op′, and then pb helps op′ and executes the
second c′-acquiring iteration. Since op′ atomically acquires all the nodes with color
c, c < c′, we get cl(Ct−1) < cl(Ct ).

Next, assume that i = i′, i.e., the operations have the same initiator, and therefore,
j ≤ j ′.

If j < j ′, pi completed its j -th operation and co(Ct−1) < co(Ct ).
Otherwise, j = j ′, i.e., both acquiring iterations are of the same operation. The

round number of the acquiring iterations is monotonically increasing, thus, r ≤ r ′. If
r < r ′, then op is re-invoked before the second acquiring iteration, due to contention
in the first iteration. Thus, in the first iteration some operation opl at distance one
from op applied a change to its data set that failed op. The operation opl is in the
4-neighborhood of opb and ch(Ct−1) < ch(Ct ).

Otherwise, r = r ′, i.e., both acquiring iterations are of the same round. The colors
pb is acquiring in the same round of the same operation are nondecreasing, thus,
c ≤ c′. If c < c′ then cl(Ct−1) < cl(Ct ).

Finally, we are left with the case that i = i′, j = j ′, r = r ′, and c = c′, that is,
two consecutive c-acquiring iterations in the same round of the same operation. The
process executing the acquiring iterations, pb , fails to acquire some node t with color
c in the first iteration. Then, without helping any other operation (since the node is
already released), pb retries the acquiring iteration. The process pb fails to acquire t

in the first iteration since another operation opl , in the 1-neighborhood of op, holds t .
The operation opl is in the 4-neighborhood of opb . If opl releases t after it completes,
then co(Ct−1) < co(Ct ). Otherwise, the node is released since opl discovers that a
node it is trying to acquire, t ′, is inconsistent with its memento. Thus, another opera-
tion opk in the 1-neighborhood of opl changed t ′ after opl generated the memento of
t ′. Since opk is in the 5-neighborhood of opb , we get ch(Ct−1) < ch(Ct ). �
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Theorem 3 DCAS-Chromo is a 5-local nonblocking implementation of a doubly-
linked list.

Proof Consider the initiator pb of an operation opb. By Lemma 5, at least one counter
increases with each acquiring iteration of pb . Since the color counter is at most
3, after at most three consecutive acquiring iterations, some counter other than the
color counter must increase. If the completed operations counter increases, then some
pending operation in the 4-neighborhood of opb completes. Otherwise, the changes
counter increases. Once it is in the APPLY phase, an operation completes within a
constant number of changes. Thus, after pb executes a number of acquiring iterations
that is linear in the number of operations in the 5-neighborhood of opb, some pending
operation in the 5-neighborhood of opb completes. Since there is a finite number of
processes, it follows that after pb takes an finite number of steps, some operation in
the 5-neighborhood of opb completes. �

5.2 CAS-Chromo

CAS-Chromo does not support removals from the middle of the linked list, and hence
only pop operations acquire three consecutive nodes, two of which may have the same
color. Since operations acquire equally colored nodes by their order in the list from
left to right, whenever a process calls a new help method it helps a new operation.
Thus, the number of pop operations a process started helping and did not complete is
at most two, and helping cycles are avoided.

We revise Lemma 4, Corollary 1, and Lemma 5.

Lemma 4′ Consider process p that called h > 0 help methods and completed h′ < h

of them, such that from the uncompleted help methods excluding the last (altogether
h − h′ − 1 methods), � are of pop operations. If the last call is the help(ri ) method
of an operation opi , then during its ri -th round, opi only has to acquire nodes in its
data set with color greater than or equal to ch−h′−�.

Proof The proof is by induction on k = h − h′. The base case, k = 1, follows by
arguments similar to the base case in the proof of Lemma 4.

In the induction step, k > 1, implying that h′ < h − 1. Hence, p called the help
method for at least one operation other than itself and did not complete. Assume
the penultimate help method called and not completed by p is the help method of
operation opj .

