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Fast Mutex Algorithm
[Lamport, 1986]

In a well-designed system, most of the time only a 
single process tries to get into the critical section…
Will be able to do so in a constant number of steps.

When two processes try to get into the critical section? 

O(n) steps!



June 2003 Adaptive Algorithms / Hagit Attiya 3

Asynchronous Shared-Memory 
Systems

Need to collect information in order to coordinate…
When only few processes participate, reading one by 

one is prohibitive …
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Talk Outline

How to be adaptive in a global sense?
The splitter and its applications: renaming and 
collect.

How to adapt dynamically?
The sieve and its applications : renaming and 
collect.

Extensions and connections.
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Adaptive Step Complexity

The step complexity of the algorithm depends 
only on the number of active processes.

Total contention: The number of processes that 
(ever) take a step during the execution.
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A Splitter
[Moir & Anderson, 1995]

A process stops if it is alone in the splitter.
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Splitter Implementation
[Moir & Anderson, 1995 ][Lamport, 1986]

1. X = idi // write your identifier
2. if Y then return( right )
3. Y = true
4. if ( X == idi ) // check identifier

then return( stop )
5. else return( left )

Requires O(1) read / write operations, and two shared registers.
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Things to do with a Splitter

A triangular matrix of 
splitters.

Traverse array, starting 
at the top left, 
according to the values 
returned by splitters

Until stopping in some 
splitter.
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Things to do with a Splitter

≥ one process does not 
follow each direction.

After ≤ k movements, 
a process is alone in a 
splitter.

A process stops at row, 
column ≤ k 

At most O(k) steps.
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Things to do with a Splitter:
k2 -Renaming

Diagonal association of 
names with splitters.

Take a name ≤ k2 .
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Even Better Things with a Splitter:
Store

Associate a register 
with each splitter.

A process writes its 
value in the splitter 
where it stops.

Mark a splitter if 
accessed by some 
process.
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Even Better Things with a Splitter:
Collect

Associate a register 
with each splitter.

The current values can 
be collected from the 
associated registers.

Going in diagonals, 
until reaching an 
unmarked diagonal.
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Even Better Things with a Splitter:
Store and Collect

The first store 
accesses ≤ k splitters.

A collect may need to 
access k2 splitters…

Improve?
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Binary Collect Tree

rightleft

n
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Binary Collect Tree

To store: 

traverse the tree until 
stops in some splitter.

Later, write in the 
register associated 
with this splitter.
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Binary Collect Tree

To collect: 

DFS traverse the 
marked tree, and read 
the associated 
registers.

Marked tree contains 
≤ 2k-1 splitters.
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Size of Marked Sub-Tree

In a DFS ordering of the 
marked sub-tree,

There is ≥ one acquired  
node (where a process 
stops),

Between every pair of 
marked nodes.
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Simple Things to Do
with a Linear Collect

Every algorithm with f(k) iterations of collect 
and store operations can be made adaptive.

Atomic snapshots 
[Afek et al. 1991]

O(k) iterations.

O(k2) steps.

Renaming.

…
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More Sophisticated Things to Do
with a Linear Collect

At each spine node:
Collect.

If # processes ≤ label 
continue left

Else  
continue right

remember values.
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More Sophisticated Things to Do
with a Linear Collect

At most 2, 4, 8, etc. 
processes move to 
the left sub tree.

# participants in a 
sub-tree is bounded.

Perform an ordinary 
algorithm in sub-tree.
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More Sophisticated Things to Do
with a Linear Collect

If move right, at 
least 2, 4, 8,…
participants.

The step complexity 
is justified.
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More Sophisticated Things to Do
Efficient Atomic Snapshot

E.g., atomic 
snapshot algorithm.

[Attiya & Rachman, 1998]

An O(k log k) atomic 
snapshot algorithm.
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Be More Adaptive?

In a long-lived algorithm…
…processes come and go.

What if many processes start the execution,  
then stop participating?

…then starts again…
…then stops again…
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Who’s Active Now?

Interval contention during an operation: The 
number of processes (ever) taking a step 
during the operation.

[Afek, Stupp &Touitou, 1999]
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Who’s Active Now?

Point contention of an operation: Max number 
of processes taking steps together during the 
operation.

Clearly, point contention ≤ interval contention.
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Catching Processes with a Sieve

A dynamic object, built for 
repeated usage.

When a set of processes access 
the sieve concurrently

at least one is caught by the sieve.

