
1

The Cost of Obstruction-Freedom

Hagit Attiya Technion
Rachid Guerraoui EPFL & MIT
Danny Hendler Technion & BGU
Petr Kouznetsov MPI-SWS

Computing with reads and writes in the absence of
step contention

Attiya, Guerraoui, Kouznetsov, DISC 2005

Synchronizing without locks is inherently expensive

Attiya, Guerraoui, Hendler, Kouznetsov, PODC 2006

Based on the following papers

Shared-memory model

Asynchronous processes
cache misses, page fault, quantum used up...

Apply primitive operations
to shared base objects:
read
write
Compare & swap
read-modify-write

Pn

RM
W

Rea
d

P1
Writ
e

shared
memory

pr
oc
es
se
s

B

BB

B

B
B

Concurrent Implementations
of Shared Objects

A distributed algorithm providing an illusion of
an object implemented in hardware

Pn

RM
W

Rea
d

P1
Writ
e

shared
memory

object object

pr
oc
es
se
s

B

BB

B

B
B

2

Concurrent Implementations
of Shared Objects

A distributed algorithm providing an illusion of
an object implemented in hardware

p1

p2

p3

enq(1) ok

deq() 01 deq()

enq(0)

Safety Property: Linearizability

An operation appears to execute
instantaneously between its invocation and
response events

p1

p2

p3

enq(1) ok

deq() 01 deq()

enq(0)

Lock-Based Implementations

Lock the data structure (or parts thereof)
Apply changes
Release lock(s)

Susceptible to:
Deadlock
Priority inversion
Convoying

Pn

RM
W

Rea
d

P1
Writ
e

shared
memory

object object

pr
oc
es
se
s

B

BB

B

B
B

Lock-Free Implementations

Ideally: Wait-freedom: Any operation
completes in a finite number of its steps

regardless of the behavior of other processes

Alternatively: nonblocking: Some operation
completes in a finite number of steps

regardless...

3

Lock-Free Implementations

Given a distributed shared memory system,
which objects can be implemented without
locks?
And at what cost?

Depends on the primitive operations available

Any Object from Reads and Writes?
(reads/writes are always available)

Wait-free / nonblocking consensus from
reads and writes is impossible
most interesting objects cannot be
implemented from reads and writes

p1

p2

p3
W

W

RW

R

R

Progress only for the Lucky Ones

Why consensus is impossible using reads & writes?
Steps of concurrent processes interleave

But step contention is rare in practice
Or so we are told…

Make progress only when an operation runs alone,
i.e., encounters no step-contention
(obstruction-freedom)

[Herlihy et al., 2003]

Step Contention

Step contention (SC): how many processes
take steps concurrently

Interval contention (IC): number of concurrent
operations SC(i’,r’)=1

(step-contention free)SC(i,r)=2
IC(i’,r’)=2IC(i,r)=3

p1

p2

p3

i r

i’ r’

4

When There is No Step Contention

Solo termination: An operation that eventually
encounters no step contention must return

[Fich, Herlihy, Shavit 1998]

p1

p2

p3

i r

When There is Step Contention…

Keep trying
obstruction-free

Use “expensive” primitives
solo-fast

Fail

Interface to Obstruction-Free Objects

Obstruction-free
object

invocation

response

fail (no effect)

Transaction-like semantics for read/write OF?

Code for p1:
propose(v1)
R := v1
repeat

x1=C.propose(v1)
until x1 <> fail
return x1

Code for p2:
propose(v2)
x2 := C.propose(v2)
if x2=fail then

x2:=R
return x2

Clear Indication of Failure?

Impossible from read/writer registers!

Can implement wait-free 2-process consensus with one
fail-only consensus object C and one register R

5

Obstruction-Free Interface
(with reads & writes)

Obstruction-free
object

invocation

response

fail

wait
In case of step contention:

fail = did not take effect
wait = might have taken effect

Obstruction-Free Objects Exist!

But expensive
Time complexity
O(n) steps in a step- contention free operation
Space complexity
O(n) registers

And this is optimal!
[Jayanti, Tan & Toueg, 2000]

Registers
OF & linearizable
implementation
of any object

Solo-fast implementations

Solo-fast implementation of any object:
linear in time and space

if no step contention detected then
use registers to terminate

else
use “expensive” primitives to terminate

Solo-Fast is not so Fast I

Given a solo-fast implementation of a counter
Look at the sequence of base objects pn
accesses in a solo execution of an increment

1 2 3 4 5 6 7 8 9 k

pn

k ≤ log n

6

Solo-Fast is not so Fast II

Let process p1 execute an increment process
Must write to an object on pn'th path

Otherwise, counter does not reflect this increment

1 2 3 4 5 6 7 8 9 k

pn’s path may change…pn

p1

1 2 3 4 5 6 7 8 9 k1

Again, pn’s path may change…

Solo-Fast is not so Fast III

Let process p2 run until about to write to an
object along pn'th new path

must write to an object other than 5

pn

p1 p2

1 2 3 4 5 6 7 8 k29

pn’s path might become shorter!

