236755
Topic 2: Mutual Exclusion

Winter 2019-20

Prof. Hagit Attiya

Mutual Exclusion (Mutex) Problem

remainder @

Each process's code is divided into four sections:
— remainder: not interested in using the resource, go to...

— entry: synchronize with others to ensure mutually
exclusive access to the ...

— critical: use some resource; when done, enter the...
— exit: clean up; when done, go back to the remainder

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

©Hagit Attiya

Mutex Algorithm

remainder @

Specifies code for entry and exit sections to ensure:

» safety: at most one process is in its critical section at
any time (mutual exclusion), and

* some liveness or progress condition

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 3

Liveness Properties
for Mutex Algorithms

no deadlock: if a process is in its entry section at
some time, then later some process is in its
critical section

no starvation: if a process is in its entry section at
some time, then later the same process is in its
critical section

bounded waiting: no deadlock + while a process
is in its entry section, other processes enter the
critical section no more than a certain number of
times

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 4

©Hagit Attiya

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

Mutex using Test&Set

test-and-set variable holds two values, tesﬁ:;et_(v) :
. . p =V
0 or 1, and provides two (atomic) v=1
operations Eebprngkeny
reset (V) :
Code for entry section: v=0

repeat
t = testé&set (V)
until (t == 0)

Or wait until testé&set (V) ==

Code for exit section:
reset (V)

(&)

T&S Algorithm Ensures Mutual Exclusion

Otherwise, consider first violation, when some
p; enters CS but another p; is already in CS

p; enters CS: p; enters CS:
Soes v 20, impossiue!
sets Vto 1 sets Vio

<
<

no process leaves CS so V st;ys 1

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 6

©Hagit Attiya

T&S Algorithm Ensures No Deadlock

V =0if and only if no process is in the critical section

Proof by induction on events in execution

So, suppose that after some time, a process is in its
entry section but no process ever enters CS.

i no process enters CS

|
" "no process is in CS

Vv

V always equals O, next t&s returns O
process enters CS, contradiction!

grab V (i.e., win the test&set competition)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 7

Read-Modify-Write Shared Variable

State and size of a variable V rmw (V, £)
: H temp = V
is arbitrary e —

Supports an atomic rmw return temp
operation, for some function f

Can pack multiple variables

The special case of f= +1, is called fetch&inc

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 8

©Hagit Attiya

Overview of Algorithm

Virtually, processes wait in a
circular queue of length n

Waiting process locally stores its
position in the queue

Shared pointers first and last track
the active part of the queue

— Indices between 0 and n-1
— Packed into one shared variable V

Space complexity

* V has n?states
* size of Vis 2log,n bits

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

Mutex Algorithm Using RMW

Code for entry section:

// increment last to enqueue self
position = rmw(V, (V.£first,V.last+l mod n)

// wait until first equals this value
repeat
queue = rmw(V,V)

until (queue.first == position.last) The queue is
] . not stored in

Code for exit section: shared memory
// dequeue self

rmw (V, (V.first+1l mod n,V.last)) Ernd

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

©Hagit Attiya

Sketch of Correctness Proof

* Mutual Exclusion:

— Only the process at the head of the queue (V.first)
can enter the CS, and only one process is at the
head at any time.

* FIFO order:

— Follows from FIFO order of enqueuing,
and since no process stays in CS forever.

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

Spinning

Processes in entry section
repeatedly access V (spinning)

Very time-inefficient in certain
multiprocessor architectures

Local spinning: each waiting
process spins on a different
shared variable

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

©Hagit Attiya

RMW Mutex Algorithm w/ Local Spinning

Shared RMW variables

Last cycles through 0 ... n—1

— tracks the index to be given to the
next process that starts waiting

— initially O Last

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 13

RMW Mutex Algorithm w/ Local Spinning

Flags
Shared RMW variables 0

Last cycles through 0 ... n—1

— tracks the index to be given to the
next process that starts waiting

— initially 0

Last

Flags[0..n-1]: array of binary variables
— processes spin on these variables
— no two processes spin on the same
variable at the same time
— initially Flags[0] is 1 ("has lock")
Flags][i] is O ("must wait”) fori>0

0
0
0
0
0
1

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 14

©Hagit Attiya

RMW Mutex Algorithm w/ Local Spinning

Flags

entry section:
— get next index from Last and store in
a local variable myPlace
* increment Last (with wrap-around)
— spin on Flags[myPlace] until =1
(means process "has lock" and can
enter CS)

— set Flags[myPlace] to 0 (“must wait")

Last

exit section:

— set Flags[myPlace+1] to 1 (“has lock”)
(i.e., tap next process in line)
* use modulo to wrap around

000 900 900 I00

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 15

RMW Mutex Algorithm w/ Local Spinning

Flags

entry section:

myPlace = rmw(Last,Last+l mod n)
wait until Flags[myPlace] ==
Flags[myPlace] = 0

Last

exit section:

V00 900 900 900

Flags[myPlace+l mod n] =1

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 16

©Hagit Attiya

Invariants of the Local Spinning Mutex Algorithm

Flags

I. At most one element of Flagsis 1 0|6

("has lock")
II. If noelement of Flagsis 1, 0 k5

then some process is in the CS
1. If Flags[k] is 1, then exactly § 0 Last

(Last - k) mod n processes are in § 0 B

the entry section

each spinning on Flags[i] § 0 B

i=k, .., (Last-1) mod n k=1

§ I8 1 Last=5
. 5—1=4 processes

= Mutual exclusion 0 are spinning on
= n-Bounded Waiting different locations

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 17

Slightly More Formal Model

* Processes communicate via shared variables.

* Each shared variable has a type, defining a set of
operations that can be performed atomically.

(b
/N /

testé&set write read write
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 18

©Hagit Attiya

10

Shared Memory Model: Executions

Execution: C,, e;, C;, e,, ...

