
Adapting to Point Contention
with Long-Lived Safe Agreement

(Extended Abstract)

Hagit Attiya

Department of Computer Science
Technion

hagit@cs.technion.ac.il

Abstract. Algorithms with step complexity that depends only on the
point contention—the number of simultaneously active processes—are
very attractive for distributed systems with varying degree of concur-
rency. Designing shared-memory algorithms that adapt to point con-
tention, using only read and write operations, is however, a challenging
task.
The paper specifies the long-lived safe agreement object, extending an
object of Borowsky et al. [1], and describes an implementation whose step
complexity is adaptive to point contention. Then, we illustrate how this
object is used to solve other problems, like renaming and information
collection, in an adaptive manner.

1 Introduction

In order to coordinate the actions of a distributed application, processes must
obtain up-to-date information from each other. In a typical wait-free algorithm,
which guarantees that a process completes an operation within a finite number
of its own steps, information is collected by reading from an array indexed with
process’ identifiers. If a distributed algorithm is designed to accommodate a
large number of processes, this scheme is an over-kill when only a few processes
simultaneously participate in the algorithm: many entries are read from the
array although they contain irrelevant information about processes not wishing
to coordinate.

The best performance is achieved when the step complexity of an operation is
a function only of its point contention, namely, the maximal number of processes
simultaneously executing the algorithm concurrently with it. In this way, an
operation is delayed only when many processes are simultaneously active. Note
that an algorithm whose step step complexity is adaptive to point contention is
necessarily wait-free.

For example, if an algorithm is adaptive to point contention, then the step
complexity of operation op in Figure 1 is constant since at most three processes
simultaneously participate at each point during its interval. This holds although
a large number of processes are active throughout op, and many processes are
simultaneously active just before it starts.

op

Fig. 1. An execution example.

This article is devoted to explaining the design of algorithms that adapt to
point contention using only read and write operations. Our exposition is based
on an adaptive implementation of a long-lived safe agreement object.

The safe agreement object, originally defined by Borowsky et al. [1], allows
processes to propose information and to agree on an identical value. In the BG
simulation, the safe agreement object allows processes to agree on each step of a
simulated process. Both the specification and the implementation of the object
in [1] are neither wait-free (and hence, it is non-adaptive) nor long-lived.

We extend the specification to support adaptive and long-lived properties and
present an implementation with O(k) step complexity. Here and below, k denotes
the point contention during an operation. This implementation is based on work
by Attiya and Zach [2], which in turn follows ideas of Attiya and Fouren [3], as
well as Afek et al. [4] and Inoue et al. [5].

The article also describes how safe agreement objects are used to solve the
renaming problem and to implement two information collection objects, called
gather and collect.

Renaming [6, 7] allows a process to obtain a new name—a positive integer,
bounded by a function of the current number of active processes—and to release
it afterwards. We adjust a renaming algorithm of Attiya and Fouren [3] to use
long-lived safe agreement objects; in the algorithm, processes obtain names in a
range of size O(k2).

Gather and collect objects allow processes to store information and to retrieve
previously-stored information; they differ in the exact properties they provide.
Gather and collect objects are commonly used as modular building blocks for
efficient adaptive algorithms. We describe an implementation of a gather object,
with O(k2) step complexity for storing information and O(k) step complexity
for retrieving information. A collect object is easily implemented from a gather
object, with O(k2) step complexity for storing and retrieving information. The
algorithms and their presentation combine ideas from [2,3, 8, 9].

2 Model of Computation

We use a standard asynchronous shared-memory model of computation, follow-
ing, e.g., [10]. A system consists of n processes, p1, . . . , pn, and a set of registers
that are accessed by read and write operations.

An event is a computation step by a single process; in an event, a process
determines the operation to perform according to its local state, and determines
its next local state according to the value returned by the operation.

An execution is a (finite or infinite) sequence of events; each event occurs at
one process, which applies a read or a write operation to a single register and
changes its state according to its algorithm. We assume an asynchronous model
of computation, where process steps are arbitrarily interleaved.

An invocation of a high-level operation by a process causes the execution of
the appropriate algorithm. The execution interval of an operation opi by process
pi is the subsequence of the execution between the first event of pi in opi and
the last event of pi in opi. We denote opi → opj if the execution interval of
opi precedes the execution interval of the operation opj by process pj ; namely,
the last event of pi in opi appears before the first event of pj in opj . If neither
opi → opj nor opj → opi, we say that opi and opj are overlapping.

