Specification &
Complexity of
Replicated Objects

Hagit Attiya, Technion

Replicated data stores
Geo-distributed systems driving

This talk

Theoretical exploration of highly-
available replicated data stores

* Framework for reasoning
* Results on:
* Achievable consistency

* Lower bounds on message size and
metadata overhead

* Clarify the landscape

Q e e —
- - -
N -5 @
e
oo &
This talk

Theoretical exploration of highly-
available replicated data stores

Asynchronous message-passing
algorithms implementing shared objects

11/12/2016

High availability

Respond without communication

. Adam Morrison

.......

' Partition : Low -

High availability

Respond without communication

| WM. Adam Morrison

& @

tolerance latency R
ol WS g

agueenis -
Sraland

Propagate Updates Later

Converge to same state

Eventual

consistency i R

CAP Theorem

Cannot provide “strong” consistency
(linearizability or serializability)

w:l r:0

R1)
, different

\ .
\W'Z rx registers
R2 »>@

11/12/2016

Causal Consistency [

urns, Kohli, Hutto]

If an operation is visible, so are its
dependencies:

w:l

R1 ’
‘. rr-l1 w:3
R2 . o 2
N r:3 r:2
R3 GV

|
4 A

Exposing Concurrency

How to handle concurrent
(conflicting) writes?

w:l

Rl —@—e

msg
w:2 r:?
R2 () ()

Exposing Concurrency

Practical approach: expose conflicts to
user [Dynamo'07]

Multi-valued reg (MVR) :
Returns concurrent writes
w:l

Rl —@—e

msg
w:Z\‘ r:1,2}
R2 ® >

Exposing Concurrency

Mixing low-level & high-level details
—_ —-—-- >

Multi-valued reg (MVR) :
Returns concurrent writes
w:l

Rl —@—e

msg
WZZ\ r:¥1,2}
R2 ® >

11/12/2016

Why Non-Sequential Objects?

w:l

R1 ,—G

\ vector clock
Y w2 r:1,2}
R2 () O

Works for single objects
[Perrin, Mostefaoui, Jard'14]

Causality Exposes Concurrency

w:l w:10 r:0
Rl —@—O §

w:3 w:2 20 ‘;
R2 .

r:0

Causality Exposes Concurrency

w:l w:10 r:0 r:20
R1 9. If\

1
w3 \w:20 _-7
R2 —O—»0==

Avoiding Low-Level Details

Specify replicated objects using
visibility in abstract executions
[Burckhardt, Gotsman, Yang, Zawirski]

11/12/2016

Abstract Execution

Contains only high-level events

Visibility
Acyclic relation over events,

respecting per-replica order
w:l

R1 """}"“=:;:~.-

\ . \\
. w.2\ W:3

2 el
~- \

v or:3 r:2
R3 \:Q %

w:l
R1 9.
w:2 w:3
R2 O—)
r:3 r:0
R3 o—@
Visibility

Visibility # message deliveries

w:l

Rl —@——=—

vor:3 r:2
R3 \:Q b

Object Specification

Operation’s response is determined
by the operations visible to it
w:l
R1 —
P——

\ . . ~
. w:2 w:3 ~

R2 >O—) S

\\‘/

‘. r:3 N r:9,2}
R3 >~) %

11/12/2016

Object Specification

Concrete execution implements the object if
it complies with an abstract object execution

Rl —@——=

R2 @ KN
\

r:3 r:{1,2}
R3 \:Q %

Object Specification

Concrete execution implements the object if

it complies with an abstract object execution
W:.l Has the same

Rl responses at)
W.. each repllca

W 3 r:{1,2}

R3 >~)

Eventual conS|stency

DOILD LIAB/1435417.0433437

Bldnq eliable distributed systen
2av "y Eventual cons;srenry ThlS isa’s

e cific form of weak consistency; the
E\ storage system guarantees that if no
new updates are made to the object,
eventually all accesses will return the
last updated value.