Event: a computation step by a process.
Previous state determines which
operation to apply on which variable

Configuration: value for

each shared variable and

state for every process
New value of variable depends on

the operation
New state of process depends on the
result of the operation and old state

Admissible: every process takes an infinite number of steps

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 19

Lower Bound on # Memory States

Theorem: A mutex algorithm with k-bounded waiting
uses at least n-1 states of shared memory.

Assume in contradiction such an algorithm exists
Consider a specific execution of the algorithm

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 20

©Hagit Attiya

11

Lower Bound on # Memory States

Py solo P1 P2
C Cy Ci 2 C, C, C,
Poin pyin pyin p; p;m
CS entry entry entry entry

C

pn-1 in
entry

n-1

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

21

Lower Bound on # Memory States

Po solo P4 P2
C Cy “Cy - C, C, C, Ch-1
Poin pyin pyin piin p; 1IN Pp.1iN
CS entry entry gntry entry entry
jie]
5
gP
g
S
=)
=]
p, enters CS
k+1 times
© Hagit Attiya 236755 (2019-20) Mutual Exclusion

22

©Hagit Attiya

Lower Bound on # Memory States
P, solo p p
c Cy Ci 2 C, C, C, Ch-1
Poin pyin pyin pin ppn Pn4in
CS entry entry entry entry entry
°
5
gp p
2
g
=]
» enters CS
k+1 times
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 23

Lower Bound: Afterthoughts

Why p,,...,p; (and especially p,) do the same thing when

executing from C; as when executing from C;?

* they are in the same states in C;and C,
* the shared memory is the same in C; and C,

* only differences between C; and C, are (perhaps)
the states of p;,; ...,p;

and they don't take any stepsin p

¢ Indistinguishability

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 24

12

©Hagit Attiya

13

=)
R

Does the proof work with no starvation?

A more complicated proof shows that number of
memory states is \n

= Q(log n) bits

Lower Bound: Afterthoughts

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 25

Shared Memory States: Summary

Progress
property Upper bound Lower bound
no deadlock 2
2
(test&set alg)
no starvation n/2 +c 7
n
(Burns et al.)
bounded waiting n2
(FIFO) n-1
(queue)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 26

©Hagit Attiya

14

Randomization “Beats” the Lower Bound

Reducing the liveness in every execution

Probabilistic no-starvation: every process has
non-zero probability of getting into the critical
section each time it is in its entry section

“ There is a randomized mutex algorithm using
O(1) states of shared memory

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 27

Mutex with Read/Write Variables

In an atomic step, a process can
read a variable or
write a variable
but not both!

The Bakery algorithm ensures
no starvation
mutual exclusion

Using 2n shared read/write variables

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 28

©Hagit Attiya

15

Bakery Algorithm: Take 1

Numberf[i], integer, initially O Number

— written by p
— read by others

Code for entry section:

Number[i] = l+max{Number[l],..., Number[n]}
for j =1 to n do
wait until Number[j] > Number[i]

Code for exit section:
Number[i] = 0

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

29

Bakery Algorithm: Take 2

Numberf[i], integer, initially O Number

— written by p;
— read by others

Code for entry section:
Number[i] = l+max{Number[l],...,Number[n]}
for j =1 to n do
wait until (Number[j] == 0)
or (Number[j],j) > (Number[i],i))

Code for exit section:
Number[i] = 0

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

30

©Hagit Attiya

16

Bakery Algorithm: Take 3

Numberli], integer, initially O Number Choosing
Choosing[i], Boolean, initially false
— written by p
— read by others

Code for entry section:

Choosing[i] = true
Number[i] = l+max{Number[l],..., Number[n]}
Choosing[i] = false
for j =1 to n do
wait until Choosing[j] == false
wait until (Number[j] == 0)
or (Number[j],j) > (Number[i],i))

Code for exit section:
Number[i] = 0

31

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

Correctness of Bakery Mutex: Key Claim

When process i is in the critical section

| for every process k # i not in the remainder (Number[k] # 0),
(Numberli],i) < (Number[k],k)

Seems intuitive from the code, but is not trivial

This is not exactly the original Bakery algorithm

Leslie
Lamport

Everything I need to know about
concurrent programming,
T learned from the Bakery algorithm

32

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

©Hagit Attiya

17

Proof of Key Claim

When process i is in the critical section

for every process k # i not in the remainder (Number[k] # 0),
, (Number[i],i) < (Number[k],k)

& @
p; 's most recent p;in CS and
read of Number(k] Number[k] # 0

Number[k] = 0 Jb(Number[k],k) > (Numberfi],i)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

33

Proof of Key Claim: Case 1

When process i is in the critical section

for every process k # i not in the remainder (Number[k] # 0),
. (Numberli],i) < (Number[k],k)

p;'s mostrecent p, reads false
write to Number(i] from Choosing[k]

9 -@- f !
, p, chooses number after seeing p;'s
pi number, and picks a larger one and
read NUITTnoecl |_r_| Nuti er[k] # 0

Number[k] = o‘J

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

34

©Hagit Attiya

18

Proof of Key Claim: Case 2

When process i is in the critical section

| for every process k # i not in the remainder (Number[k] # 0),
(Number[i],i) < (Number[k],k)

Proved using arguments similar to Case 1.

- -
p; 's most recent p;in CS and
read of Number(K] Number[k] # 0

b(Number[k],k) > (Number[il,i)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 35

Mutual Exclusion for Bakery Algorithm

Lemma: If p; is in the critical section, then Number(i] > 0.

Proof by straightforward induction.

=If p, and p, are simultaneously in CS,
both have Number > 0.

By previous lemma,
— (Numberl[k],k) > (Number]il,i) an-
— (Numberli],i) > (Number[k],k)

& The algorithm ensures mutex

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 36

©Hagit Attiya

19

No Starvation for the Bakery Algorithm

Must be waiting on Choosing[] or Number(]

Let p; be starved process with smallest (Numberli],i).

