The Cost of Obstruction-Freedom

Hagit Attiya Technion
Rachid Guerraoui EPFL & MIT
Danny Hendler Technion & BGU

Petr Kouznetsov MPI-SWS

‘ Based on the following papers

U Computing with reads and writes in the absence of
step contention

Attiya, Guerraoui, Kouznetsov, DISC 2005

4 Synchronizing without locks is inherently expensive

Attiya, Guerraoui, Hendler, Kouznetsov, PODC 2006

| Shared-memory model

= Asynchronous processes
o cache misses, page fault, quantum used up...

= Apply primitive operations §

to shared base objects: é?
0 read &
0 write shared

0 Compare & swap memory

.d

\

0 read-modify-write

@

Concurrent Implementations
of Shared Objects

= A distributed algorithm providing an illusion of
an object implemented in hardware

Concurrent Implementations
of Shared Objects

A distributed algorithm providing an illusion of
an object implemented in hardware

enq(1) ok
Pl = =
enq(0)
p2 [=
deq() 1 deq() 0
p3 - | - .
[o [I

Safety Property: Linearizability

An operation appears to execute
instantaneously between its invocation and
response events

enq(l) ok
Pl —@ -
enq(0)
P2 —f— @
deq() 1 deq() 0
p3 —@ —@

Lock-Based Implementations

Lock the data structure (or parts thereof)
Apply changes
Release lock(s)

Susceptible to:
% Deadlock

% Priority inversion
x Convoying

Lock-Free Implementations

Ideally: Wait-freedom: Any operation
completes in a finite number of its steps
> regardless of the behavior of other processes

Alternatively: nonblocking: Some operation
completes in a finite number of steps
> regardless...

Lock-Free Implementations

Given a distributed shared memory system,
which objects can be implemented without
locks?

And at what cost?

Depends on the primitive operations available

Any Object from Reads and Writes?

(reads/writes are always available)

Wait-free / nonblocking consensus from
reads and writes is impossible

most interesting objects cannot be

implemented from reads and writes
W R
pl [

2 " R -
Pe m

BE
Ll

p3

Progress only for the Lucky Ones

>

But step contention is rare in practice
o Orsowe aretold...

Make progress only when an operation runs alone,
i.e., encounters no step-contention
(obstruction-freedom)

[Herlihy et al., 2003]

Step Contention

Step contention (SC): how many processes
take steps concurrently

Interval contention (IC): number of concurrent

operations sc(i',r)=1
SC(i,r)=2 (step-contention free)
IC(i,r)=3 IC(i",r)=2
. r .
pl [.] :
p2 [=

p3

M
U
M
U

‘ When There is No Step Contention ‘ When There is Step Contention...

Solo termination: An operation that eventually = Keep trying
encounters no step contention must return > obstruction-free

= Use “expensive” primitives

i r » solo-fast
Pl = -
- = Fail
S ——]
‘ Interface to Obstruction-Free Objects ‘ Clear Indication of Failure?

Can implement wait-free 2-process consensus with one

invocation fail-only consensus object C and one register R
A . response Code for p1: Code for p2:
- — propose (vl) ——propose (v2)
_/ — R :=vl — X2 := C.propose (v2)
fail (no effect) — repeat — if x2=fail then
’ x1=C.propose (vl) — x2:=R
> until x1 <> fail ——+ return x2
Transaction-like semantics for read/write OF? * return x1

= Impossible from read/writer registers!

‘ Obstruction-Free Interface
(with reads & writes)

invocation

A response
\f_ﬂil/

wait

\ 4

In case of step contention:
fail = did not take effect
wait = might have taken effect

‘ Obstruction-Free Objects Exist!

But expensive
= Time complexity
O(n) steps in a step- contention free operation
= Space complexity
O(n) registers

And this is optimal!
[Jayanti, Tan & Toueg, 2000]

Solo-fast implementations

Solo-fast implementation of any object:
linear in time and space

‘ Solo-Fast is not so Fast |

= Given a solo-fast implementation of a counter

= Look at the sequence of base objects p,
accesses in a solo execution of an increment

an

0 o s Y S Y
000660666 .6

‘ Solo-Fast 1s not so Fast 11

= Let process p, execute an increment process

= Must write to an object on p,'th path
o Otherwise, counter does not reflect this increment

an p,S path may change...

p]!
N s Y s O O A O A
000660666

®

‘ Solo-Fast 1s not so Fast 111

= Let process p, run until about to write to an
object along p,'th new path
o must write to an object other than 5

Again, p,’'s path may change...
pn@

R 8
)
®

0 e s s R
0006606606 .6

‘ Solo-Fast 1s not so Fast [V

= Let p; run until about to write to an object
along p,'th new path.

p,s path might become shorter!
J OJ
B oo
pSH p]! ng

[s 0 R
00006 0r®» v . . &«

@

‘ Solo-Fast is not so Fast V

So why must there be a 'long’ path?