We first assume that opj is a pop operation. By the induction assumption, when the
help method of opj is called, opj only has to acquire nodes with color greater than
or equal to ck−1−(�−1) = ck−�. Process p helps opj to acquire a node t with color
c ≥ ck−�. We review p’s steps while helping opj to show that opi acquired color c:
p reads t’s owner (line 41), and discovers opj failed to acquire t (otherwise it returns
in line 42) and that t is consistent with its memento (line 43), i.e., its color is still c.
Then p discovers that opj is blocked by operation opi in its ri -th round (line 45) and
calls the last help method (line 46). The operation opi acquired t with color c in its
ri -th round; opi only has to acquire nodes with color greater than or equal to ck−�,
and the lemma holds.
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If opj is not a pop operation, then the induction assumption implies that when the
help method of opj is called, opj only has to acquire nodes with color greater than
or equal to ck−1−�. Process p helps opj to acquire the next node t . Since opj is not a
pop operation t has color c ≥ ck−�. Process p takes the same steps as in the previous
case, to find that opj is blocked by opi in its ri -th round, then it calls the last help
method. The operation opi , acquired t with color c in its ri -th round; opi only has to
acquire nodes with color greater than or equal to ck−�, and the lemma holds. �

Corollary 1′ If opi helps opj , at distance d , then opj already acquired a node with
color greater or equal to cd−2. In particular, opj is in the 5-neighborhood of opi ,
and if d = 5 then opj completed the ACQUIRE phase.

As in the proof of Theorem 2 for DCAS-Chromo, this implies that CAS-Chromo
has 11-local contention; we next prove it is 7-local nonblocking.

The proof of Lemma 5 uses the fact that DCAS-Chromo atomically acquires all
nodes with the same color. CAS-Chromo, however, acquires nodes with the same
color one by one, from left to right. To cover this case, we use a monochromatic chain
counter, denoted mc, to track the number of consecutive acquiring iterations that the
initiator of an operation opb executes with the same color; mc is reset whenever
a different color is acquired. Furthermore, the neighborhoods for which the other
counters are defined are extended, so that co is defined for the 6-neighborhood of
opb, and ch is defined for the 7-neighborhood of opb.

Lemma 5′ For every t > 0, either co(Ct ) > co(Ct+1), or cl(Ct ) > cl(Ct+1), or
mc(Ct ) > mc(Ct+1), or ch(Ct ) > ch(Ct+1).

Proof Assume that process pb starts a c-acquiring iteration at Ct−1, during an
acquireColor(c, r) method of op, the j -th operation of pi , and a c′-acquiring iter-
ation at Ct , during an acquireColor(c′, r ′) method of op′, the j ′-th operation of pi′ .
By Corollary 1′, op and op′ are in the 5-neighborhood of opb.

First, assume that i �= i′, i.e., the operations have different initiators.
If op completes before the second iteration, then co(Ct−1) < co(Ct ). Otherwise,

the first acquiring iteration of op failed. If the failure is due to contention, then some
operation opl at distance one from op applied a change to its data set; since opl

is in the 6-neighborhood of opb, ch(Ct−1) < ch(Ct ). Otherwise, the first acquiring
iteration of op failed since op′ blocked it. That is, op fails to acquire a node t with
color c since it is already owned by op′, and then pb helps op′ and executes the
second c′-acquiring iteration. This is the main point where the proof differs from the
original one. If c < c′ then cl(Ct−1) < cl(Ct ), otherwise, mc(Ct−1) < mc(Ct ).

Next, assume that i = i′, i.e., the operations have the same initiator, and therefore,
j ≤ j ′.

If j < j ′, pi completed its j -th operation and co(Ct−1) < co(Ct ).
Otherwise, j = j ′, i.e., both acquiring iterations are of the same operation. The

round number of the acquiring iterations is monotonically increasing, thus, r ≤ r ′. If
r < r ′, then op is re-invoked before the second acquiring iteration, due to contention
in the first iteration. Thus, in the first iteration some operation opl at distance one
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from op applied a change to its data set that failed op. The operation opl is in the
6-neighborhood of opb and ch(Ct−1) < ch(Ct ).

Otherwise, r = r ′, i.e., both acquiring iterations are of the same round. The colors
pb is acquiring in the same round of the same operation are nondecreasing, thus,
c ≤ c′. If c < c′ then cl(Ct−1) < cl(Ct ).