Good synchronization properties.
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Sieve: More Formally

Returns a view of processes 
accessing the sieve 
concurrently.

A non-empty set of candidates C.

A process returns either φ or C.

At least one process pw ∈ C 
returns C.

pw is a winner. p1,p2, p3 p1, p2, p3

p2
p3 p4

p5p1
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Sieve Properties

Agreement on the set of candidates (safety).
Synchronization.

Exchange of information.

Can be filled and emptied many times (long-
lived).

An empty sieve catches at least one process 
(liveness).

Adapting to point contention.
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Sieve Implementation: Copies

count

Current copy
of the sieve
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Sieve Implementation: Doorway

Restrict access to a copy 
only to simultaneously 
active processes.

# processes inside the copy 
≤ point contention.

Inside the copy, employ 
algorithms adaptive to total 
contention!
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Sieve Implementation: 
Candidates

take an atomic snapshot
write the returned view
find minimal view C
if all processes in C 

wrote their view
return C

else return φ

[Borowsky & Gafni]
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Sieve Implementation:
Winners

take an atomic snapshot
write the returned view
find minimal view C
if all processes in C 

wrote their view
return C

else return φ

C
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Sieve Implementation:
Winners

take an atomic snapshot
write the returned view
find minimal view C
if all processes in C 

wrote their view
return C

else return φ

Last process in C to write a 
view is a winner.

C

pi
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Sieve Implementation:
Managing the copies

Candidates are synchronized (work together).
Increase count by 1.

Monotone…

When all candidates leave a copy, open the 
next copy.
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Things to do with a Sieve:
2k2-Renaming

Place sieves in a row…

Agreement on set of candidates and uniqueness of 
copies.

Uniqueness of names.

1 2 3 4 2n – 1

return (4, rank in C)
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Things to do with a Sieve:
2k2-Renaming

Potential method shows that a process skips ≤ 2k-2
sieves.

k is the point contention.

Wins in sieve ≤ 2k-1.

1 2 3 4 2n – 1

return (4, rank in C)



June 2003 Adaptive Algorithms / Hagit Attiya 37

Things to do with a Sieve:
2k2-Renaming

Wins in sieve ≤ 2k-1.
O(f(k)) step complexity.

C includes at most k processes.
Name ≤ 2k2.

1 2 3 4 2n – 1

return (4, rank in C)
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Things to do with a Sieve:
Store

Place sieves in a row…

Agreement on set of candidates and uniqueness of 
copies
pw writes the values of all candidates in a register 
associated with the sieve.

1 2 3 4 2n – 1

pw ∈ C
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Things to do with a Sieve:
Collect

Go over the associated registers and read…

1 2 3 4 2n – 1
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Things to do with a Sieve:
Adaptive Collect?

pw and all other operations complete.

A collect still has to reach the splitter in 
which pw has written its value!

1 2 3 4 2n – 1
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Bubble-Up
[Afek, Stupp & Touitou, 2000]

Before completing an operation,

move information from far away sieves to the 
first sieve.
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Other Things to do with a Sieve

Sieve-based collect can be used to implement:
Atomic snapshots.

Immediate snapshots.

Timestamps: The vector of copy numbers.
Long-lived renaming.

Polynomial step complexity (using collect).
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What About Mutex?

Cannot have adaptive step complexity…
Can have adaptive system response time.

[Attiya & Bortnikov, 2002]
Some techniques are similar.

Renaming, adaptive binary tree (bottom-up!)…
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What’s Next?

Other problems.
Snapshots, generic simulations…

Improve and simplify.
Find good building blocks.

Local step complexity!

Use stronger primitives (C&S, LL/SC).
[Afek, Dauber & Touitou, 1995]
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Uniform Algorithms
[Gafni, 2001]

Adaptive algorithms can be also considered as 
algorithms that do not depend on the number 
of participants.

Useful in the context of peer-to-peer systems, 
with no centralized control.

A huge number of potential processes.

Join and leave…
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Space: The New Frontier

Our results are based on a collect algorithm.
Either O(K2) step complexity (K is total 
contention), 

Or exponential space complexity.

A better collect algorithm?
O(K) step complexity, and

Polynomial space complexity.

A lower bound proof?
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The Whole Story
This talk describes some of the results in:

Attiya and Fouren,
Adapting to Point Contention with a Sieve,
Journal of the ACM, to appear. 

Attiya, Fouren and Gafni, 
An Adaptive Collect Algorithm with Applications, 
Distributed Computing, Vol. 15, No. 2 (2002). 


