
1

Adapting to Point Contention
with Long-Lived Adaptive

Safe Agreement

Hagit Attiya
Department of Computer Science

Technion

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 2

Collecting Information in
Asynchronous Shared-Memory Systems

Need to collect information in order to coordinate…
When only few processes participate, reading one by one

is prohibitive …
Would like to have adaptive step complexity

p1 p2 p3 p4 p5 p6 p7

wr
it
e

re
ad wr
it
ewrite re

ad

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 3

Adaptive Step Complexity

A function of the number of active processes
Total contention: The number of processes that

(ever) take a step during the execution

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 4

Adaptive Step Complexity

A function of the number of active processes
Total contention: The number of processes that

(ever) take a step during the execution.
Collect and store algorithms that are adaptive
to total contention

[Attiya, Fouren & Gafni] … [Afek & De Levie]

Renaming
Atomic snapshots

2

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 5

Be More Adaptive?

In a long-lived setting…
…processes come and go.

What if many processes start the execution,
then stop participating?
…then start again…
…then stop again…

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 6

Adapting to Point Contention

The step complexity is a function only of the
number of currently active processes.

Point contention of an operation: Max number of
processes taking steps together during its
interval

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 7

A Weaker Notion: Interval Contention

The step complexity is a function only of the
number of currently active processes

Interval contention of an operation: Max number
of processes taking steps during its interval

Always larger than the point contention

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 8

Talk Outline

What it means to be dynamically adaptive
How to be adaptive?

The safe agreement object
An adaptive safe agreement object

One-shot and long-lived
Adaptive renaming
Collecting information (adaptively)

Extensions and connections

3

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 9

Safe Agreement: Specification

Separate the voting / negotiation on a
decision from figuring the outcome

Two wait-free procedures:
Propose and Read

Validity of non-Ø views
Agreement on non-Ø views

returned by Read
Termination: If all processes that

invoked Propose return,
then Read returns non-Ø view

safe
agreement

object

Propose(view)
ack

Read()
view or Ø

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 10

Safe Agreement: Implementation

Use an atomic snapshot object and an array R

Propose(info)
update(info)
scan
write returned view to R[i]

Read() returns view
find minimal view C written in R
if all processes in C wrote their view

return C
else return Ø

SUUU U US S

[Borowsky & Gafni]

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 11

Safe Agreement: Safety

Let C be the minimal view returned by any scan

Can prove that all non-Ø views are equal to C

C

SUUU U US S

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 12

Safe Agreement: Liveness Properties

Clearly, both procedures are wait-free
But Read may return
a meaningless value, Ø

If some process invokes Propose,
then after all processes that invoke Propose
return, a Read returns a non-Ø value

SUUU U US S

4

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 13

Safe Agreement: Winners

Even better...

A Read by some process in C
returns a non-Ø value
E.g., the last process in C to write its view

These processes are called winners

C

SUUU U US S

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 14

Safe Agreement and the BG Simulation

Safe agreement was introduced by Borowsky & Gafni for
fault-tolerant simulation of wait-free algorithms

Abstracted by Lynch&Rajsbaum

Different interface
Propose and Read not separated
No Ø response for read
Complicates the simulation

They also missed an interesting feature…
[Attiya & Fouren]

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 15

Safe Agreement: Concurrency

All processes in C execute
Propose concurrently
In particular, all winners

C

SUUU U US S

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 16

Safe Agreement: Concurrency

All processes in C execute
Propose concurrently
In particular, all winners

Use a doorway variable
inside to avoid
unnecessary update / scan

adaptive
safe

agreement
object

Propose(view)
ack

Read()
view or Ø

5

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 17

Safe Agreement: Concurrency

All processes in C execute
Propose concurrently
In particular, all winners

Use a doorway variable
inside to avoid
unnecessary update / scan

adaptive
safe

agreement
object

Propose(view)
true / false
Read()
view or Ø

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 18

Adaptive Safe Agreement

Propose(info)
if not inside then

inside = true
update(info)
scan
write the returned view
return(true)

else return(false)
Concurrency: If a process returns false then some

“concurrent” process is accessing the object

adaptive
safe

agreement
object

Propose(view)
true / false
Read()
view or Ø

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 19

Long-Lived Adaptive Safe Agreement

Enhance the interface with
a generation number
(nondecreasing counter) long-lived

adaptive
safe

agreement
object

Read(c)
view or Ø

Propose(view)
Boolean,c

Release(c)

Validity, agreement and termination as before but
relative to a single generation
Concurrency: If a process returns false,c then some
process is concurrently in generation c of the object