Let α′ be a finite prefix of an execution α; process pi is active at the end of
α′ if α′ includes an invocation of an operation op by pi without the matching
return.

The point contention at the end of α′, denoted pointCont(α′), is the number of
active processes at the end of α′. Consider a finite interval β of an execution α; we
can write α = α1βα2. The point contention during β is the maximum contention
in prefixes α1β

′ of α1β. We abuse notation and denote it by pointCont(β), as
well; that is

pointCont(β) = max{pointCont(α1β
′) : α1β

′ is a prefix of α1β } .

If pointCont(β) = k, then k processes are simultaneously active at some point
during β.

Another measure of concurrency is the interval contention during an interval
β, denoted intCont(β), counting the number of distinct processes that are active
at some point during β. Clearly, pointCont(β) ≤ intCont(β).

3 The Adaptive Safe Agreement Object

We start by specifying and implementing the one-shot safe agreement object
and later extend it to be long-lived.

The original safe agreement object [1] allows processes to propose values and
to agree on a single value; in our safe agreement object, processes agree on an
identical set of values. Clearly, a single value can be deduced from this set by
choosing some predefined value, e.g., the minimum.

In the original specification, a process may wait indefinitely until the agree-
ment value is decided, making it impossible to have a wait-free implementation.
This means that there is no adaptive implementation, either. To admit adaptive
implementations, we decouple the proposal of a value from the reading of the
agreed set, and allow the reading to return an empty set, indicating that decision
was not reached yet.

3.1 The One-Shot Object

The one-shot object provides two operations, propose and read. A process invokes
propose at most once, but can invoke read to query the object several times.

A propose(info) operation tries to store info into the object; if it succeeds, it
returns true, otherwise it returns false. A read operation returns a set of values,
possibly empty.

A one-shot safe agreement object must provide the following properties:

Validity: Any value returned was previously proposed.
Agreement: All non-empty return sets are identical.

A process pi accesses safe agreement object, if it calls a propose operation.
A process pi is inside a safe agreement object, if it gets true from a propose
operation. A process is a candidate if its proposed value appears in the non-
empty return set of values.

For example, assume processes p0, p1, p2 and p3 access a safe agreement
object (we ignore the specific values proposed), and that p3 returned false,
while all other processes returned true, and thus, are inside the object. In later
read operations, p0 returns ∅, while p1, p2 and p3 return {p0, p1, p2}. In this case,
the candidates are p0, p1, and p2.

The liveness property, defined next, implies that at least one of the processes
that get inside the safe agreement object is guaranteed to recognize itself as a
candidate. These processes are called winners, and are necessarily also candi-
dates. In the above example, the winners are p1 and p2, since they return a
non-empty set containing themselves.

Liveness: In any execution, at least one of the processes accessing the object
becomes a winner.

Concurrency: If a process gets inside a safe agreement object, and does not
win, then some other process is inside the object concurrently.

The adaptive implementation of a one-shot safe agreement object is based on
the sieve object of Attiya and Fouren [3]. We use the following data structures:

– A Boolean variable inside, initially false, indicates whether some process is
already inside the object.

– An array R[1 . . . n] of views; all views are initially empty. R[pi] contains the
view obtained by process pi in this object.

We also associate a procedure for one-shot atomic snapshot [11] with the
object, called osSnap. A process calls the procedure with info and obtains a
view, namely a set of process id’s and their information, which must include
the process itself. The views returned by the procedure must be comparable by
containment.

The pseudo-code appears in Algorithm 1.
In a propose operation, a process first checks if it is among the first processes

to propose values. It succeeds only if the safe agreement object is empty, and

Algorithm 1 Adaptive one-shot safe agreement object: code for process pi.
data types:

view : vector of 〈id, info〉
shared variables:

inside : Boolean, initially false
R[1 . . . n] : array of views, initially ∅

local variables:
V, W : view

Boolean procedure propose(info)
1: if (not inside) then
2: inside = true // notify that a process is inside the object
3: V = osSnap(info) // propose info; return view of 〈id, info〉
4: R[idi] = V // save the obtained view
5: return(true) // object is open
6: else return(false) // object is not open

view procedure read() // returns the subset of proposed values
7: V = R[idi]
8: W = min{R[idj] | 〈idj , ∗〉 ∈ V and R[idj] 6= ∅} // min by containment
9: if ∀〈idj , ∗〉 ∈ W,R[idj] ⊇ W then
10: return(W)
11: else return(∅)

inside is false. In this case, the process indicates that the safe agreement object
is no longer empty, and then obtains a snapshot view, which it stores in its entry
in R. The process returns with true from propose. If the process does not get
inside the object (i.e., inside is true), then some concurrent process is already
inside the object, and the process returns with false from propose.