Jproperty

Eventual consistency

[Burckhardt, Gotsman, Yang, Zawirski]

Infinite abstract execution is eventually
consistent if an operation is invisible to
only finitely many operations

Implies Vogels’ informal definition

11/12/2016

Causal consistency

Consistency model: prefix-closed set of
abstract executions

Causal consistency: visibility is transitive

R1 —
% TN
R2 @ N
R3 -

Comparing Consistency Models

A consistency model is satisfied when all
concrete executions comply with one of its
abstract executions

Fewer abstract executions
= stronger model

Bayou, PRACTI, COPS... serializability
satisfy causal consistency

Can we satisfy a stronger model?

Consistency Limit Result

Theorem: Eventually consistent data
store D does not satisfy a
consistency model stronger than
observable causal consistency (OCC)

OCC hides concurrency unless
user can infer it

Deriving OCC

Goal: Comply with abstract
execution without concurrency

w:l
R1
w:2
R2

R3

r:2

11/12/2016

Deriving OCC

Goal: Comply with abstract
execution without concurrency.

w:l

R1

Deriving OCC

Goal: Comply with abstract
execution without concurrency.

w:3 w:l

R1 p_’WZZ \ r:5
\
r:2

Rzk o
R3 1 .

\yv:S -
R4 —@i

—— -

Our Theorem | CAC Theorem
[Mahajan, Alvisi,
Dahlin]
Liveness Eventual One-way
consistency convergence
(stronger)
Strongest OCC Causal
consistency consistency
(weaker)
Tight? Don’t know Yes*
Assumptions invisible reads
msg sending | real time

Message lower bound

n: # of replicas
s: # of MVRs, each of ~Ig k bits

Theorem: Q(min{n, s} Ig k) bit
message lower bound for causally &
eventually consistent data store

Basically: vector clock if s 2 n
What if s << n?

11/12/2016

Collaborative Text Editing

Collaborative Text Editing

Collaborative Text Editing:
Under the Hood

Collaborative Text Editing:
Under the Hood

High availability: Respond without communication

i
........ 0@
Partition
l tolerance

(]
o
[

e
Sralard

11/12/2016

Collaborative Text Editing:
Under the Hood

Eventual consistency: Propagate changes
converge to same document

Replicated Object: List

Basic shared document editing operations:

ins(a, pos) del(a) read()
(inserted elements are unique)

Every op returns state of the list:
ins(x, 0) : x ins(a, 1) : xa

Expected List Behavior

% I, =3 “ gﬁ Fry onions

et BT

' Fry onions
Chop 9”'0”3% Mix w/ mushrooms
Fry onions 2/ E

Chop onions

! Fry onions Geeas P @
Mix w/ mushrooms !

Expected List Behavior

) Fry onions
Chop onions Mix w/ mushrooms
Fry onions = E
= N atlantie A T

Mix w/ mushrooms some ;;Etemhs

! Fry onions .
Chop onions allow this

11/12/2016

AN

List Semantics

Shared document editing operations:

ins(a, pos) del(a) read()
(inserted elements are unique)

Every op returns state of the list

List Semantics

Shared document editing operations:

ins(a, pos) del(a) read()
(inserted elements are unique)

Every op returns state of the list
List of elements, each with previous ins()
but no previous del()

List Semantics

What does previous mean?

Can’t use messages received (low-level)
Again, use visibility in abstract executions

Every op returns state of the list
List of elements, each with previous ins()
but no previous del()

Implementing a List Object

Every concrete execution complies with an
abstract list execution

ins(a,k)

R1

\\
\\

\ . ~
\ins(b,k)\ read N
R2 >)

\
‘e _r‘ga\d \del(b)

R3 O—@

11/12/2016

AA

Implementing a List Object
Each operation returns ordered list of
elements with visible ins() but no visible del()

ins(a,k)

~ — —

R1

~
\ . ~
\ins(b,k)\ read N

R2 > *Q)

‘ read \\del(b)

Strong List Specification

Strong list order: 3 irreflexive relation that’s
transitive & total on all inserted elements

Intuition: remembers deleted elements

—ins(x,0) : x — —
ins(a,0) : ax 3 ins(b,1) : xb
\ del(x) :]

\ + /
pread:ab «

Strong List Specification

Strong list order: 3 irreflexive relation that’s
transitive & total on all inserted elements