Any process entering entry section after p; has
chosen its number chooses a larger number.

Every process with a smaller number eventually
enters CS (not starved) and exits.

Thus p; cannot be stuck on Choosing[] or Numberf].

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 37

Summary of Mutex Algorithms

Progress # memory # read / write

property states variables

no deadlock 2 1
(test&set alg)

no starvation n/2+c 3n Booleans
(Burns et al.) | (tournament)

bounded waiting n2 2n unbounded
(FIFO) (queue) (bakery)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 38

©Hagit Attiya

20

Flag Principle

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 39

Bounded 2-Process Mutex w/o Deadlock
Want[0] Want[1]

Entry section

Process P, Process P,

Want[1l] = 0

wait until Want[0] ==
Want[0] =1 Want[1l] =1
wait until Want[l] ==

if Want[0] == 1 goto Line 1
Exit section:
Want[0] = 0 Want[1l] = 0
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 40

©Hagit Attiya

21

Bounded 2-Process Mutex w/o Deadlock

Want[0] Want[1]

Entry section n

Process P, Process P,

Want[1l] = 0
wait until Want[0] ==

Want flags ensure mutual exclusion (next slide)
Satisfies no deadlock (exercise)

But unfair (P, can starve)

Want[0] = O Want[1l] = 0

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 41

Mutex in 2-Process Algorithm

Suppose p, and p, are simultaneously in CS.

Want[0] =1
Want[1]=1

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 42

©Hagit Attiya

22

Mutex in 2-Process Algorithm

Process P, Process P,
Want[1l] = 0
wait until Want[0] == 0
Want[0] = 1 Want[l] =1
—pwait until Want[1l] == 0
if Want[0] == 1 goto Line 1
p;'s last Po's last Want[0] =1

) ; po reads 1 ”
write of 1 write of 1 from Want[1] Want[1]=1

to Want[1] to Want[0]

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 43

Bounded 2-Process Mutex w/o Starvation

Priority Want[0] Want[1]

Entry section n

Want[i] = 0

wait until Want[l-i] == 0 or Priority == i
Want[i] =1

if (Priority == 1-i) then

if (Want[l-i] == 1) then goto Line 1
else wait until (Want[1l-i] == 0)
Exit section:

Priority = 1-i
Want[i] = 0

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 44

©Hagit Attiya

23

No-Deadlock for 2-Process Mutex

» Useful for showing no-starvation.

* If one process stays in remainder forever,
other one cannot be starved

— E.g., if p, stays in remainder forever,
then p, keeps reading Want[1] = 0.

* So any deadlock starves both processes

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

No-Deadlock for 2-Process Mutex

Both processes are in their entry section
Priority remains fixed, e.g. at 0

Po and p,
in entry,

Priority = O

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

46

©Hagit Attiya

No-Deadlock for 2-Process Mutex

Code for pg Code for p;
Want[i] = 0 Want[i] = 0
wait until Want[1l-i] == 0 or Priv» until Want[1l-i] == 0 or Priority == i
Want[i] = 1 Want[i] = 1
if (Priority == 1-i) then if (Priority == 1-i) then
if (Want[1l-i] == 1) then go if (Want[l1-i] == 1) then goto Line 1

“ wait until (Want[l-i] == 0)else wait until (Want[l-i] == 0)

Po and p, po stuck with p; stuck with py sees

in entry, Want[0]=1 Want[1]=0 Want[1]=0,

Priority = 0 waiting for waiting for enter
Want[1]=0 Want[0]=0

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

No-Starvation for 2-Process Mutex

P, is starved
no deadlock = p, repeatedly enters CS

po stuck
in entry

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 48

©Hagit Attiya

25

No-Starvation for 2-Process Mutex

Want[i] = 0
—> wait until Want[1l-i] == 0 or Priority == i
Fwant[i] = 1
rif (Priority == 1-i) then CS
if (Want[l-i] == 1) then goto Line 1
—>else wait until (Want[l-i] == 0)
= Priority = 1-i
Want[i] = 0

po stuck p, sets po With p; with
in entry Priority Want[0]=1, Want[1]=0
to O waits for waits for
Want[1]=0 Want[0] =
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 49

What to do with > 2 Processes?

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 50

©Hagit Attiya

26

Tournament Tree Mutex

Tournament tree:
complete binary tree with
n-1 nodes

A

2-process mutex in each
inner node

— separate copies of the 3
shared variables

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 51

Tournament Tree Mutex

Two (fixed) processes start at each leaf

. critical
Winner of the 2-process mutex at a section
node proceeds to the next higher level
— coming from left, play role of p, i
— coming from right, play role of p,
Winner at the root
enters CS
REN (]| (]| REN
Po» P+ P2, P3 P4, Ps Pe» P7
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 52

©Hagit Attiya

27

Tournament Tree Mutex Algorithm

Tree nodes numbered in preorder k=[lognl-1

AN

chitichl

sgction

p; begins at node 2%4Li/2], playing role of Pimod 2 I[\E

After winning node v, CS for node v is

* entry code for all nodes on path
from v's parent Lv/2] to root

e real critical section

e exit code for all nodes
on path from root to

V's parent| v/2] BN
Pos P4 2 P3 P4, Ps Pe: P7
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 53

Analysis of Tournament Tree Mutex

Correctness: based on correctness of 2-process
algorithm and tournament structure:

— projection of an admissible execution of tournament
algorithm onto a particular node
is an admissible execution of 2-process algorithm

— mutex for tournament algorithm follows from mutex
for 2-process algorithm at the root

— no starvation for tournament algorithm follows from
no starvation for the 2-process algorithms at all nodes

Space Complexity: 3n Boolean shared variables.