Finally, we are left with the case that i = i′, j = j ′, r = r ′, and c = c′, that is,
two consecutive c-acquiring iterations in the same round of the same operation. The
process executing the acquiring iterations, pb , fails to acquire some node t with color
c in the first iteration. Then, without helping any other operation (since the node is
already released), pb retries the acquiring iteration. The process pb fails to acquire t

in the first iteration since another operation opl , in the 1-neighborhood of op, holds t .
The operation opl is in the 6-neighborhood of opb . If opl releases t after it completes,
then co(Ct−1) < co(Ct ). Otherwise, the node is released since opl discovers that a
node it is trying to acquire, t ′, is inconsistent with its memento. Thus, another oper-
ation opk in the 1-neighborhood of opl changed t ′ after opl generated the memento
of t ′. Since opk is in the 7-neighborhood of opb , we get ch(Ct−1) < ch(Ct ). �

Only pop operations in CAS-Chromo have three nodes in their data set and can be
part of a monochromatic chain. Since equally-colored nodes are acquired from left
to right, pop operations cannot form monochromatic cycles. Therefore, the length of
a monochromatic chains is at most two, and it can be shown in a manner similar to
the proof of Theorem 3, for DCAS-Chromo, that if the operation never ends, other
operations in its 7-neighborhood complete.

Theorem 4 CAS-Chromo is a 7-local nonblocking implementation of a doubly-
linked list, allowing removals only at the ends.

An implementation of a deque restricts insertions and removals to the ends. In this
case, each operation has an anchor in its data set. This bounds the length of a path
in the conflict graph to 3, that is, two operations are connected only if they are in the
3-neighborhood of each another.

Theorem 5 CAS-Chromo is an implementation of a deque that has 3-local con-
tention and is 3-local nonblocking.

6 Related Work

Two research threads are related to our results: generic schemes based on acquiring
ownership, and specialized algorithms for linked-list data structures.

6.1 Generic Ownership-Based Schemes

Several papers [7, 24, 27] systematically derive implementations of concurrent data
structures, by acquiring data items one-by-one and applying changes after all items
are acquired. While acquiring items, an operation may hold one or more items while

Author's personal copy



Theory Comput Syst

waiting for another operation to release another item; this can create long hold-and-
wait chains.

The operations may help recursively, namely, a process helps another process to
help a third process and so on, possibly causing long helping chains. For example,
assume the nodes in Fig. 3 are acquired from left to right. Consider an execution α

in which op2, op3 and op4 concurrently acquire their left-most nodes successfully,
and then op1 tries to acquire its nodes while the other operations are delayed. Since
m2 is owned by op2, op1 has to help op2; since m4 is owned by op3, op1 has to help
op3; and since m5 is owned by op4, op1 has to help op4. Thus op1 is delayed by
a chain of operations, with intersecting data sets. In general, op1 can be delayed by
any operation within a finite distance from it, implying that the implementation is not
local.

In some implementations [24], an operation helps only an immediate neighbor.
Nevertheless, the number of steps a process performs depends on the length of the
longest path connected to this operation in the conflict graph. Consider again an ex-
ecution that starts with op2, op3 and op4 acquiring their low-address nodes success-
fully, then op1 fails to acquire m2, op2 fails to acquire m4, and op3 fails to acquire
m5; each operation then helps its (immediate) neighbor. Prior to helping, op2 and
op3 release their nodes and stop taking steps, thus op1 and op2 discover their help is
unnecessary. Assume that op4 completes, and again op1, op2 and op3 try to acquire
their data sets. It is possible that op2 and op3 acquire their low-address nodes, and
op1 tries, in vain, to help op2, which releases its nodes due to op3, etc. When the path
of overlapping operations gets longer, op1 futilely helps op2 more times.

The color-based scheme for implementing binary operations [4] bounds the length
of helping chains by coloring the data items with ordered colors. An operation starts
by coloring the items it is going to access with a constant number of colors, so that
neighboring items have different colors, and then acquires data items in an increasing
order of colors. In this scheme, op helps op′ only if op′ already owns a higher color.
As in our algorithms, the length of helping chains is bounded by the number of colors,
and an operation helps only operations at constant distance.

Afek et al. [1] extend this scheme to arbitrary k-ary operations. In addition to
local contention (Definition 3), they also define an implementation to have d-local
step complexity, if the step complexity of an operation depends only on the number
of operations within distance d of it.