In a read operation, process pi tries to distinguish the minimal (by contain-
ment) snapshot view. This is done by considering the minimal view written by
any process in the view obtained by pi; if one of these processes has not written
its view yet, due to the asynchrony of the system, then the read is inconclusive
and returns an empty set. Otherwise, the process returns the minimal view it
finds. As we shall see in the first lemma below, this suffices to guarantee that all
processes return the same set.

The validity property of the safe agreement object trivially holds by the code
(see [3]).

We argue that all non-empty sets are identical.

Lemma 1. Algorithm 1 satisfies the agreement property.

Proof. Let V be the minimal view (by containment) obtained in osSnap, by some
process pk. We argue that any non-empty view W returned in an invocation of
read by some process pi is equal to V . Assume, by way of contradiction, that
W 6= V . Since W is non-empty, it was obtained in some invocation of osSnap;
therefore, W and V are comparable. By the minimality of V , V ⊂ W .

Since pk ∈ V ⊂ W , pi checks R[idk]. If R[idk] is empty then pi clearly fails
the test; otherwise, R[idk] = V and since V ⊂ W , pi also fails the test. In both
cases, pi returns ∅, which is contradiction. ut

Next, we show that at least one of the processes accessing a safe agreement
object becomes a winner, when it calls read after returning from propose.

Lemma 2. Algorithm 1 satisfies the liveness property.

Proof. Let Wc be the set of candidates in the safe agreement object. Wc is not
empty since some processes access the object. Let pi be the last process in Wc

to write its view in propose; clearly, pi calls read after all processes in Wc write
their views in propose.

Let Vi be the view obtained by pi from osSnap. Since Wc is not empty, some
process pc obtains Wc, that is, the minimal (by containment) view, from osSnap.
Note that pc and pi could be the same process.

Since Wc and Vi are comparable and since Wc is minimal, pc ∈ Wc ⊆ Vi. By
assumption, pc writes its view to R[idc] before pi calls read. Therefore, pi reads
Wc from R[idc], and sets Vi to Wc, by its minimality.

By assumption, pi calls read after every process pj ∈ Vi = Wc wrote its view
Vj to R[idj]. By the minimality of Wc, Vi = Wc ⊆ Vj , and therefore, pi evaluates
the if condition to hold and obtains Wc. Thus, pi finds that it is a winner in the
safe agreement object. ut

A process that gets inside the safe agreement object first reads false from
inside and then sets inside to true. This fact can be used to prove that processes
are simultaneously inside a safe agreement object.

Lemma 3. The intervals of all processes that get inside a safe agreement object
are overlapping.

The next lemma shows that if process pi gets inside safe agreement object and
does not win, then some process pj with an overlapping interval is a candidate
in the object.

Lemma 4. Algorithm 1 satisfies the concurrency property.

Sketch of proof. If pi gets true from open then pi writes true to inside. By
Lemma 3, the intervals of all processes that write true to inside overlap. By
Lemma 2, at least one of them is a winner (and hence, a candidate) the safe
agreement object, and the lemma follows. ut

To evaluate the step complexity of the algorithm, suppose that pi accesses
safe agreement object in interval βi, and let k be the point contention during βi.

If A is the set of processes that are inside the object throughout the execution
(including pi itself), then Lemma 3 implies that processes in A access the object
concurrently, and hence, |A| ≤ pointCont(βi) = k. Thus, at most k processes
invoke the one-shot snapshot operation, which dominates the step complexity of
propose.

Attiya and Fouren [12] present a one-shot snapshot algorithm, whose step
complexity is O(KlogK), where K is the total number of processes that ever
invoke it (also known as the total contention). As we have just argued, in our
case we have that K = k, the point contention, and thus, the step complexity of
the one-shot snapshot algorithm is O(k log k).

Inoue et al. [5] observed that the one-shot snapshot can be replaced with
a partial atomic snapshot that guarantees that if one or more processes access
the object concurrently, at least one process obtains a snapshot (the others may
obtain an empty view). They also present a partial atomic snapshot algorithm
with O(k) step complexity, implying that the step complexity of propose is O(k).