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 54

©Hagit Attiya

28

Summary of R / W Mutex Algorithms

Progress property # read / write
variables

no deadlock

no starvation (tournament) 3n Booleans

FIFO (bakery) 2n (Booleans +

unbounded)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 55

Lower Bound on Number of
Variables

Theorem: A mutex algorithm ensuring

uses at

For every n, reach a configuration in which n
variables are covered

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 56

©Hagit Attiya

29

Covering

R
R

Several processes write to the same location

[l

Write of early process is lost, if no read in between

&~ Must write to distinct locations

Process p covers a register R in a configuration C

if its next step from Cis a write to R

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

57

Quiescence and Appearing Quiesce

A configuration is quiescent if all
processes are in the remainder

P is a set of processes, C and D configurations

P
C~D if each process in inCand D

and all inCandD

Cis P-quiescent if it is indistinguishable to
processes in P from a quiescent configuration
— l.e., C™~ D for some quiescent configuration D

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

nt

Q\
7
o) B
\ A I Y
A

58

©Hagit Attiya

30

' a

, in which

~

quiescent , p-quiescent
D R™'C

Ajuo-d
Q
Ajuo-d

i in CS pinCS

© Hagit Attiya

236755 (2019-20) Mutual Exclusion 59

Warm-Up Lemma Ny

Lemma: If Cis p-quiescent, then there is
schedule ¢ that

Proving the Warm-Up Lemma N

g \‘
Lemma: If Cis p-quiescent, then there is
| a p-only schedule ¢ that takes p into the CS, in which

p writes to a variable that is not covered in C

quie[s)cent D p-quiescent T,

T2

n g-only
overwrite empty the €S qinCS
variables and the entry bw
written by p
2 A
S o writes only
= to variables

covered in C

T4 To T
i in CS pincCs » qinCS
© Hagit Attiya

236755 (2019-20) Mutual Exclusion 60

©Hagit Attiya

For every k, from every quiescent configuration C, we can
reach a configuration D, by

L b) Dis

© Hagit Attiya

Inductive Claim

quiescent
C {Po: - -Pr.1}-only

Proof is by induction on k

Taking k = n implies the lower bound

236755 (2019-20) Mutual Exclusion

, S.t.
inD

{Pw---»Pn1}-quiescent
D

Po.--Pk-1 COver
k distinct

variables

61

© Hagit Attiya

Base Case: k=1

For every k, from every quiescent configuration C, we can

reach a configuration D, by steps of p,,...,p,_; only, s.t.
| (a) pg--- Py cOver k distinct variables in D
(b) Dis {py,.--,P,.1}-quiescent

By warm-up lemma, there is a p,-only schedule
that takes p, into the CS, in which p, writes

236755 (2019-20) Mutual Exclusion

quiescent

C

Ajuo-°d

po writes

Poin CS

62

31

©Hagit Attiya

32

Base Case: k=1

For every k, from every quiescent configuration C, we can

reach a configuration D, by steps of p,,...,p,_; only, s.t.
(@) pgs---P.1 cOver k distinct variables in D
| (b) Dis {py,---,pP,.1}-quiescent

quiescent
C
By warm-up lemma, there is a p,-only schedule
that takes p, into the CS, in which p, writes -
o
¢ Desired D is just before p,'s first write. %D
p, covers
a variable
© Hagit Attiya

236755 (2019-20) Mutual Exclusion

63

uiescent -qui
qC Por...Ps-only -quiescent

Inductive Step: Assume for k

For every k, from every quiescent configuration C, we can

reach a configuration D, by steps of p,,...,p,_; only, s.t.
(@) pgs--- Py cover k distinct variables in D
 (b) Dis {py,...,.p,.1}-quiescent

{P>--Pn-1}

Po.-.Px.1 cover
set W of k
variables

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

64

©Hagit Attiya

33

Inductive Step: Apply Warm-Up Lemma

For every k, from every quiescent configuration C, we can

reach a configuration D, by steps of p,,...,p,_; only, s.t.
(@) pgs---P.1 cOver k distinct variables in D
(b) Dis {py,---,pP,.1}-quiescent

. {pk ssss pn-1}
quiescent Po»..-Pes-only -quiescent

C

0:---

Po.---Pk.1 cover !
set W of k
variables

p, may

write to W

pi covers
X not in W

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 65

Inductive Step: Hiding p,,,

For every k, from every quiescent configuration C, we can

reach a configuration D, by steps of p,,...,p,_; only, s.t.
(@) pgs--- Py cover k distinct variables in D
(b) Dis {py,.--,P,.1}-quiescent

. t {pky..__,pn-1}
quiescent , ..p.s-only -quiescent
Cc D,
Po.--Px.1 cover T
set W of k
variables o
)
% .
< Po.-Prt overwrite W
become quiescent
Pk covers T py in entry
X not in W looks quiescent
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 66

©Hagit Attiya

34

Re-Apply Inductive Assumption

For every k, from every quiescent configuration C, we can

reach a configuration D, by steps of p,,...,p,_; only, s.t.
| (a) pg--- P cOver k distinct variables in D
(b) Dis {py,---,pP,.1}-quiescent

iescent P o) iescent
ui qui ui
q o Po....Prs-only -quiescent q o Pos-.-Pes-only
Po.---Pk.1 cover ! T T 6 Ppg,.pxicover 2
set W of k set W' of k
variables o variables
e)
< po,--Pk.1overwrite W
become quiescent Pos---Pi1-0Nnly
Py covers T pcinentry O Po.-Pi1cover
X not in W looks quiescent set W of k
© Hagit Attiya 236755 (2019-20) Mutual Exclusion variables

V.

Inductive Step: Not Quite There

For every k, from every quiescent configuration C, we can

reach a configuration D, by steps of p,,...,p,_; only, s.t.
| (a) pg--- Py cOver k distinct variables in D
(b) Dis {py,.--,P,.1}-quiescent

. t {pkv.._'!pn-1}
quiescen Po.---Py4-only -quiescent -Py-1-only
C D, D,
pOl"'pk—l cover T pOl"'pk—l cover
set W of k set W' of k
variables o variables
)
%
Po.--Pxk-
becom: 3---Prg-only
Py coveD i m over
X not il W wuns yuiescent SEL of k
© Hagit Attiya 236755 (2019-20) Mutual Exclusion variables

V.