Both schemes [1, 4] must color the items when an operation starts, since the data
set is arbitrary. This requires information about operations (and their data sets) at non-
constant distance, leading to O(log∗ n)-local step complexity and contention, and
a more complicated implementation. Since the data sets of linked-list operations is
predicable, we can avoid the cost of initial coloring with a built-in coloring, yielding
O(1)-local step complexity.

6.2 Previous Linked-List Algorithms

Several papers proposed implementations of dynamic linked list data structures (see
Table 1).

Harris [14] used CAS to implement a singly-linked list, with insertions and re-
movals anywhere; however, in this algorithm, a process can access a node previously
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Table 1 Linked list algorithms; interference is the distance between operations that delay each other

Algorithm Insertions Removals Uses dcas Interference Comments

Harris [14] anywhere anywhere no any pair singly-linked list

Greenwald [12] anywhere anywhere yes any pair

Michael [20] anywhere anywhere no any pair singly-linked list

Sundell and Tsigas [25] anywhere anywhere no any pair

DCAS-Chromo anywhere anywhere yes distance ≤5

Greenwald [11] ends ends yes opposite ends

Agesen et al. [2] ends ends yes distance = 1

Michael [21] ends ends no opposite ends

Herlihy et al. [17] ends ends no distance = 1 obstruction free, array-based

Sundell and Tsigas [26] ends ends no distance ≤2

CAS-Chromo ends ends no distance ≤3

CAS-Chromo anywhere ends no distance ≤7

removed from the linked list, possibly yielding an unbounded chain of uncollected re-
moved nodes. Michael [20] fixed these memory management issues. Elsewhere [21],
Michael proposed an implementation of a deque; in this algorithm, a anchor single
word holds the head and tail pointers, causing all operations to interfere with each
other, and making the implementation inherently sequential.

Sundell and Tsigas [26] avoid the use of a single anchor, allowing operations on
the two ends to proceed concurrently. An extension of this algorithm allows insertions
and removals in the middle of the list [25]; in this algorithm, a long path of overlap-
ping removals may cause interference among distant operations; moreover, during
intermediate states, there can be a consecutive sequence of inconsistent backward
links, causing part of the list to behave as singly-linked.

An obstruction-free deque, providing a weaker progress property, was proposed
by Herlihy et al. [17]; besides blocking when there is even a little contention, this
array-based implementation bounds the deque’s size.

Greenwald [11, 12] uses DCAS to simplify the design of many data structures. His
implementations of deques, singly-linked and doubly-linked lists synchronize via a
single designated memory location, resulting in a strictly sequential execution. Age-
sen et al. [2] present the first DCAS-based, dynamically-sized deque implementation,
supporting concurrent access to both ends of the deque, with 1-local step complexity;
this algorithm does not allow operations in the middle of the linked list. SNARK [8]
is an attempt for further improvement that uses only a single DCAS primitive per op-
eration in the best case, instead of two. Unfortunately, SNARK is incorrect and the
corrected version allows removed nodes to be accessed from within the deque, thus
preventing the garbage collector from reclaiming long chains of unused nodes [9].
The authors suggest that primitives more powerful than DCAS, e.g., 3CAS, are needed
in order to obtain simple and efficient implementations of data structures guarantee-
ing that some operation makes progress at any time.

DCAS-Chromo (as well as other algorithms [5]) indicate that DCAS provides sig-
nificant leverage for achieving these goals, beyond what is offered by CAS. Indeed,
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unlike CAS-based implementations, our implementations do not allow chains of re-
moved nodes to be accessed from within the linked-list. While we have not tested
their performance, we remark that in our algorithms, an operation completes within
O(1) steps if it is running solo in an execution suffix, i.e., it has constant obstruction-
free step complexity [10].

7 Discussion

This paper presents a new approach for designing high-throughput implementations
of linked list data structures. We show a DCAS-based implementation of insertions
and removals in a doubly-linked list; for a deque and priority queues, where nodes
are removed only from the ends, the implementation uses only CAS. These implemen-
tations are intended as a proof-of-concept and require further optimizations to make
them more practical; it is also necessary to implement a search operation in order to
support the full functionality of priority queues and lists. Finally, it is interesting to
explore other applications of our scheme, e.g., for tree-based data structures.

