Topic 2: Mutual Exclusion

Each process's code is divided into four sections:

- **remainder**: not interested in using the resource, go to...
- **entry**: synchronize with others to ensure mutually exclusive access to the ...
- **critical**: use some resource; when done, enter the...
- **exit**: clean up; when done, go back to the remainder
Mutex Algorithm

Specifies code for entry and exit sections to ensure:
- safety: at most one process is in its critical section at any time (mutual exclusion), and
- some liveness or progress condition

Liveness Properties for Mutex Algorithms

no deadlock: if a process is in its entry section at some time, then later some process is in its critical section

no starvation: if a process is in its entry section at some time, then later the same process is in its critical section

bounded waiting: no deadlock + while a process is in its entry section, other processes enter the critical section no more than a certain number of times
Mutex using Test&Set

test-and-set variable holds two values, 0 or 1, and provides two (atomic) operations.

Code for entry section:

```
repeat
    t = test&set(V)
until (t == 0)
```

Or

```
wait until test&set(V) == 0
```

Code for exit section:

```
reset(V)
```

T&S Algorithm Ensures Mutual Exclusion

Otherwise, consider first violation, when some p_i enters CS but another p_j is already in CS.

- p_i enters CS: sees $V = 0$, sets V to 1
- p_j enters CS: sees $V = 0$, sets V to 1

Impossible! No process leaves CS so V stays 1
T&S Algorithm Ensures No Deadlock

Proof by induction on events in execution
So, suppose that after some time, a process is in its entry section but no process ever enters CS.

\[V = 0 \text{ if and only if no process is in the critical section} \]

\(V \) always equals 0, next \(t&s \) returns 0. Process enters CS, contradiction!

Starvation is possible: One process could always grab \(V \) (i.e., win the test&set competition)

Read-Modify-Write Shared Variable

State and size of a variable \(V \) is arbitrary
Supports an atomic \(\text{rmw} \) operation, for some function \(f \)

Can pack multiple variables

The special case of \(f \equiv +1 \), is called \(\text{fetch&inc} \)
Overview of Algorithm

Virtually, processes wait in a circular queue of length \(n \)

Waiting process \textit{locally} stores its position in the queue

Shared pointers \textit{first} and \textit{last} track the active part of the queue
- Indices between 0 and \(n-1 \)
- Packed into one shared variable \(V \)

\textbf{Space complexity}
- \(V \) has \(n^2 \) states
- Size of \(V \) is \(2\log_2 n \) bits

Mutex Algorithm Using RMW

\textbf{Code for entry section:}

```
// increment last to enqueue self
position = rmw(V,(V.first,V.last+1 mod n))

// wait until first equals this value
repeat
    queue = rmw(V,V)
until (queue.first == position.last)
```

\textbf{Code for exit section:}

```
// dequeue self
rmw(V,(V.first+1 mod n,V.last))
```
Sketch of Correctness Proof

- **Mutual Exclusion:**
 - Only the process at the head of the queue ($V\text{.first}$) can enter the CS, and only one process is at the head at any time.

- **FIFO order:**
 - Follows from FIFO order of enqueuing, and since no process stays in CS forever.

Spinning

Processes in entry section repeatedly access V (spinning)

Very time-inefficient in certain multiprocessor architectures

Local spinning: each waiting process spins on a different shared variable
RMW Mutex Algorithm w/ Local Spinning

Shared RMW variables

- **Last** cycles through 0 ... n–1
 - tracks the index to be given to the next process that starts waiting
 - initially 0

Flags[0..n-1]: array of binary variables

- processes spin on these variables
- no two processes spin on the same variable at the same time
- initially Flags[0] is 1 ("has lock")
- Flags[i] is 0 ("must wait") for i > 0
RMW Mutex Algorithm w/ Local Spinning

entry section:
- get next index from Last and store in a local variable myPlace
 - increment Last (with wrap-around)
- spin on Flags[myPlace] until = 1 (means process "has lock" and can enter CS)
- set Flags[myPlace] to 0 ("must wait")

exit section:
- set Flags[myPlace+1] to 1 ("has lock") (i.e., tap next process in line)
 - use modulo to wrap around

RMW Mutex Algorithm w/ Local Spinning

entry section:
```python
myPlace = rmw(Last, Last+1 mod n)
wait until Flags[myPlace] == 1
Flags[myPlace] = 0
```

exit section:
```python
Flags[myPlace+1 mod n] = 1
```

Must apply RMW on last to ensure counter is correct
Invariants of the Local Spinning Mutex Algorithm