©Hagit Attiya

35

Completing the Inductive Step

For every k, from every quiescent configuration C, we can
reach a configuration D, by steps of p,,...,p,_; only, s.t.

(@) pgs---P.1 cOver k distinct variables in D

(b) Dis {py,---,pP,.1}-quiescent

{pk ----- pn_1}
p.-only -quiescent

1 D, D, D,
Po.--Pk-1 €OVEr = Po,...Px-1 Pos-Pk-1 Pos-Pk-1 Pos-Pk-1
set W of k cover W, cover W3 cover W, cover Wy
variables

quiescent b
C =

Repeat until the sets are repeated (W, = W;), and then
apply the previous argument

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 69

Ds

Optimizing Memory Locality

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 70

©Hagit Attiya

36

Memory Access, in Formal Model

(0
R / N\ /

testé&set write read write

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 71

In Reality: Memory Interconnect
interconnect

ol

Memory is accessed through an interconnection
network (e.g., a bus)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 72

©Hagit Attiya

37

Local Memory: CC model

A

interconnect

)

Interconnect traffic is expensive
Store copies of data in local memory (cache)

Keep caches coherent with memory and each other
(cache coherence model)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 73

Local Memory: DSM model

~— —mTErtonnect

Larger memory banks are located at the
processors (distributed shared memory model)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 74

©Hagit Attiya

38

Local & Remote Accesses

local
' ﬁ -
/ erconnect
remote [
-? -? -? ”
\\ interconnect
&
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 75

Local & Remote Accesses

local

/‘\——Th‘re%connect

remote |

CcC

Y

S

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 76

©Hagit Attiya

39

Local Spinning

* An algorithm is local-spin if all busy waiting is
in read-only loops of local-accesses,
which do not cause interconnect traffic

g An algorithm may be local-spin on one model
(DSM or CC) and not local-spin on the other!

d The remote memory references (RMR)
complexity of an algorithm is the number of
remote accesses

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 77

R /W 2-Process Mutex

Want[i] = 0
wait until Want[l-i] == 0 o
Want[i] = 1

if (Priority == 1-i) then
if (Want[l1-i] == 1) then goto Line 1
else wait until (Want[l-i] == 0)

* Is this algorithm local-spin?
— In the DSM model? No
— In the CC model? Yes
* Whatis its RMR complexity?
— In the DSM model? Unbounded
— In the CC model? Constant

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 78

©Hagit Attiya

40

Recall Anderson’s Algorithm

Flags

entry section:

myPlace = rmw(Last,Last+l mod n)
wait until Flags[myPlace] == 1
Flags[myPlace] = 0

Uses modulo
Fetch & Inc

Is this algorithm local-spin?
In the CC model?
In the DSM model?

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 81

Local-Spin Mutex w/ Swap

. . swap (W, new)
Atomic reglster-to-memory

) prev = W
swap operations, W = new
also called fetch-and-store return prev

More common than fetch&inc mod n
Each process spins on its own location in array

Array contains the queue of waiting processes

Each entry in the array holds a pointer to the next
process in line.

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 82

©Hagit Attiya

41

Local-Spin Mutex w/ Swap
[6raunke & Thakkar, 1989] Flags

Shared variables:

Flags[0..n-1], binary; all initially 1
Tail {binary, {0,..,n-1}}, initially {0,0}
Local variables:

myRecord, prev {binary, {0,..,n-1}},
temp binary

entry section:

myRecord.value = Flags[i]

myRecord.slot = i

prev = swap(Tail, myRecord)

wait until (Flags[prev.slot] # prev.value)

exit section:

Flags[i]= 1 - Flags[i]

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

83

Local-Spin Mutex w/ Swap

[6raunke & Thakkar, 1989] Flags
Shared variables: 1
Flags[0..n-1], binary; all initially 1
Tail {binary, {0,..,n-1}}, initially {0,0} 1
Local variables:
myRecord, prev {binary, {0,..,n-1}}, 1
temp binary

1

entry section:
myRecord.value = Flags[i]

Is this algorithm local-spin?
In the CC model?

In the DSM model?

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

84

©Hagit Attiya

42

CLH Lock

[Craig 1993] and [Landin & Hagers, 1994]

* Also a queue, but does not allocate space for all

processes
* Instead, “thread” records in a (virtual) linked list

_¢-"‘ plg ‘-“‘pjg

Tail '
1 true

236755 (2019-20) Mutual Exclusion

85

© Hagit Attiya

CLH Lock

entry section:

new myNode
pred = getAndSet (Tail ,myNode)

wait until - pred

exit section:

myNode = false

. p .p.
. .
.ot |§ o*]
.* [3

Tail :
1 true

236755 (2019-20) Mutual Exclusion

86

© Hagit Attiya

©Hagit Attiya

43

CLH Lock

entry section:

new myNode
pred = getAndSet (Tail,myNode)

wait until - pred

Pointers are kept
in local memories

exit section:
‘myNode = false

Is this algorithm local-spin?

In the CC model?
In the DSM model?

236755 (2019-20) Mutual Exclusion 87

© Hagit Attiya

MCS Lock

[Mellor-Crummey and Scott, 1991]
* Maintain an explicit queue of waiting processes

* Small space overhead

* Local spinning in CC & DSM models
— Each process has a dedicated record that is enqueues

and dequeues
p.