DCAS-Chromo uses DCAS, which is seldom provided in hardware, but DCAS is an
ideal candidate to be supported by hardware transactional memory [19, 22], being
a short transaction with small static data set. Alternatively, DCAS can be simulated
in software from CAS [4, 10], or by applying a simple randomized algorithm [13].
In particular, using the highly-concurrent implementation of Attiya and Dagan [4],
which is O(log∗ n)-local nonblocking, yields an implementation that is O(log∗ n)-
local nonblocking, using only CAS.

Acknowledgements We thank David Hay, Danny Hendler, Gadi Taubenfeld and the anonymous refer-
ees for helpful comments. This research was supported by the Israel Science Foundation (grants 1344/06
and 1227/10).

Appendix A: Proofs of Lemmas 1 and 2

Lemma 1 An operation op successfully applies changes only when it is in APPLY

phase, and only to nodes in op’s last data set memento.

Proof An executing process of op that calls applyChanges first verifies that the op-
eration is in the APPLY phase (line 22), implying that this is the last round of the
operation, and it holds the last data set memento. Since an operation changes only
nodes in its data set memento, executing processes apply the same changes on the
same nodes (from the last data set memento).

Let pj be the process that advances op from APPLY phase to RELEASE phase
(line 24). Before changing the state, pj executes applyChanges (line 23), thus CAS is
applied at least once to each of the attributes based on values in the node mementos
(see the code in Pseudocode 3), prior to the state transition. Once a CAS is applied
successfully the attribute is inconsistent with its memento since at least the ABA-
prevention counter has changed. If after the transition another process pi applies CAS

to some attribute while applying op’s changes, pi ’s CAS fails. �
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In order to prove Lemma 2(1–4), it is helpful to inductively carry two additional
claims (5 and 6).

Lemma 2′ (extended) The following claims all hold for every operation op:

1. If op acquires a node t in the r-th round, then the r-th memento of t in op’s data
set is valid and t , excluding t’s owner, has not changed after it was cloned by op

in the r-th round.
2. op advances from the r-th ACQUIRE phase to the r-th APPLY phase only if all

the nodes in its data set are consistent with the r-th data set memento, and are
acquired by op.

3. op only applies changes to nodes that are acquired by it.
4. op releases nodes only when it is in RELEASE phase, and during its r-th RELEASE

phase it only releases nodes it has acquired in the r-th round.
5. op acquires nodes only when it is in ACQUIRE phase, and during its r-th ACQUIRE

phase it only acquires nodes that are in its r-th data set memento.
6. When an executing process of op returns from acquireColor(c, r), either all nodes

with color c in the r-th data set memento are acquired by op, or op is not in the
r-th ACQUIRE phase.

Proof The claims are proved simultaneously by induction on the execution length. In
the base case, the empty execution, all claims vacuously hold. In the induction step,
we consider each claim:

1. If the r-th memento of a node t in op’s data set is invalid no executing process
tries to acquire t in the r-th round (line 37, and line 52).

Now, assume t has changed after op cloned it in the r-th round, and that pi ,
an executing process of op calls acquireColor(c, r), where c is the color of t . If
the change occurs before pi verifies t is consistent with its memento (line 37),
then pi does not try to acquire t . Otherwise the change occurs after verifying the
consistency, and in particular after pi reads the content of t’s owner (line 36). By
Lemma 1, the change is applied by an operation op′ in its APPLY phase. By (3),
t is owned by op′ when applying the change. If op′ acquired t before pi reads
the content of t’s owner, then by (4) it is not released until after op′ applied the
changes, i.e., until after pi reads the owner, then pi does not try to acquire t .
Otherwise, op′ acquired t after pi reads t’s owner, in this case, pi fails acquiring
t’s owner, since the ABA-prevention counter has changed.

2. A transition of op from the r-th ACQUIRE phase to the r-th APPLY phase by an
executing process occurs only after the executing process calls acquireColor(c, r)
with all colors from the r-th color set while op is in the r-th ACQUIRE phase. By
(6), when returning from each such round, all relevant nodes are acquired by op,
and by (4), they were not released since then. As the set of colors includes all nodes
in the r-th data set memento, they are all owned by op while the transition occurs.
By (1), no node in the r-th data set memento is changed before op advances to the
APPLY phase. So, when the transition occurs all nodes in the r-th data set memento
are acquired by op, and they are consistent with their mementos.