Intuition: remembers deleted elements

ﬁm/

e~ —ins(x,0) : x — —

ins(a,0) : ax 3 ins(b,1) : xb
\ del(x) :]
\ + /

pread:ab ¢«

47

Strong List Specification

Strong list order: 3 irreflexive relation that’s
transitive & total on all inserted elements

Intuition: remembers deleted elements

— |ns(x 0) : x

ins(a,0) : a 3 |ns(b 1) : xb
\ del(x) :]
\ 2 /

pread:ab ¢«

a &

48

11/12/2016

A N

Strong List Specification

Strong list order: 3 irreflexive relation that’s
transitive & total on all inserted elements

Intuition: remembers deleted elements

2 B

— —ins(x,0) : x — —

ins(a,0) : ax 3 ins(b,1) : xb a b
\ del(x) :]
\ 3 /

pread:ab ¢«

Strong List Specification

Strong list order: 3 irreflexive relation that’s
transitive & total on all inserted elements

Intuition: remembers deleted elements

2 B8

e~ —ins(x,0) : x — <

ins(a,0) : ax 3 ins(b,1) : xb a b
\ del(x) :] cyclic
\ ¥ /

p»read:ba ¢«

Weak List Specification

Weak list order: 3 irreflexive relation that’s
transitive & total on elements returned by an

2 B

e— —ins(x,0) : x — —

ins(a,0) : ax 3 ins(b,1) : xb a b
\ del(x) :]
\ ¥ /

pread:ba ¢«

Algorithm for the Strong List

Replicated Growable Array (RGA)
[Roh, Jeon, Kim, Lee. JPDC 2011]

Resolve order of elements concurrently
inserted at the same position with
Timestamped Insertion (TI) Data Structure

Keep tombstones for deleted elements

11/12/2016

AN

RGA: Timestamped Insertion

Stores list content &

timestamp metadata P

(at) (xty)

o

TR

(aty) (xty)
X N
(ct) (bty) (cty)

list=axbec

list=axe

To read, list elements in prefix order, with children
appearing in decreasing timestamp order

To insert at position k, pick a timestamp > than all
existing timestamps; insert new node as the child
of the immediately preceding element

Message: the new node 5

RGA: Concurrent Insertions

0y

P

bty

list=axbc

(aty) (xty)

(cto)

¢

o
A
(at) (xt)
(ctp)

list=axc

o
AN
(at) (xt)
AT
(bt (b)) ()

list=axbb’'c

&

o
A
(aty) (xty)
"
(bt) (Ct)

list=axb’'c

i

RGA: Deletions

o o
X AN
@) (xb) @k) ety

AKX P
bl)

(bt) (ch)
s(N,)=abc

s(N,)=axbc

To delete just mark the element as deleted,
leaving a tombstone

Change = deletion + insertion
= Lots of tombstones

RGA: Deletions

Te
le

C

o
AR
@k ()

2R
L))

s(N,)=axbc

(bty)
s(N;)=abc

/' 0\
(aty) bety
A

X

(ct)

Is it necessary to
keep tombstones?

= Lots of tombstones

11/12/2016

Are Tombstones Necessary?

Some algorithms don’t have them:
* Treedoc [Preguiga, Marqués, Shapiro, Letia. ICDCS 2009]
Logoot [Weiss, Urso, Molli. ICDCS 2009]

Element position = sequence of edge labels on
the path from the root of the tree

Label stays the same after nodes are deleted
* Operational transformations (OT)
Log updates; transform them locally

Are Tombstones Necessary?

Some algorithms don’t have them: —

* Treedoc [Preguica, Marques Shani=~ m tadata

Logoot [weis ot 0’{
Elc S’(,\\ .,cquence of edge labels on
the iom the root of the tree

Labél stays the same after nodes are deleted

Metodatalorerheade size of list state

size of observable list

Metadata Lower Bound

There is an execution with D deletions, in which
a replica has Q(D)-bit metadata overhead

v Even with causal atomic broadcast
v' Even for weak specification
% Only for push-based protocols

—a replica sends updates to other replicas &
merges updates from other replicas into its
state as soon as possible

Metadata Lower Bound

There is an execution with D deletions, in which
a replica has Q(D)-bit metadata overhead

