
June 2003 Adaptive Algorithms / Hagit Attiya 1

Algorithms that Adapt to Algorithms that Adapt to
ContentionContention

Hagit Attiya
Department of Computer Science

Technion

June 2003 Adaptive Algorithms / Hagit Attiya 2

Fast Mutex Algorithm
[Lamport, 1986]

In a well-designed system, most of the time only a
single process tries to get into the critical section…
Will be able to do so in a constant number of steps.

When two processes try to get into the critical section?

O(n) steps!

June 2003 Adaptive Algorithms / Hagit Attiya 3

Asynchronous Shared-Memory
Systems

Need to collect information in order to coordinate…
When only few processes participate, reading one by

one is prohibitive …

p1 p2 p3 p4 p5 p6 p7

wr
it
e

re
ad

June 2003 Adaptive Algorithms / Hagit Attiya 4

Talk Outline

How to be adaptive in a global sense?
The splitter and its applications: renaming and
collect.

How to adapt dynamically?
The sieve and its applications : renaming and
collect.

Extensions and connections.

June 2003 Adaptive Algorithms / Hagit Attiya 5

Adaptive Step Complexity

The step complexity of the algorithm depends
only on the number of active processes.

Total contention: The number of processes that
(ever) take a step during the execution.

June 2003 Adaptive Algorithms / Hagit Attiya 6

A Splitter
[Moir & Anderson, 1995]

A process stops if it is alone in the splitter.

stop

left

right

k processes

≤ k-1 processes

≤ k-1 processes

≤ 1 process

June 2003 Adaptive Algorithms / Hagit Attiya 7

Splitter Implementation
[Moir & Anderson, 1995][Lamport, 1986]

1. X = idi // write your identifier
2. if Y then return(right)
3. Y = true
4. if (X == idi) // check identifier

then return(stop)
5. else return(left)

Requires O(1) read / write operations, and two shared registers.

June 2003 Adaptive Algorithms / Hagit Attiya 8

Things to do with a Splitter

A triangular matrix of
splitters.

Traverse array, starting
at the top left,
according to the values
returned by splitters

Until stopping in some
splitter.

right

left

June 2003 Adaptive Algorithms / Hagit Attiya 9

Things to do with a Splitter

≥ one process does not
follow each direction.

After ≤ k movements,
a process is alone in a
splitter.

A process stops at row,
column ≤ k

At most O(k) steps.

June 2003 Adaptive Algorithms / Hagit Attiya 10

Things to do with a Splitter:
k2 -Renaming

Diagonal association of
names with splitters.

Take a name ≤ k2 .

1 2

3

4 7 11

5 8 12

6 9 13

10 14

15

June 2003 Adaptive Algorithms / Hagit Attiya 11

Even Better Things with a Splitter:
Store

Associate a register
with each splitter.

A process writes its
value in the splitter
where it stops.

Mark a splitter if
accessed by some
process.

1 2

3

4 7 11

5 8 12

6 9 13

10 14

15

June 2003 Adaptive Algorithms / Hagit Attiya 12

Even Better Things with a Splitter:
Collect

Associate a register
with each splitter.

The current values can
be collected from the
associated registers.

Going in diagonals,
until reaching an
unmarked diagonal.

1 2

3

4 7 11

5 8 12

6 9 13

10 14

15

June 2003 Adaptive Algorithms / Hagit Attiya 13

Even Better Things with a Splitter:
Store and Collect

The first store
accesses ≤ k splitters.

A collect may need to
access k2 splitters…

Improve?

1 2

3

4 7 11

5 8 12

6 9 13

10 14

15

June 2003 Adaptive Algorithms / Hagit Attiya 14

Binary Collect Tree

rightleft

n

June 2003 Adaptive Algorithms / Hagit Attiya 15

Binary Collect Tree

To store:

traverse the tree until
stops in some splitter.

Later, write in the
register associated
with this splitter.

June 2003 Adaptive Algorithms / Hagit Attiya 16

Binary Collect Tree

To collect:

DFS traverse the
marked tree, and read
the associated
registers.

Marked tree contains
≤ 2k-1 splitters.

