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Concurrent Data Structures

* Constructs for efficiently storing and retrieving data

 Different types: lists, hash tables, trees, queues, ...
specified with an interface and expected behavior

* Can be put together to build other data structures



Concurrent Data Structures

* Constructs for efficiently storing and retrieving data

 Different types: lists, hash tables, trees, queues, ...
specified with an interface and expected behavior

e Can be put together to build other data structures

Fuel many multiprocessing software systems

 Specifically, multi-threaded and multi-core
environments or even geo-replicated systems



Jargon Alert AT
Signite
They say key-value store
We say register(s)

. mongoDb



Jargon Alert

They say index monetdb )

We say search structure

ﬁ RocksDB

LEVELDB



Jargon Alert

They say concurrency package
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We say synchronization primitives = Java

Linux
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Me & My Research

Approaches Methodologies
Fine-grained locking Theory (algorithms,
No locking ower bounds)

. D '
Transactional memory ractice

Wide-area replication -ormal methods (proof
methods, specifications)

Related core theoretical questions in
distributed computing



Replication

stabilizing atomic register
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Replication

My Research

Concurrent
DS - Theory

Emulating a Shared Register
in a System That Never Stops
Changing

Trading Fences with
RMRs and Separating
Memory Models

expensive
synchronization
cannot be eliminated

O(1)-barriers
optimal RMRs
mutual exclusion

Concurrent DS
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Recoverable
Lock-Free Data
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Formal
Methods

Transactional
memory

Modular Constructions
Non-Volatile Memory

NVRAM




Key-Value Store

Geo-distributed systems powering Google, Facebook,
Amazon, etc.
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Key-Value Store: Our Approach

Simulate a register by keeping copies (replicas) of its value
Keep replicas consistent by exchanging messages
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Key-Value Store with Constant Churn

CCReg: First shared register simulation that allows churn
to continue forever, and system size to fluctuate

Ensures reads and writes complete, and new nodes can
join and access the simulated register

Churn assumption: while a message is in transit,
the number of nodes entering or leaving is
< a x number of nodes when the message was sent
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Key-Value Store with Constant Churn

Possible projects:

* Implement CCReg & its extension for Byzantine failures
* Simplify & improve bounds
* Ensure safety when churn assumption does not hold



Non-volatile RAM: Paradigm Shift

Discard and rebuild

CPU registers

DRAM

Volatile:

Non-volatile:

(conventional)
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Non-volatile RAM: Paradigm Shift

Recover and reuse

CPU registers

Volatile: DRAM NVRAM

Non-volatile:

(future)
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Non-volatile RAM: Paradigm Shift

We presented Possible projects

* Persistence
CPU registers ordering and
consistency ordering

* New definitions

* Simulations of
recoverable
read/write, compare-
and-swap, test-and-
set operations

* System support

DRAM NVRAM ,
* Differences

between AMD &
Intel require to
abstract the
architecture

16



Out-of-Order Execution

Architectures ccompensate for slow writes by allowing
reads to bypass earlier writes that access a different
location (TSO) = harms mutual exclusion algorithms

Avoid reordering with slow fences
We proved one fence is needed
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Out-of-Order Execution & Caching

Architectures ccompensate for slow writes by allowing
reads to bypass earlier writes that access a different
location (TSO) = harms mutual exclusion algorithms

Avoid reordering with slow fences =
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Remote reads are expensive [ ]

We proved one fence is needed
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Reads from the cache are cheap [ﬂ

Shared memory



One-Fence Mutex: Entry Section

Promotion Queue

q r o s

When exiting the critical
section, processes
promote waiting
processes into a queue of
waiting processes

Ensure that waiting
processes are promoted,
and hence, not starved




One-Fence Mutex: Entry Section

Promotion Queue

q r o s

When exiting the critical
Few remote accesses < section, processes
promote waiting

and one fence processes into a queue of

1 \‘ _/ write  Waliting processes

Possible projects:

* reproduce the results

* optimize on AMD & Intel

* investigate with reads & writes

Ensure that waiting
processes are promoted,
and hence, not starved