I. At most one element of Flags is 1 ("has lock")

II. If no element of Flags is 1, then some process is in the CS

III. If Flags[k] is 1, then exactly (Last - k) mod n processes are in the entry section each spinning on Flags[i] i = k, ..., (Last-1) mod n

⇒ Mutual exclusion
⇒ n-Bounded Waiting

Slightly More Formal Model

• Processes communicate via shared variables.
• Each shared variable has a type, defining a set of operations that can be performed atomically.
Shared Memory Model: Executions

Execution: $C_0, e_1, C_1, e_2, ...$

Configuration: value for each shared variable and state for every process

Event: a computation step by a process.
- Previous state determines which operation to apply on which variable
- New value of variable depends on the operation
- New state of process depends on the result of the operation and old state

Admissible: every process takes an infinite number of steps

Lower Bound on # Memory States

Theorem: A mutex algorithm with k-bounded waiting uses at least $n-1$ states of shared memory.

Assume in contradiction such an algorithm exists
Consider a specific execution of the algorithm
Lower Bound on # Memory States

If # memory states < n-1

For some i < j the shared memory is in the same state in C_i and C_j
Lower Bound on # Memory States

\[\begin{align*}
C & \xrightarrow{p_0 \text{ solo}} C_0 \xrightarrow{p_1} C_1 \xrightarrow{p_2} C_2 \ldots \xrightarrow{p_{n-1}} C_{n-1} \\
& \quad \text{with } p_0 \text{ in CS, } \ldots, p_{n-1} \text{ in entry } \}
\end{align*} \]

Contradiction!

\[p_h \text{ enters CS } k+1 \text{ times} \]

Lower Bound: Afterthoughts

Why \(p_0, \ldots, p_i \) (and especially \(p_h \)) do the same thing when executing from \(C_j \) as when executing from \(C_i \)?

- they are in the same states in \(C_j \) and \(C_i \)
- the shared memory is the same in \(C_j \) and \(C_i \)
- only differences between \(C_i \) and \(C_j \) are (perhaps) the states of \(p_{i+1}, \ldots, p_j \) and they don’t take any steps in \(\rho \)

\(\triangleright \) Indistinguishability
Lower Bound: Afterthoughts

Does the proof work with no starvation?

A more complicated proof shows that number of memory states is \sqrt{n}
$\implies \Omega(\log n)$ bits

Shared Memory States: Summary

<table>
<thead>
<tr>
<th>Progress property</th>
<th>Upper bound</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>no deadlock</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(test&set alg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no starvation</td>
<td>$n/2 + c$</td>
<td>\sqrt{n}</td>
</tr>
<tr>
<td>(Burns et al.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bounded waiting</td>
<td>n^2</td>
<td>$n-1$</td>
</tr>
<tr>
<td>(FIFO)</td>
<td>(queue)</td>
<td></td>
</tr>
</tbody>
</table>
Randomization “Beats” the Lower Bound

Reducing the liveness in *every* execution

Probabilistic no-starvation: every process has non-zero probability of getting into the critical section each time it is in its entry section

There is a randomized mutex algorithm using \(O(1) \) states of shared memory

Mutex with Read/Write Variables

In an atomic step, a process can

- read a variable or
- write a variable but not both!

The Bakery algorithm ensures

- no starvation
- mutual exclusion

Using \(2n \) shared read/write variables
Bakery Algorithm: Take 1

Number[i], integer, initially 0

- written by p_i
- read by others

Code for entry section:

```
Number[i] = 1 + \max\{Number[1],...,Number[n]\}
for j = 1 to n do
    wait until Number[j] > Number[i]
```

Code for exit section:

```
Number[i] = 0
```

Bakery Algorithm: Take 2

Number[i], integer, initially 0

- written by p_i
- read by others

Code for entry section:

```
Number[i] = 1 + \max\{Number[1],...,Number[n]\}
for j = 1 to n do
    wait until (Number[j] == 0)
    or (Number[j],j) > (Number[i],i))
```

Code for exit section:

```
Number[i] = 0
```
Bakery Algorithm: Take 3

Number[i], integer, initially 0
Choosing[i], Boolean, initially false
 – written by pi
 – read by others

Code for entry section:

Choosing[i] = true
Number[i] = 1+max{Number[1],...,Number[n]}
Choosing[i] = false
for j = 1 to n do
 wait until Choosing[j] == false
 wait until (Number[j] == 0) or (Number[j],j) > (Number[i],i))

Code for exit section:

Number[i] = 0

Correctness of Bakery Mutex: Key Claim

When process i is in the critical section
for every process k ≠ i not in the remainder (Number[k] ≠ 0),
(Number[i],i) < (Number[k],k)

Seems intuitive from the code, but is not trivial

This is not exactly the original Bakery algorithm

Everything I need to know about concurrent programming,
I learned from the Bakery algorithm
Proof of Key Claim

When process i is in the critical section for every process k ≠ i not in the remainder (Number[k] ≠ 0), (Number[i],i) < (Number[k],k)

pi’s most recent read of Number[k]
Number[k] = 0
(Number[k],k) > (Number[i],i)

Proof of Key Claim: Case 1

When process i is in the critical section for every process k ≠ i not in the remainder (Number[k] ≠ 0), (Number[i],i) < (Number[k],k)

pi’s most recent write to Number[i]
pi reads false from Choosing[k]
pk chooses number after seeing pi’s number, and picks a larger one
(Number[k],k) > (Number[i],i)
Proof of Key Claim: Case 2

When process i is in the critical section for every process $k \neq i$ not in the remainder ($\text{Number}[k] \neq 0$), $(\text{Number}[i], i) < (\text{Number}[k], k)$

Proved using arguments similar to Case 1.

Mutual Exclusion for Bakery Algorithm

Lemma: If p_i is in the critical section, then $\text{Number}[i] > 0$.

Proof by straightforward induction.

- If p_i and p_k are simultaneously in CS, both have $\text{Number} > 0$.
- By previous lemma,
 - $(\text{Number}[k], k) > (\text{Number}[i], i)$ and
 - $(\text{Number}[i], i) > (\text{Number}[k], k)$

Contradiction!

The algorithm ensures mutex
No Starvation for the Bakery Algorithm

Must be waiting on Choosing[] or Number[]

- Let p_i be starved process with smallest (Number[i], i).

- Any process entering entry section after p_i has chosen its number chooses a larger number.

- Every process with a smaller number eventually enters CS (not starved) and exits.

- Thus p_i cannot be stuck on Choosing[] or Number[].

Summary of Mutex Algorithms

<table>
<thead>
<tr>
<th>Progress property</th>
<th># memory states</th>
<th># read / write variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>no deadlock</td>
<td>2 (test&set alg)</td>
<td>1</td>
</tr>
<tr>
<td>no starvation</td>
<td>n/2 + c (Burns et al.)</td>
<td>3n Booleans (tournament)</td>
</tr>
<tr>
<td>bounded waiting</td>
<td>n² (queue)</td>
<td>2n unbounded (bakery)</td>
</tr>
<tr>
<td>(FIFO)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Flag Principle

Bounded 2-Process Mutex w/o Deadlock

Entry section

<table>
<thead>
<tr>
<th>Process (P_0)</th>
<th>Process (P_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Want[0] = 1</td>
<td>Want[1] = 0</td>
</tr>
<tr>
<td>wait until Want[1] == 0</td>
<td>wait until Want[0] == 0</td>
</tr>
<tr>
<td></td>
<td>Want[1] = 1</td>
</tr>
<tr>
<td></td>
<td>if Want[0] == 1 goto Line 1</td>
</tr>
</tbody>
</table>

Exit section:

| Want[0] = 0 | Want[1] = 0 |
Bounded 2-Process Mutex w/o Deadlock

Entry section

Process P_0

Want flags ensure mutual exclusion (next slide)
Satisfies no deadlock (exercise)
But unfair (P_1 can starve)

Exit section:

Want[0] = 0
Want[1] = 0

Mutex in 2-Process Algorithm

Suppose p_0 and p_1 are simultaneously in CS.

Want[0] = 1
Want[1] = 1
Mutex in 2-Process Algorithm

- Process P_0
 - Want[0] = 1
 - wait until Want[1] == 0

- Process P_1
 - Want[1] = 0
 - wait until Want[0] == 0
 - Want[1] = 1
 - if Want[0] == 1 goto Line 1

Contradiction!