June 2003 Adaptive Algorithms / Hagit Attiya 17

Size of Marked Sub-Tree

In a DFS ordering of the
marked sub-tree,

There is ≥ one acquired
node (where a process
stops),

Between every pair of
marked nodes.

June 2003 Adaptive Algorithms / Hagit Attiya 18

Simple Things to Do
with a Linear Collect

Every algorithm with f(k) iterations of collect
and store operations can be made adaptive.

Atomic snapshots
[Afek et al. 1991]

O(k) iterations.

O(k2) steps.

Renaming.

…

June 2003 Adaptive Algorithms / Hagit Attiya 19

More Sophisticated Things to Do
with a Linear Collect

At each spine node:
Collect.

If # processes ≤ label
continue left

Else
continue right

remember values.

2

8
4

June 2003 Adaptive Algorithms / Hagit Attiya 20

More Sophisticated Things to Do
with a Linear Collect

At most 2, 4, 8, etc.
processes move to
the left sub tree.

participants in a
sub-tree is bounded.

Perform an ordinary
algorithm in sub-tree.

2

8
4

≤ 2

≤ 8

≤ 4

June 2003 Adaptive Algorithms / Hagit Attiya 21

More Sophisticated Things to Do
with a Linear Collect

If move right, at
least 2, 4, 8,…
participants.

The step complexity
is justified.

2

8
4

≥ 4

≥ 2

June 2003 Adaptive Algorithms / Hagit Attiya 22

More Sophisticated Things to Do
Efficient Atomic Snapshot

E.g., atomic
snapshot algorithm.

[Attiya & Rachman, 1998]

An O(k log k) atomic
snapshot algorithm.

2

8
4

June 2003 Adaptive Algorithms / Hagit Attiya 23

Be More Adaptive?

In a long-lived algorithm…
…processes come and go.

What if many processes start the execution,
then stop participating?

…then starts again…
…then stops again…

June 2003 Adaptive Algorithms / Hagit Attiya 24

Who’s Active Now?

Interval contention during an operation: The
number of processes (ever) taking a step
during the operation.

[Afek, Stupp &Touitou, 1999]

June 2003 Adaptive Algorithms / Hagit Attiya 25

Who’s Active Now?

Point contention of an operation: Max number
of processes taking steps together during the
operation.

Clearly, point contention ≤ interval contention.

June 2003 Adaptive Algorithms / Hagit Attiya 26

Catching Processes with a Sieve

A dynamic object, built for
repeated usage.

When a set of processes access
the sieve concurrently

at least one is caught by the sieve.

Good synchronization properties.

June 2003 Adaptive Algorithms / Hagit Attiya 27

Sieve: More Formally

Returns a view of processes
accessing the sieve
concurrently.

A non-empty set of candidates C.

A process returns either φ or C.

At least one process pw ∈ C
returns C.

pw is a winner. p1,p2, p3 p1, p2, p3

p2
p3 p4

p5p1

June 2003 Adaptive Algorithms / Hagit Attiya 28

Sieve Properties

Agreement on the set of candidates (safety).
Synchronization.

Exchange of information.

Can be filled and emptied many times (long-
lived).

An empty sieve catches at least one process
(liveness).

Adapting to point contention.

June 2003 Adaptive Algorithms / Hagit Attiya 29

Sieve Implementation: Copies

count

Current copy
of the sieve

1
2

3
4

5
6

June 2003 Adaptive Algorithms / Hagit Attiya 30

Sieve Implementation: Doorway

Restrict access to a copy
only to simultaneously
active processes.

processes inside the copy
≤ point contention.

Inside the copy, employ
algorithms adaptive to total
contention!

1
2

3
4

5
6
inside

June 2003 Adaptive Algorithms / Hagit Attiya 31

Sieve Implementation:
Candidates

take an atomic snapshot
write the returned view
find minimal view C
if all processes in C

wrote their view
return C

else return φ

[Borowsky & Gafni]

1
2

3
4

5
6
inside

Atomic
snapshot
Atomic

snapshot

June 2003 Adaptive Algorithms / Hagit Attiya 32

Sieve Implementation:
Winners

take an atomic snapshot
write the returned view
find minimal view C
if all processes in C

wrote their view
return C

else return φ

C

June 2003 Adaptive Algorithms / Hagit Attiya 33

Sieve Implementation:
Winners

take an atomic snapshot
write the returned view
find minimal view C
if all processes in C

wrote their view
return C

else return φ

Last process in C to write a
view is a winner.