Since the maximal size of a view is k, the step complexity of read is O(k).
Therefore, a process performs O(k) operations in each invocation of the one-shot
safe agreement procedures.

This yields the following theorem:

Theorem 1. Algorithm 1 implements an adaptive one-shot safe agreement ob-
ject with O(k) step complexity, where k is the point contention during the oper-
ation’s execution interval.

3.2 The Long-lived Object

The long-lived safe agreement object has an infinite number of generations. Its
interface is similar to that of the one-shot object, except that a generation num-
ber is added as a parameter to the operations. The generation number is visible
from outside the object, in order to simplify the specification of the long-lived
object, and to facilitate applications that use the generation number, e.g., the
timestamps algorithm of [3].

Specifically, a long-lived safe agreement object supports three operations:
propose(info) tries to store information in the current generation; if it succeeds,
it returns 〈true,c〉, otherwise, it returns 〈false,c〉. read(c) returns either a non-
empty set of values or an empty set. release(c) leaves generation c and activates
the next generation c + 1, if possible.

A generation starts when the first invocation of a propose operation that re-
turns 〈∗,c〉 occurs, and ends when the last process that got inside this generation
leaves the generation, by invoking release(c). Ic denotes the execution interval of
generation c.

We assume that there is at most one invocation of propose by each process for
each generation, which means that after calling propose that returns a generation
number c, the process must call release(c), before calling propose again.

The properties of the one-shot object (validity, agreement, liveness and con-
currency) must hold for every generation of the long-lived safe agreement object.
We also require the following property:

Synchronization: The generation number is a non-decreasing counter and it
is incremented by one during interval Ic. Moreover, processes get inside gen-
eration c only after all candidates leave the smaller generations and the
generation number is set to c (see Figure 2).

1

2
3

Generation number

TimeI0 I1 I2 I3 I4
0

5

4

Fig. 2. Generation numbers are nondecreasing.

A long-lived safe agreement object is implemented using an unbounded array
of one-shot safe agreement objects, each corresponding to a single generation. An
integer variable, count, indicates the current generation and points to the current
one-shot object. There is also an array done[1 . . . n][0 . . .∞] of Boolean variables,
all initially false. The entry done[pi][c] indicates whether process pi is done with
the c’th one-shot safe agreement object. Boolean variables allDone[0 . . .∞], all
initially false, indicate whether all candidates of a specific generation are done.

The pseudo-code appears in Algorithm 2.
As in the one-shot object, a process proposes its value by checking if it is

among the first processes to access the current generation of the safe agreement
object. The process succeeds only if this generation is empty, that is, no other
process is already inside it. If the process does not succeed to get inside the
current generation, then some concurrent process is already inside the current
generation.

The key idea in proving the correctness of the algorithm is that different
generations of the same safe agreement object are accessed in disjoint intervals
(this is the synchronization property of the object). This property allows correct
handling of the non-decreasing counter, and implies that the long-lived safe
agreement object inherits the properties of the one-shot object.

Process pi is inside generation c of a long-lived safe agreement object since
it gets true from a propose operation of generation c and until it leaves the
generation. In other words, process pi is inside generation c when it is inside the
one-shot object S[c] corresponding to generation c.

Careful inspection of the code, and agreement on the set of candidates show
that a safe agreement object is released when all candidates are done.

Lemma 5. If allDone[c] is set to true, then all candidates of S[c] invoked
release(c).

This lemma is the key for showing, by induction, that a process is inside
generation c only after all candidates leave smaller generations.

Lemma 6. If process pi is inside generation c of a safe agreement object, then
all the candidates already called release of the smaller generations, 1, . . . , c− 1.

Algorithm 2 Adaptive long-lived safe agreement object: code for process pi.
shared variables:

count : integer, initially 1
S[0 . . .∞] : infinite array of one-shot safe agreement objects
done[1 . . . n][0 . . .∞] : two-dimensional array of Boolean variables, all initially false
allDone[0 . . .∞] : infinite array of Boolean variables, all initially false

local variables:
V, W : view

〈Boolean, integer〉 procedure propose(info)
1: if (all-done[count− 1] and // all candidates of the previous generation are done