Bounded 2-Process Mutex w/o Starvation

Entry section

- Want[i] = 0
- wait until Want[1-i] == 0 or Priority == i
- Want[i] = 1
- if (Priority == 1-i) then
 - if (Want[1-i] == 1) then goto Line 1
 - else wait until (Want[1-i] == 0)

Exit section:

- Priority = 1-i
- Want[i] = 0
No-Deadlock for 2-Process Mutex

• Useful for showing no-starvation.
• If one process stays in remainder forever, other one cannot be starved
 – E.g., if p_1 stays in remainder forever, then p_0 keeps reading $\text{Want}[1] = 0$.
• So any deadlock starves both processes

No-Deadlock for 2-Process Mutex

Both processes are in their entry section
Priority remains fixed, e.g. at 0

p_0 and p_1
in entry,
Priority = 0
Both processes are in their entry section.
Priority remains fixed, e.g. at 0

p_0 stuck with $\text{Want}[0] = 1$
waiting for $\text{Want}[1] = 0$
p_1 stuck with $\text{Want}[1] = 0$
waiting for $\text{Want}[0] = 0$

No-Deadlock for 2-Process Mutex

Code for p_0
\[
\text{Want}[i] = 0 \\
\text{wait until Want}[1-i] == 0 \text{ or Priority} == i \\
\text{Want}[i] = 1 \\
\text{if (Priority} == 1-i) \text{ then} \\
\quad \text{if (Want}[1-i] == 1) \text{ then goto Line 1} \\
\quad \text{else wait until (Want}[1-i] == 0) \\
\]

Code for p_1
\[
\text{Want}[i] = 0 \\
\text{wait until Want}[1-i] == 0 \text{ or Priority} == i \\
\text{Want}[i] = 1 \\
\text{if (Priority} == 1-i) \text{ then} \\
\quad \text{if (Want}[1-i] == 1) \text{ then goto Line 1} \\
\quad \text{else wait until (Want}[1-i] == 0) \\
\]

No-Starvation for 2-Process Mutex

p_0 is starved
no deadlock $\Rightarrow p_1$ repeatedly enters CS

p_0 stuck in entry
No-Starvation for 2-Process Mutex

- \(\text{Want}[i] = 0 \)
 - wait until \(\text{Want}[1-i] = 0 \) or \(\text{Priority} = i \)
 - \(\text{Want}[i] = 1 \)
 - if (Priority == 1-i) then
 - if (Want[1-i] == 1) then goto Line 1
 - else wait until (Want[1-i] == 0)
 - Priority = 1-i
 - \(\text{Want}[i] = 0 \)

\(p_0 \) stuck in entry
\(p_1 \) sets Priority to 0
\(p_0 \) with Want[0] = 1, waits for Want[1] = 0
\(p_1 \) with Want[1] = 0, waits for Want[0] = 0

\(p_0 \) enters CS

What to do with > 2 Processes?

- tournament

- \(p_0 \), \(p_1 \), \(p_2 \), \(p_3 \)
Tournament Tree Mutex

Tournament tree:
complete binary tree with
\(n-1 \) nodes
2-process mutex in each inner node
– separate copies of the 3 shared variables

Two (fixed) processes start at each leaf

Winner of the 2-process mutex at a node proceeds to the next higher level
– coming from left, play role of \(p_0 \)
– coming from right, play role of \(p_1 \)

Winner at the root enters CS
Tournament Tree Mutex Algorithm

Tree nodes numbered in preorder
p_i begins at node $2^k\lceil i/2 \rceil$, playing role of $p_i \mod 2$

After winning node v, CS for node v is
- entry code for all nodes on path from v's parent $\lfloor v/2 \rfloor$ to root
- real critical section
- exit code for all nodes on path from root to v's parent $\lfloor v/2 \rfloor$

$k = \lceil \log n \rceil - 1$

Analysis of Tournament Tree Mutex

Correctness: based on correctness of 2-process algorithm and tournament structure:
- projection of an admissible execution of tournament algorithm onto a particular node is an admissible execution of 2-process algorithm
- mutex for tournament algorithm follows from mutex for 2-process algorithm at the root
- no starvation for tournament algorithm follows from no starvation for the 2-process algorithms at all nodes

Space Complexity: $3n$ Boolean shared variables.
Summary of R / W Mutex Algorithms

<table>
<thead>
<tr>
<th>Progress property</th>
<th># read / write variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>no deadlock</td>
<td></td>
</tr>
<tr>
<td>no starvation (tournament)</td>
<td>3n Booleans</td>
</tr>
<tr>
<td>FIFO (bakery)</td>
<td>2n (Booleans + unbounded)</td>
</tr>
</tbody>
</table>

Can we do better?

Lower Bound on Number of Variables

Theorem: A mutex algorithm ensuring no deadlock uses at least \(n \) shared variables

For every \(n \), reach a configuration in which \(n \) variables are covered
Covering

Several processes write to the same location
Write of early process is lost, if no read in between

Must write to distinct locations

Process p covers a register R in a configuration C if its next step from C is a write to R

Quiescence and Appearing Quiescent

A configuration is quiescent if all processes are in the remainder

P is a set of processes, C and D configurations

C \sim P D if each process in P has same state in C and D and all shared variables have same value in C and D

C is P-quiescent if it is indistinguishable to processes in P from a quiescent configuration
— I.e., C \sim P D for some quiescent configuration D
Warm-Up Lemma

Lemma: If C is p-quiescent, then there is a p-only schedule σ that takes p into the CS, in which p writes to a variable that is not covered in C.

