All You Need is
a Concurrent
Data Structure

Hagit Attiya

Concurrent Data Structures

* Constructs for efficiently storing and retrieving data

 Different types: lists, hash tables, trees, queues, ...
specified with an interface and expected behavior

* Can be put together to build other data structures

Concurrent Data Structures

* Constructs for efficiently storing and retrieving data

 Different types: lists, hash tables, trees, queues, ...
specified with an interface and expected behavior

e Can be put together to build other data structures

Fuel many multiprocessing software systems

 Specifically, multi-threaded and multi-core
environments or even geo-replicated systems

Jargon Alert AT
Signite
They say key-value store
We say register(s)

. mongoDb

Jargon Alert

They say index monetdb)

We say search structure

ﬁ RocksDB

LEVELDB

Jargon Alert

They say concurrency package

« .,
We say synchronization primitives = Java

Linux
p—
L

Me & My Research

Approaches Methodologies
Fine-grained locking Theory (algorithms,
No locking ower bounds)

. D '
Transactional memory ractice

Wide-area replication -ormal methods (proof
methods, specifications)

Related core theoretical questions in
distributed computing

Replication

stabilizing atomic register

My Research

Step and Namespace
Complexity of

Specification and Complexity

of Collaborative Text Editing Concurrent . o
i . . Counting-based impossibilit
Limitations of Highly-Available ADT Theory oroofs fﬁr e agre:ment an\(li

Non-topological impossibility
proof for k-set agreement

Eventually-Consistent Data
Stores

Polylogarithmic
concurrent data
structures
Limited-Use Atomic Snapshots with
Polylogarithmic Step Complexity

Emulating a Shared Register in a
System That Never Stops
Changing

Early Deciding Synchronous Renaming

Lower Bounds for Lower Bound on the Step

Concurrent Res?tricted-Use Complexity of Anonymous Binary
Doubly-Linked Objects Conse~~"
Concurrent ADT o complexity of ne
H updating snapshot
Practice : Trading Fences with RMRs Lower Bounds on the Amortized ogjects -
PRSI tCs with RCU and Separating Memory Time Complexity of Shared Obijects Theory
Models
expensive synchronization . . .)
cannot be eliminated Polylogarithmic adaptive algorithms ansactional
.] require revealing primitives
O(1)-barriers optimal DAP in Software emory

Transactional
Memaorv

RMRs mutual exclusion

Nontrivial and universal
helping for wait-free queues
and stacks

DAP Implementations of
™

Remote Memory References
at Block Granularity

e Ost of Privatization in
Software Transactional

Privatization-Safe

Transactional QTIenY
: Memories Directory Protocols
Sequential Characterizing Transactional for Distributed TM

Recoverable

verification of - il
Lock-Free Data _— Mgmory Con5|§tency Co_ndltlons
serializability Using Observational Refinement
Structures . "
Preserving Transactional scheduling

Hyperproperties in
Programs that Use
Concurrent Objects

Safety of Deferred Update
in Transactional Memory

Modular Constructions
Non-Volatile Memory

Single-Version STM that Is
Multi-Versioned
Permissive

Formal
NVRAM Methods

Replication

My Research

Concurrent
DS - Theory

Emulating a Shared Register
in a System That Never Stops
Changing

Trading Fences with
RMRs and Separating
Memory Models

expensive
synchronization
cannot be eliminated

O(1)-barriers
optimal RMRs
mutual exclusion

Concurrent DS
- Practice

Recoverable
Lock-Free Data
Structures

Formal
Methods

Transactional
memory

Modular Constructions
Non-Volatile Memory

NVRAM

Key-Value Store

Geo-distributed systems powering Google, Facebook,
Amazon, etc.

||||||||

aaaaaa

Partition
tolerance

Key-Value Store: Our Approach

Simulate a register by keeping copies (replicas) of its value
Keep replicas consistent by exchanging messages

|||||||

llllllllll

N Paland
= : /3
ermaAny, Uiaalne Kazakhatan :
= 7 TR TN S gy TR TN Mongolla
= \
rih Turkey

Partition © Low o5 m '
tolerance - latency

Key-Value Store with Constant Churn

CCReg: First shared register simulation that allows churn
to continue forever, and system size to fluctuate

Ensures reads and writes complete, and new nodes can
join and access the simulated register

Churn assumption: while a message is in transit,
the number of nodes entering or leaving is
< a x number of nodes when the message was sent

12

Key-Value Store with Constant Churn

Possible projects:

* Implement CCReg & its extension for Byzantine failures
* Simplify & improve bounds
* Ensure safety when churn assumption does not hold

Non-volatile RAM: Paradigm Shift

Discard and rebuild

CPU registers

DRAM

Volatile:

Non-volatile:

(conventional)

14

Non-volatile RAM: Paradigm Shift

Recover and reuse

CPU registers

Volatile: DRAM NVRAM

Non-volatile:

(future)

15

Non-volatile RAM: Paradigm Shift

We presented Possible projects

* Persistence
CPU registers ordering and
consistency ordering

* New definitions

* Simulations of
recoverable
read/write, compare-
and-swap, test-and-
set operations

* System support

DRAM NVRAM ,
* Differences

between AMD &
Intel require to
abstract the
architecture

16

Out-of-Order Execution

Architectures ccompensate for slow writes by allowing
reads to bypass earlier writes that access a different
location (TSO) = harms mutual exclusion algorithms

Avoid reordering with slow fences
We proved one fence is needed

)
)
)
)
)
)
)
)
)
)

Processes

operations
buffer

[J

Shared memory

- i
i
. i
i
i

17

Out-of-Order Execution & Caching

Architectures ccompensate for slow writes by allowing
reads to bypass earlier writes that access a different
location (TSO) = harms mutual exclusion algorithms

Avoid reordering with slow fences =

~ ~

©)
o)
)
Q)
©)
o)

Processes

L 0 T L
ach
Operatlons
buffer

Remote reads are expensive []

We proved one fence is needed

l
ach
Reads from the cache are cheap [ﬂ

Shared memory

One-Fence Mutex: Entry Section

Promotion Queue

q r o s

When exiting the critical
section, processes
promote waiting
processes into a queue of
waiting processes

Ensure that waiting
processes are promoted,
and hence, not starved

One-Fence Mutex: Entry Section

Promotion Queue

q r o s

When exiting the critical
Few remote accesses < section, processes
promote waiting

and one fence processes into a queue of

1 \‘ _/ write Waliting processes

Possible projects:

* reproduce the results

* optimize on AMD & Intel

* investigate with reads & writes

Ensure that waiting
processes are promoted,
and hence, not starved