Execution in which the list at some replica is “*”
but replica’s state is Q(D) bits

11/12/2016

Proof Technique

There are 2Psuch strings = for some w, size of
replica state after a,, is Q(D) bits

V D-bit string w, construct an execution «,, s.t.:

v Areplica performs D deletions and receives no
messages

After a,,, the list at the replica is
w can be decoded from the state of the replica
The replica has no pending messages

uxn

ANEANERN

Encoding w

Encode the path to the w' leaf A
of a complete binary tree o\

Considering w+1 as a

number in [1..2P] /

1 w

“uxn

v’ After a,,, the list at the replica is
v" w can be decoded from the state of the replica

Example: encodingw = 01

send m, <

[1]1o)o D
send m,

[1J:16)ololo

send m,

[0 Talolo 1 W
send m, Output: encoding replica

¥é%é¥%*%;%g%g state, o
send mg

Decoding w from o (strong spec)

lolo Reconstruct a,, iteratively
send m,

[]100lo

send m,

[1]:[)500lo

send m,

[1)102*12l0lo

send m,

tdth " hich

send mg

11/12/2016

AN

Decoding w from o (strong spec)
R1
Reconstruct a,, iteratively

We know first step in «,,,

Decoding w from o (strong spec)
R1

lolo Reconstruct a,, iteratively
send m, We know first step in a,,,

Decoding w from o (strong spec)
R1
lolo Reconstruct a,, iteratively

send m, We know first step in «,,,
Prefix ending with ins([;],)
=decode position of [,,,].,,

\x* = it bit is 1
*x = it bitis 0
Rl@oc «<_——>R2
read : ?\ead : [olo
lox o

Decoding w from o (strong spec)
R1

lolo Reconstruct a,, iteratively

send m, ‘ We know first step in a,,,
Prefix ending with ins([.],)
=decode position of [,,]i,,

\ x* = jth bit is 1

*x o jth bitis 0

N ————R2

read : * x read : [,],
N lbx]o
s Rl@o

11/12/2016

Decoding w from o (strong spec)

R1
lolo Reconstruct a,, iteratively
send m, We know first step in «,,,
[11lolo Prefix ending with ins([];)

=decode position of [,,],,
x* = jth bit is 1
*x o jth bitis 0

Rl@o R2
read : * x read : [,],
lox o

Decoding w from o (strong spec)

Extension to weak spec

R1
Construction lolo
still works! send m,
B
Ri/-send m, re[a x'] o-o
AEARARNN ok
<«——send m,
[1]1[2*]2l0To
rsend m,
o
[1]1[*12[ox]o
< <rsend mg —

Y

lolo - Reconstruct a,, iteratively
send m, We know first step in a,,
[1)1olo Prefix ending with ins([;];)
send m, =decode position of [;,,];,4
x* = /1 bit is 1
*x = ith bitis 0
Rl@o R2
read : * x read : [,],
[ox 1o
Extensions

* Result holds for client-server model
* Proof’s execution satisfies atomic broadcast:
All replicas receive messages in same order
Replicas can maintain server’s state
* Encoding replica receives no messages =
Server is in its initial state
= Q(D)-bit metadata overhead for clients

11/12/2016

A0

Weak Specification

* Result holds also for the weak specification
* Comes from client-server model
* For P2P, equivalent to strong spec?
* Captures real systems?
Conjecture: Jupiter (Google Docs algorithm)

Wrap Up

Systematic study of replicated data stores

* Tighten consistency result, message size &
metadata bounds

* Explore assumptions (push-based): remove
them or get better algorithms by violating them

* Incorporate garbage collection

* Go beyond plain text editing, e.g., spreadsheets
and other objects

READ MORE ABOUT IT...

* Hagit Attiya, Faith Ellen, Adam Morrison:
Limitations of Highly-Available Eventually-
Consistent Data Stores.

PODC 2015 & IEEE TPDS 2016

* Hagit Attiya, Sebastian Burckhardt, Alexey
Gotsman, Adam Morrison, Hongseok Yang, Marek
Zawirski: Specification and Complexity of
Collaborative Text Editing.

PODC 2016

11/12/2016

AN