Proving the Warm-Up Lemma

Lemma: If C is p-quiescent, then there is a p-only schedule σ that takes p into the CS, in which p writes to a variable that is not covered in C.
Inductive Claim

For every \(k \), from every quiescent configuration \(C \), we can reach a configuration \(D \), by steps of \(p_0, \ldots, p_{k-1} \) only, s.t.

(a) \(p_0, \ldots, p_{k-1} \) cover \(k \) distinct variables in \(D \)

(b) \(D \) is \(\{p_k, \ldots, p_{n-1}\} \)-quiescent

Proof is by induction on \(k \)

Taking \(k = n \) implies the lower bound

Base Case: \(k = 1 \)

For every \(k \), from every quiescent configuration \(C \), we can reach a configuration \(D \), by steps of \(p_0, \ldots, p_{k-1} \) only, s.t.

(a) \(p_0, \ldots, p_{k-1} \) cover \(k \) distinct variables in \(D \)

(b) \(D \) is \(\{p_k, \ldots, p_{n-1}\} \)-quiescent

By warm-up lemma, there is a \(p_0 \)-only schedule that takes \(p_0 \) into the CS, in which \(p_0 \) writes
Base Case: $k = 1$

For every k, from every quiescent configuration C, we can reach a configuration D, by steps of p_0, \ldots, p_{k-1} only, s.t.

(a) p_0, \ldots, p_{k-1} cover k distinct variables in D
(b) D is $\{p_k, \ldots, p_{n-1}\}$-quiescent

By warm-up lemma, there is a p_0-only schedule that takes p_0 into the CS, in which p_0 writes

\triangleright Desired D is just before p_0's first write.

Inductive Step: Assume for k

For every k, from every quiescent configuration C, we can reach a configuration D, by steps of p_0, \ldots, p_{k-1} only, s.t.

(a) p_0, \ldots, p_{k-1} cover k distinct variables in D
(b) D is $\{p_k, \ldots, p_{n-1}\}$-quiescent
Inductive Step: Apply Warm-Up Lemma

For every \(k \), from every quiescent configuration \(C \), we can reach a configuration \(D \), by steps of \(p_0, \ldots, p_{k-1} \) only, s.t.

(a) \(p_0, \ldots, p_{k-1} \) cover \(k \) distinct variables in \(D \)

(b) \(D \) is \(\{p_k, \ldots, p_{n-1}\} \)-quiescent

\[\text{Inductive Step: Hiding } p_{k+1} \]

For every \(k \), from every quiescent configuration \(C \), we can reach a configuration \(D \), by steps of \(p_0, \ldots, p_{k-1} \) only, s.t.

(a) \(p_0, \ldots, p_{k-1} \) cover \(k \) distinct variables in \(D \)

(b) \(D \) is \(\{p_k, \ldots, p_{n-1}\} \)-quiescent
For every k, from every quiescent configuration C, we can reach a configuration D, by steps of p_0,\ldots,p_{k-1} only, s.t.

(a) p_0,\ldots,p_{k-1} cover k distinct variables in D
(b) D is $\{p_k,\ldots,p_{n-1}\}$-quiescent

Inductive Step: Not Quite There

For every k, from every quiescent configuration C, we can reach a configuration D, by steps of p_0,\ldots,p_{k-1} only, s.t.

(a) p_0,\ldots,p_{k-1} cover k distinct variables in D
(b) D is $\{p_k,\ldots,p_{n-1}\}$-quiescent
Completing the Inductive Step

For every k, from every quiescent configuration C, we can reach a configuration D, by steps of p_0, \ldots, p_{k-1} only, s.t.
(a) p_0, \ldots, p_{k-1} cover k distinct variables in D
(b) D is $\{p_k, \ldots, p_{n-1}\}$-quiescent

Repeat until the sets are repeated ($W_i = W_j$), and then apply the previous argument

Optimizing Memory Locality
Memory Access, in Formal Model

In Reality: Memory Interconnect

Memory is accessed through an interconnection network (e.g., a bus)
Local Memory: CC model

Interconnect traffic is expensive
Store copies of data in local memory (cache)
Keep caches coherent with memory and each other (cache coherence model)

Local Memory: DSM model

Larger memory banks are located at the processors (distributed shared memory model)
In CC model, an access to v by p is **remote** if it is
• p's first access to v or
• v has been written by another process since p’s previous access
Local Spinning

• An algorithm is local-spin if all busy waiting is in read-only loops of local-accesses, which do not cause interconnect traffic.