S[count].propose(info)) // and no process is inside the current generation
2: return(〈true, count〉) // generation count is open
3: else release(count) // generation c is not open
4: return(〈false, count〉)

view procedure read(c) // returns the candidates of generation c
5: return (S[c].read())

void procedure release(c) // release generation c
6: done[idi][c] = true // indicate that pi is done in generation c
7: W = S[c].read() // re-calculate the set of candidates
8: if (pi ∈ W) then count =c+1 // pi is a winner in generation c
9: if (W 6= ∅ and ∀pj ∈ W , done[pj] == true) then // all candidates are done
10: allDone[c] = true

Sketch of proof. We concentrate on the induction step, assuming that the lemma
holds for generation c. Only a winner pj in generation c writes c + 1 to count,
implying that pj is inside generation c. By the induction hypothesis, all candi-
dates already called release of generation 1, . . . , c−1. Since pi is inside generation
c + 1 it reads true from S[c].allDone. Lemma 5 implies that all candidates of
the one-shot object S[c] already called release on this object. ut

Recall that Ic is the execution interval of generation c, starting with the
first invocation of a propose operation in generation c and ending when the last
process that got inside generation c leaves. The next lemma proves that the data
structures of different generations of the same long-lived safe agreement object
are modified in disjoint intervals.

Lemma 7. For every c ≥ 1, Ic starts after all previous intervals I1, . . . , Ic−1

end.

Sketch of proof. We concentrate on the induction step, assuming that the lemma
holds for for Ic. By definition, Ic+1 starts with first invocation of a propose op-
eration in generation c+1. Lemma 6 implies that if this invocation occurs, then
all the candidates already called release of the smaller generations. In particu-
lar, all candidates already called release of generation c, and by the induction
hypothesis all previous intervals I1, . . . , Ic−1 end.

Since all candidates of generation c already called release, Ic also ended,
implying that Ic+1 starts after all previous intervals end. ut

The next lemma shows that the generation number is non-decreasing value,
and it is incremented by one during interval Ic.

Lemma 8. Algorithm 2 satisfies the synchronization property.

Sketch of proof. By the code, only a winner pw of generation c of a long-lived
agreement object writes c+1 to count. Since pw is a winner, it previously writes
true to inside of generation c, after Ic begins. Hence, pw writes c + 1 to count
after Ic begins, and before it leaves generation c. Lemma 5 implies that a one-
shot safe agreement object is released after all candidates leave the object, and
hence, pw writes c + 1 to count before Ic ends.

Lemma 7 implies that processes get inside generation c only during interval
Ic, after count is set to c. ut

Thus, distinct one-shot objects, associated with different generations, are
accessed in disjoint intervals, and the step complexity of accessing the object is
dominated by the step complexity of the one-shot object.

Theorem 2. Algorithm 2 implements an adaptive long-lived safe agreement ob-
ject with O(k) step complexity, where k is the point contention during the oper-
ation’s execution interval.

4 Application I: Renaming

In the (long-lived) renaming problem [6, 7] processes repeatedly get and release
names from a small range. Ideally, the size of the name range should depend
only on the current contention.

Long-lived safe agreement objects can be used in a simple renaming algo-
rithm: Place n long-lived safe agreement objects, SLL[1], . . . , SLL[n], in a row.
To get a name, a process pi accesses the objects sequentially, applying propose to
safe agreement object s; if it obtains 〈true,c〉, then pi invokes read(c) to get the
set of candidates W . Process pi returns as its new name the pair composed of s
and its rank in W . If pi obtains 〈false,c〉, then it releases SLL[s] and continues
to the next object, SLL[s + 1]. In the latter case, we say that pi skips the s’th
safe agreement object.

To release a name, process pi calls release on the safe agreement object where
it obtained a name.

The concurrency properties of the long-lived safe agreement object can easily
be used to prove that a process wins within k′ iterations, where k′ is the interval
contention while pi is getting a name.

It is more surprising—and harder to prove!—that in fact, process pi wins
within 2k − 1 iterations, where k is the point contention while pi is getting a
name. This is done using an interesting potential method, which considers two

sets of simultaneously active processes and shows that at least one of them is
increased by 1 when pi skips a safe agreement object.

The sets are indexed with an integer number s = 1, . . . , n. The first set,
denoted As, contains all processes that access the `’th safe agreement object,
1 ≤ ` ≤ s. The second set, denote Ws, contains all processes that win the `’th
safe agreement object, 1 ≤ ` ≤ s. (As and Ws are not disjoint.)