) O
pn@ 4)

Logarithmic Lower Bound for Solo-Fast

Define a potential function ¥ on configurations:
¥ (c) = X b(i) 2oon-i
b(i) indicates whether object #:i is covered.

We show that ¥ increases monotonically
pn@
L)) 0OJ O L)
® ® 66 6

logn-4 2logn-5 Qlogn-6 Jlogn-7 2logn-k

@[]

) OJ
@ O
2logn-2

Qlogn-1 2logn-3

N

Logarithmic Lower Bound for Solo-Fast

w=0

Pick process p, and let it run until about to write to
an object along p,'th path.

an

) OJ O
@ © 0o
2logn-2

2logn-1 Qlogn-3

R
D OO0 O
®@ 606 .6

logn-4 Jlogn-5 Qlogn-6 Jlogn-7 Qlogn-k

@[]

[%)

Logarithmic Lower Bound for Solo-Fast

= 2Iogn-4

Pick process p, and let it run until about to write to
an object along p,'th new path.

an

O O O
@ 6

Qlogn-1 Qlogn-2 2logn-3

3 B
)
®

logn-4 9logn-5

[]

@B

]]
®@ .. ¢

logn-6 logn-7 2logn-k

[
)

Logarithmic Lower Bound for Solo-Fast

p=2logn-4 4 2logn-6

Pick process p, and let it run until about to write to
an object along p,'th new path.

@

p3! P, p
0000 O
@ © 0o @

2logn-1 Qlogn-2 Qlogn-3 Qlogn-4 Jlogn-5

o ®

]]
®@ .. @

logn-6)logn-7 Qlogn-k

N

Logarithmic Lower Bound for Solo-Fast

w=2leg -2 ¢ monotonically increasing in [0,n-1]
We have n-1 processes to deploy
R |
p3! ¥ reaches n-1
)
®

OO0
@060

Qlogn-1 2logn-2 Jlogn-3 2logn-4 ‘

Path of length log n exists

More Lower Bounds

= Also a linear space lower bound

= Bounds for obstruction-free implementations

from arbitrary primitives:
= When memory contention is taken into account

a A vn lower bound
o A linear time lower bound without failing

= All bounds hold for implementations of
perturbable objects from historyless
primitives

Bottom lL.ine

Obstruction-free & solo-fast imple

- Exist for any object
- Must be non-constant in time and space

‘ What We'd Like to Know...

= Still an exponential gap for solo-fast
implementations time complexity of
perturbable objects...

= Is the complexity of obstruction-free
consensus at least non-constant?

= Can we reduce the complexity of solo-fast
implementations using slightly more powerful
primitives on the fast path?

o E.g., queues, fetch & inc

	The Cost of Obstruction-Freedom
	Shared-memory model
	Concurrent Implementations �of Shared Objects
	Concurrent Implementations �of Shared Objects
	Safety Property: Linearizability
	Lock-Based Implementations
	Lock-Free Implementations
	Lock-Free Implementations
	Any Object from Reads and Writes?�(reads/writes are always available)
	Progress only for the Lucky Ones
	Step Contention
	When There is No Step Contention
	When There is Step Contention…
	Interface to Obstruction-Free Objects
	Clear Indication of Failure?
	Obstruction-Free Interface �(with reads & writes)
	Obstruction-Free Objects Exist!
	Solo-fast implementations
	Solo-Fast is not so Fast I
	Solo-Fast is not so Fast II
	Solo-Fast is not so Fast III
	Solo-Fast is not so Fast IV
	Solo-Fast is not so Fast V
	Logarithmic Lower Bound for Solo-Fast
	Logarithmic Lower Bound for Solo-Fast
	Logarithmic Lower Bound for Solo-Fast
	Logarithmic Lower Bound for Solo-Fast
	Logarithmic Lower Bound for Solo-Fast
	More Lower Bounds
	Bottom Line
	What We’d Like to Know…