88

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

©Hagit Attiya

44

MCS Lock: Enqueing for the lock

* Set tail to point to your record (with
compare&set)

critial
tail p'

= O

© Hagit Attiya 236755 (2019-20) Mutual Exclu

-+ -

MCS Lock: Enqueing for the lock

* Set tail to point to your record (with CAS)
* Make last element point to your record

p,cnhal

tail

= -

© Hagit Attiya 236755 (2019-20) Mutual Exclu

-

©Hagit Attiya

45

MCS Lock: Enqueing for the lock

* Set tail to point to your record (with CAS)
* Make last element point to your record
* Spin on your own record

critial
tail p'

= O

© Hagit Attiya 236755 (2019-20) Mutual Exclu 91

MCS Lock: Unlock

* Notify next in line that it can go into the
critical section

o -C- -

© Hagit Attiya 236755 (2019-20) Mutual Exclu 92

©Hagit Attiya

46

MCS Lock: Unlock

* Notify next in line that it can go into the
critical section

— p; sets p;s flag to false
* Dequeue own record from the list
— clear the next pointer

- p; p

tail b :
E IHI [
93

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

MCS Lock: Unlock Subtleties

* Another thread might be joining the list at the
same time

— No thread will be enabled for the critical section
— Exception (p, accesses p;’s reclaimed memory)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 94

©Hagit Attiya

47

MCS Lock: Unlock Subtleties

* Another thread might be joining the list at the
same time

* Can be detected since tail is not null

— Wait for next to be filled before proceeding

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 95

MCS Lock: Unlock Subtleties

* Another thread might be joining the list at the
same time
* Can be detected since tail is not null

— Wait for next to be filled before proceeding
to set its flag to false &

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 96

©Hagit Attiya

48

MCS Queue-Based Algorithm

Shared Qnode nodes[0..n-1]

Shared Qnode *tail initially null

Local Qnode *myNode, initially &nodes[i]
Local Qnode *successor

acquire-lock

myNode->next = null // prepare to be last in queue

pred = swap(&tail, myNode) // tail now points to myNode

if (pred # null) // should wait for a predecessor
myNode->locked = true // prepare to wait
pred->next = myNode // let predecessor know to unlock me

wait until (myNode.locked == false)

release-lock

if (myNode.next == null) // not sure there is successor
if (compare-and-swap (&tail, myNode, null) == false)

wait until (myNode->next # null) // wait for successor id
successor = myNode->next // get pointer to successor
successor->locked = false // unlock successor

else // for sure, there is successor
successor = myNode->next // get pointer to successor
successor->locked = false // unlock successor

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 97

MCS Queue-Based Algorithm

Shared Qnode nodes[0..n-1]

Shared Qnode *tail initially null

Local Qnode *myNode, initially &nodes[i]
Local Qnode *successor

acquire-lock

myNode->next = null // prepare to be last in queue

pred = swap(&tail, myNode) // tail now points to myNode

if (pred # null) // should wait for a predecessor
myNode->locked = true // prepare to wait
pred->next = myNode // let predecessor know to unlock me

wait until (myNode.locked == false)

Uses and ere is successor
Is this algorithm local-spin? == RO

pit for successor id
|I"I the CC model? pointer to successor

In the DSM model? k successor

here is successor
get pointer to successor
successor->locked = false // unlock successor

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 98

©Hagit Attiya

49

Local-Spin Mutex
without Strong Primitives

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 99

Local-Spin Tournament-Tree Mutex

O(log n) RMR complexity
for CC model ritical
(this is optimal) section

O(n log n) registers

Key is to find the right

2-process mutex 4

Pos P1 P2, P3 P4, Ps Pe> P7

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 100

©Hagit Attiya

50

Local-Spin 2-Process Mutex: 15t Try

Shared variables:
Want[0], Want[1]: initially 1
Spin[0], Spin[l1]: initially 1

acquire-lock (side)
Want[side] = 1 // announce

Spin[side] = 0
opponent = Want[l-side] // read other side
if (opponent # 1)
wait until (Spin[side] # 0) // spin
release-lock (side)

Want[side] = L // cancel announcement

Spin[l-side] = 1 // release other

Local-Spin 2-Process Mutex: 15t Try

Shared variables:
Want[0], Want[1l]: initially 1l
Spin[0], Spin[l]: initially 1l

acquire-lock (side)
Want([side] = 1 // announce

Spin[side] = 0
opponent = Want[l-side] // read other side
if (opponent # 1l)

wait until (Spin[side] # 0) // spin
Ensures mutual exclusion

relel But may deadlock
Want[side] = 1 // cancel announcement
Spin[l-side] = 1 // release other

©Hagit Attiya

51

Local-Spin 2-Process Mutex:
Avoid Deadlock
Shared variables:

Tie, Want[0], Want[1l]: initially 1
Spin[0], Spin[l1]: initially 1

acquire-lock (side)

Want[side] = 1 // announce
Tie = i // tie breaker
Spin[side] = 0
opponent = Want[l-side] // read other side
if (opponent # 1) and (Tie == i)
if (Spin[l-side] == 0) Spin[l-side] =1
wait until (Spin[side] # 0) // spin
if (Tie == i) wait until (Spin[side] > 1)

release-lock (side)

Want[side] = L // cancel announcement

if (Tie # i) Spin[l-side] = 2 // release other

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 103

Local-Spin 2-Process Mutex:
Avoid Deadlock
Shared variables:

Tie, Want[0], Want[1l]: initially 1l
Spin[0], Spin[l]: initially 1

acquire-lock (side)

Want([side] = 1 // announce
Tie = i // tie breaker
Spin[side] = 0
opponent = Want[l-side] // read other side
if (opponent # 1L) and (Tie == i)
if (Spin[l-side] == 0) Spin[l-side] =1
wait until (Spin[side] # 0) // spin
if (Tie == i) wait until (Spin[side] > 1)

relJ"_Is this local spinning in DSM?
ﬁhnt[51de] =

// cancel announcement

if (Tie # i) Spin[l-side] = 2 // release other

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 104

©Hagit Attiya

52

Local-Spin 2-Process Mutex

Shared variables:
Tie, Want[0], Want[1]: initially 1
Spin[0,..,n-1]: initially

acquire-lock (side)