3. By Lemma 1, op only applies changes while it is in APPLY phase and only to
nodes that are in the last data set memento. By (2), when the transition to APPLY
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phase occurs all nodes in the r-th (last) data set memento are acquired by op, and
by (4), it does not release the nodes while it is in the APPLY phase, implying that
op changes a node only while owning it.

4. The transition of op from the r-th RELEASE phase to the r-th FINAL phase
(line 14) by the initiator of op, p, occurs after p calls the releaseDataset method
(line 25), to release all nodes in the r-th data set memento (line 28). All processes
executing the r-th round try to release the same nodes from the r-th data set me-
mento, since by (5), op only acquires nodes from the r-th data set memento in
the r-th round. When a process pi releases op’s data set while executing the r-th
round of op, it reads the owner on a node t (line 29), and tries to release t (line 31)
after verifying that op is in the RELEASE phase and t is owned by op in its r-th
round (line 30). It can be easily verified from the code that after p completes the
releaseDataset method all the nodes that were acquired by op are released. Thus,
if pi tries to release the nodes after the transition occurs, the CAS fails since the
ABA-prevention counter has changed.

5. Consider an executing process pi executing the r-th round of op. First pi reads
t from op’s r-th data set memento (line 34); then pi reads t’s owner (line 36);
verifies that t’s memento is valid (line 37); and that op is in the r-th ACQUIRE

phase (line 38). Let pj be the executing process that advances op from the r-th
ACQUIRE phase either to the r-th APPLY phase or to the r-th RELEASE phase.
Assume the transition occurs after pi verifies the phase, and specifically after it
reads t’s owner, but before pi tries to acquire t (line 40). If pj advances op to
the r-th APPLY phase, by (2) all nodes in the r-th data set memento, including t ,
are acquired by op when pj makes the transition. Thus either pi discovers that t

is owned by op or it fails acquiring t’s owner, since at least the ABA-prevention
counter has changed.

Otherwise, pj advances to the r-th RELEASE phase since it discovers that some
node t ′ in the r-th data set memento is inconsistent with its memento (line 37 or
line 43). There are three cases depending on the order between the colors of the
nodes:

(i) t ′ and t have the same color. Before the transition occurs, pj violates the
owners of both nodes by “touching” their ABA-prevention counter (line 52).
By (1), since t changed while op is in the r-th ACQUIRE phase, pi cannot
successfully acquire it in this round.

(ii) t ′ has lower color than t . Thus, pi executes acquireColor(c′, r), where c′ is the
color of t ′, before trying to acquire t . By (6), t ′ was acquired by op and by (1),
it has not changed while op is in the r-th ACQUIRE phase, which contradicts
the assumption that pj discovers it is inconsistent with its memento.

(iii) t ′ has higher color than t . Thus, pj executes acquireColor(c, r), where c is
the color of t , before discovering the change in t ′. By (6), t was acquired by
op. Thus either pi discovers that t is owned by op or it fails acquiring t , since
at least the ABA-prevention counter has changed.

6. An executing process of op that executes acquireColor(c, r) returns from the
method in one of three cases: Two cases are when it recognizes a change in the
state (line 38 or line 44), and it is evident by the state diagram that when returning
from the method, op is no longer in the r-th ACQUIRE phase. The third case is
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after verifying all the nodes with color c in the r-th data set memento are acquired
by op (line 42). Now, if when returning from the method some of the nodes are
not owned by op, then, by (4), they are released by the operation that acquired
them, while it is in RELEASE phase, so this case also satisfies the condition. �

Appendix B: Proof of Lemma 3

Recall that a node is valid if it is an anchor or both its left and right links are not null.
The proof is by induction on the execution order. In the base case, the linked list

is empty: the left anchor is colored c1 and the right anchor is colored c3, and hence,
they are legally colored.

Induction step: a node can become illegally colored only when some operation
applies its changes to the node or one of its neighbors. By Lemma 2(3), an operation
changes a node only if it owns it. This implies that no node is inserted or removed
immediately to the left or to the right of an operation data set while the operation
applies its changes. Moreover, by the above observation a pop and remove operations
only change the color of the right node in the data set and an insert or push operations
only change the color of the new, i.e., middle, node in the data set. Thus, we can
derive the next claim:

Claim An operation changes a node’s color only if it holds the node and its left
neighbor.