• An algorithm may be local-spin on one model (DSM or CC) and not local-spin on the other!

• The remote memory references (RMR) complexity of an algorithm is the number of remote accesses.

R / W 2-Process Mutex

Want[i] = 0
wait until Want[1-i] == 0 or Priority == i
Want[i] = 1
if (Priority == 1-i) then
 if (Want[1-i] == 1) then goto Line 1
else wait until (Want[1-i] == 0)

• Is this algorithm local-spin?
 – In the DSM model? No
 – In the CC model? Yes

• What is its RMR complexity?
 – In the DSM model? Unbounded
 – In the CC model? Constant
Recall Anderson’s Algorithm

entry section:

\[
\text{myPlace} = \text{rmw(}\text{Last, Last+1 mod n})
\]

wait until Flags[myPlace] == 1

Flags[myPlace] = 0

Flags[myPlace+1 mod n] = 1

Is this algorithm local-spin?
In the CC model? Yes
In the DSM model? No

Local-Spin Mutex w/ Swap

Atomic register-to-memory swap operations, also called fetch-and-store
More common than \textit{fetch\&inc mod n}

Each process spins on its own location in array

Array contains the queue of waiting processes
Each entry in the array holds a pointer to the next process in line.
Local-Spin Mutex w/ Swap

[Grunke & Thakkar, 1989]

Shared variables:
Flags[0..n-1], binary; all initially 1
Tail {binary, {0,..,n-1}}, initially {0,0}

Local variables:
myRecord, prev {binary, {0,..,n-1}}, temp binary

entry section:

```plaintext
myRecord.value = Flags[i]
myRecord.slot = i
prev = swap(Tail, myRecord)
wait until(Flags[prev.slot] ≠ prev.value)
```

exit section:

```plaintext
Flags[i]= 1 - Flags[i]
```

Is this algorithm local-spin?
- In the CC model? Yes
- In the DSM model? No
CLH Lock

[Craig 1993] and [Landin & Hagers, 1994]

- Also a queue, but does not allocate space for all processes
- Instead, “thread” records in a (virtual) linked list

entry section:
new myNode
pred = getAndSet(Tail, myNode)
wait until ¬ pred

exit section:
myNode = false
CLH Lock

entry section:
new myNode
pred = getAndSet(Tail, myNode)
wait until ¬ pred

exit section:
myNode = false

Pointers are kept in local memories

Is this algorithm local-spin?
In the CC model? Yes
In the DSM model? No

MCS Lock

[Mellor-Crummey and Scott, 1991]

• Maintain an explicit queue of waiting processes
• Small space overhead
• Local spinning in CC & DSM models
 – Each process has a dedicated record that is enqueues and dequeues
MCS Lock: Enqueing for the lock

• Set tail to point to your record (with compare&set)

MCS Lock: Enqueing for the lock

• Set tail to point to your record (with CAS)
• Make last element point to your record
MCS Lock: Enqueing for the lock

- Set tail to point to your record (with CAS)
- Make last element point to your record
- Spin on your own record

MCS Lock: Unlock

- Notify next in line that it can go into the critical section
MCS Lock: Unlock

- Notify next in line that it can go into the critical section
 - \(p_i \) sets \(p_j \)'s flag to false
- Dequeue own record from the list
 - clear the next pointer

MCS Lock: Unlock Subtleties

- Another thread might be joining the list at the same time
 - No thread will be enabled for the critical section
 - Exception (\(p_k \) accesses \(p_i \)'s reclaimed memory)
MCS Lock: Unlock Subtleties

- Another thread might be joining the list at the same time
- Can be detected since tail is not null
 - Wait for next to be filled before proceeding

![Diagram of MCS Lock: Unlock Subtleties](image)
MCS Queue-Based Algorithm

Shared Qnode nodes[0..n-1]
Shared Qnode *tail initially null
Local Qnode *myNode, initially &nodes[i]
Local Qnode *successor

acquire-lock
myNode->next = null // prepare to be last in queue
pred = swap(&tail, myNode) // tail now points to myNode
if (pred ≠ null) // should wait for a predecessor
 myNode->locked = true // prepare to wait
 pred->next = myNode // let predecessor know to unlock me
 wait until (myNode.locked == false)

release-lock
if (myNode.next == null) // not sure there is successor
 if (compare-and-swap(&tail, myNode, null) == false)
 wait until (myNode->next ≠ null) // wait for successor id
 successor = myNode->next // get pointer to successor
 successor->locked = false // unlock successor
 else // for sure, there is successor
 successor = myNode->next // get pointer to successor
 successor->locked = false // unlock successor