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 20

Long-Lived Adaptive Safe Agreement

Synchronization: processes are inside the same
generation simultaneously
Their number ≤ point contention
Can employ algorithms adaptive to total
contention within each generation

e.g., atomic snapshots

6

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 21

Many copies of one-shot
safe agreement

count points to the current copy

Winners of each copy are synchronized
Increase count by 1.
Monotone…

When all processes release a generation, open the next
generation by enabling the next copy

Long-Lived Adaptive Safe Agreement:
Implementation

adaptive
safe

agreement
object

1
adaptive

safe
agreement

object

2
adaptive

safe
agreement

object

3
adaptive

safe
agreement

object

4
adaptive
safe
agreement
object

5
adaptive

safe
agreement

object

6

count

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 22

Catching Processes
with Safe Agreement

When processes access an adaptive long-
lived safe agreement object simultaneously,
at least one wins

If a process accesses an adaptive long-lived
safe agreement object and does not win,
some other process is accessing the object

Good for adaptivity…

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 23

Renaming

A process has to acquire a unique new name
Later release it

The range of new names must be as small as possible
Preferably adaptive: depending only on the number of
active processes
Must be at least 2k-1

Renaming is a building block for adaptive algorithms
First obtain names in an adaptive range
Then apply an ordinary algorithm using these names

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 24

Renaming using
Long-Lived Safe Agreement

Place objects in a row…

Agreement in each long-lived safe agreement object
Uniqueness of names

1 2 3 4 2n – 1

return (4, rank in C)

7

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 25

Renaming: Complexity

Concurrency for each long-lived safe agreement object
An object is skipped only due to a concurrent process
A process skips ≤ r objects

r is the interval contention
Range of names ≈ r2

1 2 3 4 2n – 1

return (4, rank in C)

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 26

Renaming: Point Contention

We promised point
contention

Pi skips because of Pj
Pj skips because of Pk
Pk skips because of …

They all overlap

1 2 3 4 2n – 1

Pi’s interval

Pj’s interval

Pk’s interval

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 27

Renaming: Name Size & Complexity

Proof is subtle since a process skips an object
either due to a concurrent winner
or due to a concurrent non-winner in C
(which it can meet again later in the row)

Use a potential-function proof to show that a
process skips ≤ 2k-1 objects

k is the point contention
Name ≈ k2

f(k) step complexity

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 28

Store using
Long-Lived Safe Agreement

Place objects in a row…

A winner adds the values of this generation’s candidates
to a register associated with the object

Agreement in each object and the synchronization
property imply that the register records all values
of all candidates

Across generations
Compact for specific functions / purposes

1 2 3 4 2n – 1

pw ∈ C

8

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 29

Adaptive Collect?

Go over the associated registers and read…
What if pw and all other stores complete?

A collect running solo still has to reach the
object in which pw has written its value!

1 2 3 4 2n – 1

pw

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 30

Making the Collect Adaptive

[Afek, Stupp & Touitou, 2000]

Before completing the store, bubble-up
information the top of the array

But how?
No CAS, waiting, or locks…

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 31

Wrap-Up

Long-lived adaptive safe agreement objects
can be combined with bubble-up to obtain
adaptive (to point contention) algorithms for:

Gathering & collecting information
Atomic snapshots
Immediate snapshots
(2k-1)-renaming (optimal)

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 32

Even More…

The algorithms can be made fully adaptive
Step complexity depends on processes really
participating, not just “signing in”

Especially relevant in renaming-based algorithms

Can bound their memory requirements
But the bounds are not adaptive…

9

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 33

Space: The Final Frontier

Improve the step complexity of the algorithms
and reduce their space complexity

Lots of improvement recently for total contention
E.g., using randomization

Algorithms whose space complexity is truly
adaptive to point contention?

Currently, number of registers used depends on
total contention
Allocated vs. used registers

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 34

Other Aspects

Using stronger primitives (CAS…)
Promising for adaptive space complexity

[Afek, Dauber, Touitou]
[Herlihy, Luchangco, Moir]

More modularity…
We made some progress with the long-lived
adaptive safe agreement object
What about bubble-up?

July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 35

Lower Bounds, Anyone?

Non-constant number of multi-writer registers is
needed for adaptive weak test&set

[Afek, Boxer, Touitou]
Holds also for renaming and long-lived collect

Non-constant number of multi-writer registers is
needed for adaptive generalized weak test&set

[Aguilera, Englert, Gafni]
Holds also for one-shot collect

Linear number of multi-writer registers is needed
for adaptive and efficient one-shot collect

[Attiya, Fich, Kaplan]
July 2006 LL Safe Agreement / Hagit Attiya / SIROCCO 36

At a Broader Perspective

Connections with recent research trends:
Obstruction-free algorithms

Adapting to step contention
[Attiya et al. DISC 2005], [Attiya et al. PODC 2006]

Abortable / failing objects

Population-oblivious algorithms