The exact definitions of As and Ws depend on specific execution intervals, and
are used in proving that if process pi skips the s’th safe agreement object, then
|Ws|+ |As| ≥ s + 1 (for appropriately chosen intervals). The detailed definitions
and statements, as well as the proofs, appear in [3, Section 4].

Since Ws and As contain simultaneously active processes, and since pi is not
in Ws, we have that |Ws| + |As| ≤ (k − 1) + k. This implies that pi skips at
most 2k − 2 safe agreement objects, and the first component of the new name
is ≤ 2k − 1. The second component of the new name is equal to the rank of the
process in the obtained view, and thus it is ≤ k. It follows that the size of the
name space is in O(k2).

Moreover, the step complexity of getting a name is O(k) times the step
complexity of proposing and reading in a safe agreement object, since pi accesses
at most 2k − 1 sieves. The step complexity of releasing a name is proportional
to the step complexity of releasing a safe agreement object.

Since both complexities can be bound by O(k) (see the previous section),
it follows that the algorithm solves long-lived O(k2)-renaming with O(k2) step
complexity.

5 Application II: Collecting Information

We discuss two objects, gather and collect, which allow a process to store its
value in a shared memory, or to retrieve the values stored in the shared memory.

The gather object provides two operations: a put operation stores its param-
eter in the object, while a gather operation returns the set of values stored in
the object before or possibly during the operation. (This is called the validity
property.)

The collect object provides a collect operation that inherits the validity prop-
erty of the gather operation, and further guarantees the regularity property.
Namely, later collect operations are at least as updated as previous ones.

5.1 Implementing a Gather Object

To implement a gather object, we again put n long-lived safe agreement objects,
SLL[1], . . . , SLL[n], in a row. With each safe agreement object we associate a set
containing the values of processes that were candidates in this object. In order
to store its information, a process iteratively tries to win in the safe agreement
objects.

In the first part of a put operation, a process goes through the row of safe
agreement objects, until it wins one of them. If it wins safe agreement object

SLL[s], the process merges the values of all candidates of the current generation
to the set associated with SLL[s]. The synchronization and agreement properties
of the safe agreement object guarantee that this set contains the values of all
candidates in all generations of SLL[s].

In principle, in a gather operation, the process merely has to go through the
safe agreement objects and read the associated sets of values. This might cause a
problem, however, if a gather operation is performed after store operations with
high contention: A put operation encountering high contention may store a new
value in an entry with large index, and a subsequent gather operation will have
to access many entries, even if its point contention is low.

This is solved by a technique called bubble-up, in which processes propagate
new results to the beginning of the row. This allows a gather operation to find
the new values at the beginning of the row, when contention is low. Bubble-up
was presented by Afek et al. [8] and later used in [2, 3, 9].

After storing its value, the put operation bubbles the result to the top of
the array. The process goes from entry s up to entry 1, and for each entry
s′ = s, . . . , 1, it recursively gathers the values stored beyond entry s′, and stores
the result in its private register associated with entry s′. (See the description by
Stupp [13, Section 7.1].)

In a gather operation, a process starts from the beginning of the row and reads
until it find a value that was bubbled up by one of the processes. The number
of entries accessed is linear in the point contention during the operation: if the
contention is low, then the process reads the value near the beginning of the row;
if the contention is high, then the process is allowed to go further in the row.

The key to showing that the gather object is correctly implemented is to
show that the result array contains the most recent values of all candidates of
all generations of the corresponding safe agreement object. The synchronization
property of the safe agreement object is used to show that this property holds,
although several processes (winners of the same safe agreement object) may
concurrently write to the result entry. (See [3, Lemma 6.1].)

Next we explain how bubbling up restricts the step complexity of the gather
operation. Assume that a gather operation by process pi reads skips over entry
s. The key to the complexity analysis is to show that a process skips an entry
only if some concurrent process is bubbling up through this entry. By careful
inspection of the intervals, this is used to show that pi skips at most 3k entries,
where k is the point contention.

The same potential argument used for renaming can be used to show that
in its first part, a put operation accesses at most 2k − 1 safe agreement objects.
Together with the linear step complexity (in point contention) of operations on
a safe agreement object, this implies that the step complexity of a put operation
is O(k2).

5.2 Implementing a Collect Object

When a gather operation returns a value v for process p, it is still possible that
a later gather operation returns a value that was written by process p before v.

This can happen, for example, when the two gather operations are concurrent
with the update operation of process p.