Uses swap and CAS
Is this algorithm local-spin?
In the CC model? Yes
In the DSM model? Yes
Local-Spin Mutex
without Strong Primitives

Local-Spin Tournament-Tree Mutex

O(log n) RMR complexity
for CC model
(this is optimal)
O(n log n) registers

Key is to find the right
2-process mutex
Local-Spin 2-Process Mutex: 1st Try

Shared variables:
- Want[0], Want[1]: initially ⊥
- Spin[0], Spin[1]: initially ⊥

acquire-lock(side)
- Want[side] = 1 // announce
- Spin[side] = 0
- opponent = Want[1-side] // read other side
 if (opponent ≠ ⊥)
 wait until (Spin[side] ≠ 0) // spin

release-lock(side)
- Want[side] = ⊥ // cancel announcement
- Spin[1-side] = 1 // release other

Ensures mutual exclusion
But may deadlock

© Hagit Attiya
Local-Spin 2-Process Mutex: Avoid Deadlock

Shared variables:
- Tie, Want[0], Want[1]: initially \bot
- Spin[0], Spin[1]: initially \bot

acquire-lock(side)
- Want[side] = 1 // announce
- Tie = i // tie breaker
- Spin[side] = 0
- opponent = Want[1-side] // read other side
 if (opponent $\neq \bot$) and (Tie == i)
 if (Spin[1-side] == 0) Spin[1-side] = 1
 wait until (Spin[side] $\neq 0$) // spin
 if (Tie == i) wait until (Spin[side] > 1)

release-lock(side)
- Want[side] = \bot // cancel announcement
 if (Tie $\neq i$) Spin[1-side] = 2 // release other

Is this local spinning in DSM?

© Hagit Attiya
Local-Spin 2-Process Mutex

Shared variables:
- Tie, Want[0], Want[1]: initially \(\perp \)
- Spin[0, ..., n-1]: initially \(\perp \)

acquire-lock(side)
- Want[side] = i \hspace{1em} // announce your identity
- Tie = i \hspace{1em} // tie breaker
- Spin[i] = 0
- opponent = Want[1-side] \hspace{1em} // who’s competing
 - if (opponent \(\neq \) \(\perp \)) and (Tie == i)
 - if (Spin[opponent] == 0) Spin[opponent] = 1
 - wait until (Spin[i] \(\neq \) 0)
 - if (Tie == i) wait until (Spin[i] > 1)

release-lock(side)
- Want[side] = nil
- opponent = Tie \hspace{1em} // who’s competing
 - if (opponent \(\neq \) i) Spin[opponent] = 2

Example (for processes 3 and 7)

Want[0] = 3 \hspace{1em} Want[1] = 7
Tie = 3
Spin[3] = 0 \hspace{1em} Tie = 7
opponent = 7 \hspace{1em} Spin[7] = 0
opponent <> \(\perp \) and Tie <> 3
CRITICAL
opponent ↔ \(\perp \) and Tie ↔ 7
CRITICAL
opponent <> \(\perp \) and Tie == 7
CRITICAL
CRITICAL
WAIT until Spin[7] <> 0
CRITICAL
WAIT
Spin[7] = 1
Spin[7] = 2 \hspace{1em} Tie == 7, so wait until Spin[7] > 1
CRITICAL
Local-Spin 2-Process Mutex

Shared variables:
- Tie, Want[0], Want[1]: initially ⊥
- Spin[0,…,n-1]: initially ⊥

acquire-lock(side)
- Want[side] = i
- Tie = i
- Spin[i] = 0
- opponent = Want[1-side]
 - if (opponent ≠ nil) and (Tie == i)
 - if (Spin[opponent] == 0) Spin[opponent] = 1
 - wait until (Spin[i] ≠ 0)
 - if (Tie == i) wait until (Spin[i] > 1)

release-lock(side)
- Want[side] = nil
- opponent = Tie
 - if (opponent ≠ i) Spin[opponent] = 2

An array for each level
O(n log n) total

Optimizing for No Contention

In a well-designed system, most of the time only a single process wants the critical section...