We analyze every step in the APPLY phase of an operation, and we show that after
each such step the node that was changed is still legally colored. Consider first the
PushLeft operation presented in Fig. 9. The data set of the operation, op1, is the new
node (m), the left anchor (LA), and its right neighbor (m1). While op1 is applying
its changes, other operations neither remove nor insert nodes to the right of the right
neighbor node, and also do not change the colors of the nodes in the data set. The
claim implies that other operations do not change the color of an additional right
neighbor (m2). For PushRight or insert operations, the induction assumption also
implies that a left neighbor is legally colored even if its color is changed by another
operation. It remains to show, by inspecting the code, that the changes applied by the
operation keep the nodes legally colored.

Line 75 update right link of the new node: the new node is not yet valid (Fig. 9(b));
Line 76 update left link of the new node: the new node is valid and it is legally

colored (Fig. 9(c));
Line 77 the new node is assigned with a non-temporary color different than its neigh-

bors and the new node is legally colored (Fig. 9(d));
Line 78 update left link of the right neighbor (m1): the right neighbor has color dif-

ferent than the colors of the new node and the right neighbor (m2), and thus it is
legally colored (Fig. 9(e)).

Line 79 update right link of the left anchor (or the source node in the case of an
insertRight operation): the left anchor has color different than the color of the new
node (in the case of an insertRight operation the source node also has color different
than the color of the left neighbor), and thus it is legally colored (Fig. 9(f));
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Fig. 9 Example: the applyChanges method for PushLeft operation (Pseudocode 3). Given the nodes
LA,m1,m2 from Fig. 3, op1 pushes a new node, m, into the left side of the list

We next analyze the PopLeft operation (see Fig. 10). The data set of the opera-
tion, op2, is the left anchor (LA) and its right neighbors (m1 and m2). While op2 is
applying its changes, other operations neither remove nor insert nodes to the right
of the right neighbor, and also do not change the colors of the nodes in the data set.
The claim implies that other operations do not change the color of an additional right
neighbor (m3). For a PopRight operation, the induction assumption implies that the
left neighbor is legally colored even if its color is changed by another operation. We
show again that the operation’s changes keep the nodes legally colored:

Line 85 the right neighbor (m2) is assigned with the temporary color: the right neigh-
bor is legally colored, since the subject node (m1) and the right neighbor (m3) have
colors different than the temporary color (Fig. 10(b));

Line 86 update right link of the left anchor (m2): the left anchor has a non-temporary
color, and thus it is legally colored (Fig. 10(c));

Line 87 update left link of the right neighbor: the right neighbor is legally colored,
since the left anchor and the adjacent node to the right have colors different than the
temporary color (Fig. 10(d));

Line 88 set right link of the subject node to null: the subject node is now invalid
(Fig. 10(e));

Line 89 set left link of the subject node to null: the subject node is invalid
(Fig. 10(e));

Line 90 the right neighbor is assigned with a non-temporary color different than its
neighbors, and thus it is legally colored (Fig. 10(f)).
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Fig. 10 Example: the applyChanges method for PopLeft operation (Pseudocode 3). Given the nodes
LA,m1,m2,m3 from Fig. 3, op2 pops the node m1

Fig. 11 Example: an execution of a Remove operation—op4 from Fig. 3

It remains to show that the remove operation keeps the coloring legal (see Fig. 11).
The remove operation manipulates its data set in a manner similar to the pop opera-
tion. We analyze the Remove operation, op4, presented earlier in Fig. 3. Figure 11(a)
presents the nodes m2,m3,m4,m5,m6 from Fig. 3, op4 removes the source node
m4. The data set of the operation is the source node and its neighbors (m3 and m5).
During the ACQUIRE phase, op4 first acquires m4, and then atomically acquires m3

and m5, which are equally colored. While op4 is applying its changes, other opera-
tions neither remove nor insert nodes to the left of the left neighbor and to the right
of the right neighbor, and also do not change the colors of the nodes in the data set.
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The claim implies that other operations do not change the color of an additional right
neighbor (m6). Moreover, the left neighbor (m2) is legally colored even if its color
is changed by another operation, while op4 is applying its changes. The detailed de-
scription follows along the same lines as the PopLeft operation.
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