C

pi

June 2003 Adaptive Algorithms / Hagit Attiya 34

Sieve Implementation:
Managing the copies

Candidates are synchronized (work together).
Increase count by 1.

Monotone…

When all candidates leave a copy, open the
next copy.

June 2003 Adaptive Algorithms / Hagit Attiya 35

Things to do with a Sieve:
2k2-Renaming

Place sieves in a row…

Agreement on set of candidates and uniqueness of
copies.

Uniqueness of names.

1 2 3 4 2n – 1

return (4, rank in C)

June 2003 Adaptive Algorithms / Hagit Attiya 36

Things to do with a Sieve:
2k2-Renaming

Potential method shows that a process skips ≤ 2k-2
sieves.

k is the point contention.

Wins in sieve ≤ 2k-1.

1 2 3 4 2n – 1

return (4, rank in C)

June 2003 Adaptive Algorithms / Hagit Attiya 37

Things to do with a Sieve:
2k2-Renaming

Wins in sieve ≤ 2k-1.
O(f(k)) step complexity.

C includes at most k processes.
Name ≤ 2k2.

1 2 3 4 2n – 1

return (4, rank in C)

June 2003 Adaptive Algorithms / Hagit Attiya 38

Things to do with a Sieve:
Store

Place sieves in a row…

Agreement on set of candidates and uniqueness of
copies
pw writes the values of all candidates in a register
associated with the sieve.

1 2 3 4 2n – 1

pw ∈ C

June 2003 Adaptive Algorithms / Hagit Attiya 39

Things to do with a Sieve:
Collect

Go over the associated registers and read…

1 2 3 4 2n – 1

June 2003 Adaptive Algorithms / Hagit Attiya 40

Things to do with a Sieve:
Adaptive Collect?

pw and all other operations complete.

A collect still has to reach the splitter in
which pw has written its value!

1 2 3 4 2n – 1

June 2003 Adaptive Algorithms / Hagit Attiya 41

Bubble-Up
[Afek, Stupp & Touitou, 2000]

Before completing an operation,

move information from far away sieves to the
first sieve.

June 2003 Adaptive Algorithms / Hagit Attiya 42

Other Things to do with a Sieve

Sieve-based collect can be used to implement:
Atomic snapshots.

Immediate snapshots.

Timestamps: The vector of copy numbers.
Long-lived renaming.

Polynomial step complexity (using collect).

June 2003 Adaptive Algorithms / Hagit Attiya 43

What About Mutex?

Cannot have adaptive step complexity…
Can have adaptive system response time.

[Attiya & Bortnikov, 2002]
Some techniques are similar.

Renaming, adaptive binary tree (bottom-up!)…

June 2003 Adaptive Algorithms / Hagit Attiya 44

What’s Next?

Other problems.
Snapshots, generic simulations…

Improve and simplify.
Find good building blocks.

Local step complexity!

Use stronger primitives (C&S, LL/SC).
[Afek, Dauber & Touitou, 1995]

June 2003 Adaptive Algorithms / Hagit Attiya 45

Uniform Algorithms
[Gafni, 2001]

Adaptive algorithms can be also considered as
algorithms that do not depend on the number
of participants.

Useful in the context of peer-to-peer systems,
with no centralized control.

A huge number of potential processes.

Join and leave…

June 2003 Adaptive Algorithms / Hagit Attiya 46

Space: The New Frontier

Our results are based on a collect algorithm.
Either O(K2) step complexity (K is total
contention),

Or exponential space complexity.

A better collect algorithm?
O(K) step complexity, and

Polynomial space complexity.

A lower bound proof?

June 2003 Adaptive Algorithms / Hagit Attiya 47

The Whole Story
This talk describes some of the results in:

Attiya and Fouren,
Adapting to Point Contention with a Sieve,
Journal of the ACM, to appear.

Attiya, Fouren and Gafni,
An Adaptive Collect Algorithm with Applications,
Distributed Computing, Vol. 15, No. 2 (2002).