The regularity property of the collect object disallows this behavior. In order
to guarantee this property, the collect procedure first calls gather and then calls
put to store the result it has obtained. This increases the step complexity of a
collect operation to be O(k2).

6 Summary

We tried to provide a closer look at the algorithmic ideas that are employed in
order to have step complexity that adapts to point contention.

This article is not a comprehensive survey of the recent research on adaptive
algorithms. The issues not covered here include the space complexity of adaptive
algorithms [14,15], using stronger base objects [16,17], guaranteeing weaker types
of adaptivity [12,18,19], and adaptive algorithms for other problems, e.g., mutual
exclusion [20–22].

References

1. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation
algorithm. Distributed Computing 14(3) (2001) 127–146

2. Attiya, H., Zach, I.: Fully adaptive algorithms for atomic and immediate snapshots.
www.cs.technion.ac.il/∼hagit/pubs/AZ03.pdf (2003)

3. Attiya, H., Fouren, A.: Algorithms adaptive to point contention. Journal of the
ACM 50(4) (2003) 444–468

4. Afek, Y., Attiya, H., Fouren, A., Stupp, G., Touitou,
D.: Adaptive long-lived renaming using bounded memory.
www.cs.technion.ac.il/∼hagit/pubs/AAFST99disc.ps.gz (1999)

5. Inoue, M., Umetani, S., Masuzawa, T., Fujiwara, H.: Adaptive long-lived O(k2)-
renaming with O(k2) steps. In: Proceedings of the 15th International Conference
on Distributed Computing, Berlin, Springer-Verlag (2001) 123–135

6. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an
asynchronous environment. Journal of the ACM 37(3) (1990) 524–548

7. Moir, M., Anderson, J.H.: Wait-free algorithms for fast, long-lived renaming. Sci-
ence of Computer Programming 25(1) (1995) 1–39

8. Afek, Y., Stupp, G., Touitou, D.: Long-lived and adaptive collect with applications.
In: Proceedings of the 40th IEEE Symposium on Foundations of Computer Science,
Phoenix, IEEE Computer Society Press (1999) 262–272

9. Afek, Y., Stupp, G., Touitou, D.: Long-lived and adaptive atomic snapshot and
immediate snapshot. In: Proceedings of the 19th Annual ACM Symposium on
Principles of Distributed Computing, New-York, ACM Press (2000) 71–80

10. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13(1) (1991) 124–149

11. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. Journal of the ACM 40(4) (1993) 873–890

12. Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and
renaming. SIAM Journal on Computing 31(2) (2001) 642–664

13. Stupp, G.: Long Lived and Adaptive Shared Memory Implementations. PhD
thesis, Department of Computer Science, Tel-Aviv University (2001)

14. Afek, Y., Boxer, P., Touitou, D.: Bounds on the shared memory requirements for
long-lived adaptive objects. In: Proceedings of the 19th Annual ACM Symposium
on Principles of Distributed Computing, New-York, ACM Press (2000) 81–89

15. Attiya, H., Fich, F., Kaplan, Y.: Lower bounds for adaptive collect and related
problems. In: Proceedings of the 23rd Annual ACM Symposium on Principles of
Distributed Computing. (2004) 60–69

16. Afek, Y., Dauber, D., Touitou, D.: Wait-free made fast. In: Proceedings of the
27th ACM Symposium on Theory of Computing, New-York, ACM Press (1995)
538–547

17. Herlihy, M., Luchangco, V., Moir, M.: Space- and time-adaptive non-blocking
algorithms. In: Electronic Notes in Theoretical Computer Science. Volume 78.,
Elsevier (2003)

18. Afek, Y., Stupp, G., Touitou, D.: Long-lived adaptive splitter and applications.
Distributed Computing 15(2) (2002) 67–86

19. Attiya, H., Fouren, A., Gafni, E.: An adaptive collect algorithm with applications.
Distributed Computing 15(2) (2002) 87–96

20. Anderson, J., Kim, Y.J.: Adaptive mutual exclusion with local spinning. In: Pro-
ceedings of the 14th International Conference on Distributed Computing. (2000)

21. Attiya, H., Bortnikov, V.: Adaptive and efficient mutual exclusion. Distributed
Computing 15(3) (2002) 177–189

22. Choy, M., Singh, A.K.: Adaptive solutions to the mutual exclusion problem. Dis-
tributed Computing 8(1) (1994) 1–17