Want[side] = i // announce your identity
Tie = i // tie breaker
Spin[i] = 0
opponent = Want[l-side] // who's competing
if (opponent # 1) and (Tie == i)
if (Spin[opponent] == 0) Spin[opponent] = 1
wait until (Spin[i] # 0)
if (Tie == i) wait until (Spin[i] > 1)

release-lock (side)
Want[side] = nil
opponent = Tie // who's competing
if (opponent # i) Spin[opponent] = 2

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 105

Example (for processes 3 and 7)

Want[0] =3 Want[1] =7

Tie=3

Spin[3]=0 Tie=7

opponent =7 Spin[7]=0

opponent <>_1 and Tie<>3 opponent =3

CRITICAL opponent <> | and Tie ==

CRITICAL Spin[3] == 0, so Spin[3] =1

CRITICAL WAIT until Spin[7] <> 0

CRITICAL WAIT

CRITICAL WAIT

Spin[7]=1

Spin[7] =2 Tie == 7, so wait until Spin[7] > 1
CRITICAL

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 106

©Hagit Attiya

53

Local-Spin 2-Process Mutex

Shared variables: n registers
Tie, Want[0], Want[l] — lially L per node?

Spin[0,..,n-1] ;“Initially 1

acquire-lock (side)

Want[side] = i
Tie = i
Spin[i] = 0
opponent = Wan|
if (opponent
if (Sp
wait un
An array for each level

?pponent = Tiel p p, Pas P3 P4 Ps Pe: P7
if (opponent

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 107

Optimizing for No Contention

In a well-designed system, most of the time only
a single process wants the critical section...

In the algorithms so far, requires O(f(n)) steps:
O(n) for the Bakery algorithm

O(log(n)) for the tournament tree algorithm

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 129

©Hagit Attiya

54

Fast Mutex —

Algorithm is fast if a process
enters CS in O(1) steps,
when there is no

competition no

detect
contention?

n-process mutex

Must use multi-writer
shared variables

critical section

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 130

Detecting Contention: Splitter

win | < one process

A process wins if it is alone in the splitter
O(1) step complexity

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 131

©Hagit Attiya

95

Splitter Implementation: Race Variable

Shared variable: race, initially -1
1. race = id;

2. if race == id; then win
3. else lose

If a process is alone, clearly wins

But it is possible that two processes win

PL it read

race = 1 race == 1

P2 write read

race =2 race ==

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 132

Doorway Mechanism

* Wrap a doorway mechanism around race

* Only a process in the first set of processes to
concurrently access race may win

* After writing to race, check the doorway and
if open, close it

* race chooses a unique one of the captured
processes to "win"

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 133

©Hagit Attiya

56

Splitter Implementation

Shared variables
door, initially false
race, initially -1

1. race = id; // write your identifier

2. if door then return(lose)

3. door = true

4. if (race == id,) // check race variable
then return(win)

5. else return(lose)

Requires < 5 read / write operations, and two shared registers.

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 134

Splitter Implementation: Race Variable

Shared variables
door, initially false
race, initially -1

1. race = id; // write your identifier

4. if (race == id,) // check race variable
then return(win)
5. else return(lose)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 135

©Hagit Attiya

o7

Splitter Implementation: Doorway

Shared variables
door, initially false
race, initially -1

2. if door then return(lose)

3. door

© Hagit Attiya

= true

236755 (2019-20) Mutual Exclusion

136

A process wins when executing the splitter by itself

Correctness of the Splitter

Follows from the code when there is no concurrency

1. race = id; // write your identifier

2. if door then return(lose)

3. door = true

4. if (race == id,) // check race variable
then return(win)

5. else return(lose)

© Hagit Attiya 236755 (2019-20) Mutual Exclusion

137

©Hagit Attiya

58

Correctness of the Splitter

At most one process wins the splitter

P: processes that read false from door (Line 2)

p;: last process to write to race
before door is set to true

No process p; # p; can win:
— p; & Plosesin Line 2.

— p; € P writes to race before p; but checks again (Line 5)
after p; 's write and loses

race = id; // write your identifier

if door then return(lose)

. door = true

if (race == id,;) // check race variable
then return(win)

5. else return(lose)

B wdh R

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 138

Correctness of the Splitter

At most one process wins the splitter

P: processes that read false from doox (Line 2)

p;: last process to write to race
before door is set to true
No process p; # p; can win:
— p; € Plosesin Line 2.

— p; € P writes to race before p; but checks again (Line 5)
after p; 's write and loses

write set read
race =i door race ==|j
P :
write read read
race=] door race==j
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 139

©Hagit Attiya

59

Detour: Splitting the Losers

1. race = id; // write your identifier
2. if door then return(lose)
3. door = true
4. if (race == id,) // check race variable
then return(win)
5. else return(lose)
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 140
Detour: Splitting the Losers
J <k processes
<k -1 processes <k -1 processes
stop| < one process
1. race = id; // write your identifier
2. if door then return(right)
3. door = true
4. if (race == id,) // check race variable
then return(stop)
5. else return(left)

©
©

Hagit Attiya 236755 (2019-20) Mutual Exclusion

141

©Hagit Attiya

60

Proof of Splitting Property

Not all processes go left, not all processes go right

At least one process (the first) reads false from door
& Not all processes return right

If some process reads true from door
& Not all processes return left

Otherwise, last process to write to race returns stop
& not all processes return left

race = id; // write your identifier

if door then return(right)

. door = true

if (race == id,) // check race variable
then return(stop)

5. else return(left)

B wdh R

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 142

Ensuring No Deadlock

In case of concurrency,
it is possible that no
process wins the splitter

= Nodes losing the splitter
enter n-process mutex

= Winner of n-process
mutex competes with
winner of splitter using
2-process mutex

