236755
Distributed Algorithms

Winter 2019-20

Hagit Attiya

Distributed Systems

* Are everywhere

— share resources

— communicate

— increase performance (replication, speed, fault tolerance)
* Are characterized by

— independent activities (concurrency)

— loosely coupled parallelism (heterogeneity)

— inherent uncertainty

— need for synchronization

© Hagit Attiya Introduction (236755)

236755 (2019) (c) Hagit Attiya



Example I: Coordinated Clubbing

Coordinate meeting in
a club by texting

— Only one club &
one time to go

It is absolutely bad if only one party shows up

Theorem: If message delivery is not guaranteed,

then coordinated clubbing cannot be achieved

© Hagit Attiya ntroduction (236755} 3

Example I: Coordinated Clubbing

Ping-pong execution w/o message loss \
k smallest number of messages s.t. /
some participant, e.g., p,, decides go \

Agreement = p, also decides go

Remove last message, from p;, to p, \
p, still decides go /

& Execution with k-1 messages!

Theorem: If message delivery is not guaranteed,

then coordinated clubbing cannot be achieved

© Hagit Attiya ntroduct 4

236755 (2019) (c) Hagit Attiya



Uncertainty in Distributed Systems

 differing process speeds
* varying communication delays
* (partial) failures

“"To ensure that a system is still correct
— identify fundamental problems and state them precisely

— design algorithms to solve these problems and prove
the correctness of these algorithms

— analyze their complexity (e.g., time, space, messages)
— prove impossibility results and lower bounds

© Hagit Attiya Introduction (236755) 5

Applications of Distributed Computing

Classic problems come from:
multi-threaded operating systems

2 ﬁ’\&& 0

_— ;
communication networks 4 vy 7

I ]
multicore processors

replicated servers
(distributed) database systems
software fault-tolerance

© Hagit Attiya Introduction (236755) 6

236755 (2019) (c) Hagit Attiya



Example II: Online Accounts

A (single) account on a multi-processor
Two operations:

Deposit (one S), Withdraw (one S)
Simple implementation by reads and writes
does not work

lval = read(balance)
lval++

write(balance, lval)

© Hagit Attiya Introduction (236755)

Example Il (Cont.)

process A process B
Ival = read(balance)
lval++

lval = read(balance)
lval++

write(balance, lval)
write(balance, lval)
One S added despite two deposits

lval = read(balance)
lval++

Need stronger primitives write(balance, Ival)

© Hagit Attiya

Introduction (236755)

236755 (2019) (c) Hagit Attiya



Example II: Single-Owner Account?

Only process p, can withdraw (one $)
Other processg:s just deposit (one S)

n
M
Withdraw,Q) Deposit; O
if balance() > 0 Ival; = read(M[i])
lval, = read(M[O]) Ival;++
Ival,-- write(M[Li], lval;)
write(M[O], Ival,)

Balance()

Ival[1..n] =(read(M[1..n]))
return Z}Ll Ival(j]

Introduction (236755)

© Hagit Attiya

Course Overview: Models

Two basic communication models:
— message passing
— shared memory

and two basic timing models:
— synchronous

Message Shared
passing memory
— asynchronous
synchronous PRAM
T_
© Hagit Attiya

Introduction (236755)

236755 (2019) (c) Hagit Attiya




Topics Covered

mutual exclusion

fault-tolerant consensus

* concurrent data structures

* causality and time

Failure models: 2
 crash: faulty process just stops. ;.?

* Byzantine (arbitrary): conservative assumption,
fits when failure model is unknown or malicious®

© Hagit Attiya Introduction (236755) 1

236755 (2019) (c) Hagit Attiya