Solo-Fast is not so Fast IV

Let p3 run until about to write to an object
along pn'th new path.

3 4pn

p1 p2p3

1 2

So why must there be a ‘long’ path?

3 4

Solo-Fast is not so Fast V

pn

p1 p2p3

7

1 2 3 4 5 6 7 k

Define a potential function Ψ on configurations:
Ψ (c) = Σ b(i) 2logn-i

b(i) indicates whether object #i is covered.

We show that Ψ increases monotonically

2logn-1 2logn-2 2logn-3 2logn-4 2logn-5 2logn-6 2logn-7 2logn-k

Logarithmic Lower Bound for Solo-Fast

pn

Ψ=0

Pick process p1 and let it run until about to write to
an object along pn'th path.

1 2 3 4 5 6 7 k

Logarithmic Lower Bound for Solo-Fast

2logn-1 2logn-2 2logn-3 2logn-4 2logn-5 2logn-6 2logn-7 2logn-k

pn

p1

Ψ=2logn-4

Pick process p2 and let it run until about to write to
an object along pn'th new path.

1 2 3 4 5 6 7 k1

Logarithmic Lower Bound for Solo-Fast

2logn-1 2logn-2 2logn-3 2logn-4 2logn-5 2logn-6 2logn-7 2logn-k

pn

p1 p2

Ψ=2logn-4 + 2logn-6

Pick process p3 and let it run until about to write to
an object along pn'th new path.

1 2 3 4 5 6 7 k1

Logarithmic Lower Bound for Solo-Fast

2logn-1 2logn-2 2logn-3 2logn-4 2logn-5 2logn-6 2logn-7 2logn-k

pn

p1 p2p3

8

1 2
2logn-1 2logn-2 2logn-3 2logn-4

Ψ=2log n-2

3 4

Ψ monotonically increasing in [0,n-1]

We have n-1 processes to deploy

Ψ reaches n-1

Path of length log n exists

Logarithmic Lower Bound for Solo-Fast

pn

p3

More Lower Bounds

Also a linear space lower bound
Bounds for obstruction-free implementations
from arbitrary primitives:

When memory contention is taken into account

A √ n lower bound
A linear time lower bound without failing

All bounds hold for implementations of
perturbable objects from historyless
primitives

Lock-free implementations

Bottom Line

Lock-based
implementations

Wait-free / nonblocking
implementations

Not r
obu

st

Nonex
iste

nt

Exp
ensi

ve

Obstruction-free & solo-fast implementations:
- Exist for any object
- Must be non-constant in time and space

Inherently expensive

What We’d Like to Know…

Still an exponential gap for solo-fast
implementations time complexity of
perturbable objects…
Is the complexity of obstruction-free
consensus at least non-constant?
Can we reduce the complexity of solo-fast
implementations using slightly more powerful
primitives on the fast path?

E.g., queues, fetch & inc

	The Cost of Obstruction-Freedom
	Shared-memory model
	Concurrent Implementations �of Shared Objects
	Concurrent Implementations �of Shared Objects
	Safety Property: Linearizability
	Lock-Based Implementations
	Lock-Free Implementations
	Lock-Free Implementations
	Any Object from Reads and Writes?�(reads/writes are always available)
	Progress only for the Lucky Ones
	Step Contention
	When There is No Step Contention
	When There is Step Contention…
	Interface to Obstruction-Free Objects
	Clear Indication of Failure?
	Obstruction-Free Interface �(with reads & writes)
	Obstruction-Free Objects Exist!
	Solo-fast implementations
	Solo-Fast is not so Fast I
	Solo-Fast is not so Fast II
	Solo-Fast is not so Fast III
	Solo-Fast is not so Fast IV
	Solo-Fast is not so Fast V
	Logarithmic Lower Bound for Solo-Fast
	Logarithmic Lower Bound for Solo-Fast
	Logarithmic Lower Bound for Solo-Fast
	Logarithmic Lower Bound for Solo-Fast
	Logarithmic Lower Bound for Solo-Fast
	More Lower Bounds
	Bottom Line
	What We’d Like to Know…