< Winner enters CS

splitter

n-process mutex

play role
of p,

2-process mutex

critical section

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 143

©Hagit Attiya

61

Exiting Fast Mutex

splitter

n-process mutex

play role
of pg play role

of p;
2-process mutex

2-process exit

critical section

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 144

Exiting Fast Mutex

n-process exit

2-process exit

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 145

©Hagit Attiya

62

Releasing the Splitter: Take 1

* p, and p, both lose the
splitter
— But “close” it

release splitter

n-process exit * Leave to the remainder

* psarrives alone

— Splitter still closed

must release
splitter also
after slow path

2-process exit

critical section

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 146

Releasing the Splitter: Take 2

A process from the slow
path may release the
splitter while another
—— process is in the fast path

2-process exit

release splitter critical section

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 147

©Hagit Attiya

63

Releasing the Splitter: Take 3

Different release code for
processes from the fast
path and the slow path

n-process exit

2-process exit

slow path fast path e .
. . critical section
release splitter release splitter
was slow was fast
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 148

Fast Mutex: Overall Structure

splitter & set inside flag

n-process exit n-process mutex

play role
of py play role

of p,
2-process mutex

2-process exit

:

critical section

reset inside flag open door
none inside, open doo reset inside flag

1‘ was slow T was fast
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 149

©Hagit Attiya

64

Long-Lived Fast Mutex

Shared variables:
race: initially L
door: initially false
inside[0,..,n-1]: all initially false
<remainder code>

| 1:race=id | procedure slow-path
2: inside[i] = true 15: <n-process entry code>
3: if door == true slow-path() 16: <2-process entry code (1)>
4: door = true 17: <critical section>
5: if race==id
6 <2-process entry code (0)> 19: inside[i] = false
7 <critical section> 20: if for all j, inside[j] == false
8: door = false 21: door = false
9 insidel[i] = false
10: <2-process exit code (0)> 23: <2-process exit code (1)>
| 11: else slow-path() | 24: <n-process exit code> & exit
© Hagit Attiya 236755 (2019-20) Mutual Exclusion

150

Long-Lived Fast Mutex

Shared variables:
race: initially L
door: initially false
insidel[0,..,n-1]: all initially false

<remainder code> checking: initially false
| 1:race=id | procedure slow-path
2: inside[i] = true 15: <n-process entry code>
3: if door == true slow-path() 16: <2-process entry code (1)>
4: door = true 17: <critical section>
5:if race==id 18: checking = true
6 <2-process entry code (0)> 19: inside[i] = false
7 <critical section> 20: if for all j, inside[j] == false
8: door = false 21: door = false
9 inside[i] = false 22: checking = false
10: <2-process exit code (0)> 23: <2-process exit code (1)>
| 11: else slow-path() | 24: <n-process exit code> & exit
© Hagit Attiya 236755 (2019-20) Mutual Exclusion

151

©Hagit Attiya

65

Long-Lived Fast Mutex

Shared variables:

<remainder code>

| 1: race = id

2: inside[i] = true

race: initially L

door: initially false
inside[0,..,n-1]: all initially false
checking: initially false

procedure slow-path

15: <n-process entry code>

3: if door or checking == true slow-path() 16: <2-process entry code (1)>

4: door = true 17: <critical section>

5: if race==id | 18: checking = true I
6 <2-process entry code (0)> 19: inside[i] = false

7 <critical section> | 20: if for all j, inside[j] == false |
8: door = false 21: door = false

9 inside[i] = false [22: checking = false |
10: <2-process exit code (0)> 23: <2-process exit code (1)>

| 11: else slow-path()

| 24: <n-process exit code> & exit

Hagit Attiya 236755 (2019-20) Mutual Exclusion 152

Long-Lived Fast Mutex

Shared variables:

<remainder code>

1:race=id

2: inside[i] = true

3: if door or checking == true slow-path()
4: door = true

5:if race ==id

6: <2-process entry code (0)>
7: <critical section>

10: <2-process exit code (0)>
8: door = false

9: inside[i] = false

11: else slow-path()

race: initially L

door: initially false
insidel[0,..,n-1]: all initially false
checking: initially false

procedure slow-path

15: <n-process entry code>

16:
17:
18:
19:
20:
21:
22:
23:
24:

<2-process entry code (1)>
<critical section>
checking = true
inside[i] = false
if for all j, inside[j] == false
door = false
checking = false
<2-process exit code (1)>
<n-process exit code> & exit

© Hagit Attiya 236755 (2019-20) Mutual Exclusion 153

©Hagit Attiya

Long-Lived Fast Mutex

At each time, at most one At each time, at most one
process is in Lines 6-10 process is in Lines 16-23
= Mutual exclusion =checking == true when a
and no starvation process is in Lines 19-21
1: race = id procedure slow-path
2: inside[i] = true 15: <n-process entry code>
3: if door or checking == true slow-path() 16: <2-process entry code (1)>
4: door = true 17: <critical section>
5:if race == id 18: checking = true B
6: <2-process entry code (0)> 19: inside[i] = false
7: <critical section> 20: if for all j, inside[j] == false
10: <2-process exit code (0)> 21: door = false
8: door = false 22: checking = false
9: inside[i] = false —_— 23: <2-process exit code (1)> ____|
11: else slow-path() 24: <n-process exit code> & exit
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 154

Long-Lived Fast Mutex: Complexit
A process running solo executes O(1) steps

Otherwise, execute O(n) steps (regardless of n-
process mutex algorithm)

:race=id procedure slbw-path

1
2: inside[i] = true 15: <n-process entry code>
3: if door or checking == true slow-path() 16: <2-process entry code (1)>
4: door = true 17: <critical section>
5:if race==id 18: checking = true
6: <2-process entry code (0)> 19: inside[i] = false
7: <critical section> 20: if for all j, inside[j] == false
10: <2-process exit code (0)> 21: door = false
8: door = false 22: checking = false
9: inside[i] = false 23: <2-process exit code (1)>
11: else slow-path() 24: <n-process exit code> & exit
© Hagit Attiya 236755 (2019-20) Mutual Exclusion 155

©Hagit Attiya