In the algorithms so far, requires O(f(n)) steps:
- O(n) for the Bakery algorithm
- O(log(n)) for the tournament tree algorithm
Fast Mutex

Algorithm is **fast** if a process enters CS in $O(1)$ steps, when there is no competition.

Must use multi-writer shared variables.

Detecting Contention: Splitter

A process wins if it is alone in the splitter with $O(1)$ step complexity.
Splitter Implementation: Race Variable

Shared variable: race, initially -1
1. race = id_i
2. if race == id_i then win
3. else lose

If a process is alone, clearly wins

But it is possible that two processes win

Doorway Mechanism

• Wrap a doorway mechanism around race

• Only a process in the first set of processes to concurrently access race may win

• After writing to race, check the doorway and if open, close it

• race chooses a unique one of the captured processes to "win"
Splitter Implementation

Shared variables
 door, initially false
 race, initially -1

1. race = id₁ // write your identifier
2. if door then return(lose)
3. door = true
4. if (race == id₁) // check race variable
 then return(win)
5. else return(lose)

Requires ≤ 5 read / write operations, and two shared registers.

Splitter Implementation: Race Variable

Shared variables
 door, initially false
 race, initially -1

1. race = id₁ // write your identifier
2. if door then return(lose)
3. door = true
4. if (race == id₁) // check race variable
 then return(win)
5. else return(lose)
Splitter Implementation: Doorway

Shared variables
 door, initially false
 race, initially -1

1. race = id_1 // write your identifier
2. if door then return(lose)
3. door = true
4. if (race == id_1) // check race variable
 then return(win)
5. else return(lose)

Correctness of the Splitter

A process wins when executing the splitter by itself

Follows from the code when there is no concurrency
Correctness of the Splitter

At most one process wins the splitter

P: processes that read false from door (Line 2)

pj: last process to write to race before door is set to true

No process pi ≠ pj can win:
- pi ∉ P loses in Line 2.
- pi ∈ P writes to race before pj but checks again (Line 5) after pj’s write and loses

1. race = id_i // write your identifier
2. if door then return(lose)
3. door = true
4. if (race == id_i) // check race variable then return(win)
5. else return(lose)

Correctness of the Splitter

At most one process wins the splitter

P: processes that read false from door (Line 2)

pj: last process to write to race before door is set to true

No process pi ≠ pj can win:
- pi ∉ P loses in Line 2.
- pi ∈ P writes to race before pj but checks again (Line 5) after pj’s write and loses

P_i:
write race = i
set door
read race == i

P_j:
write race = j
read door
read race == j
Detour: Splitting the Losers

1. race = id_i // write your identifier
2. if door then return(lose)
3. door = true
4. if (race == id_i) // check race variable
 then return(win)
5. else return(lose)

Detour: Splitting the Losers

1. race = id_i // write your identifier
2. if door then return(right)
3. door = true
4. if (race == id_i) // check race variable
 then return(stop)
5. else return(left)
Proof of Splitting Property

Not all processes go left, not all processes go right

At least one process (the first) reads false from door
- Not all processes return right
If some process reads true from door
- Not all processes return left
Otherwise, last process to write to race returns stop
- not all processes return left

1. race = id₁ // write your identifier
2. if door then return(right)
3. door = true
4. if (race == id₁) // check race variable
 then return(stop)
5. else return(left)

Ensuring No Deadlock

In case of concurrency, it is possible that no process wins the splitter
- Nodes losing the splitter enter n-process mutex
- Winner of n-process mutex competes with winner of splitter using 2-process mutex
- Winner enters CS
Releasing the Splitter: Take 1

- p_1 and p_2 both lose the splitter
 - But “close” it
- Leave to the remainder
- p_3 arrives alone
 - Splitter still closed

Releasing the Splitter: Take 2

A process from the slow path may release the splitter while another process is in the fast path
Releasing the Splitter: Take 3

Different release code for processes from the fast path and the slow path

Fast Mutex: Overall Structure
Long-Lived Fast Mutex

<remainder code>

1: race = id
2: inside[i] = true
3: if door == true slow-path()
4: door = true
5: if race == id
6: <2-process entry code (0)>
7: <critical section>
8: door = false
9: inside[i] = false
10: <2-process exit code (0)>
11: else slow-path()

Shared variables:
race: initially ⊥
door: initially false
inside[0,..,n-1]: all initially false

procedure slow-path
15: <n-process entry code>
16: <2-process entry code (1)>
17: <critical section>
19: inside[i] = false
20: if for all j, inside[j] == false
21: door = false
23: <2-process exit code (1)>
24: <n-process exit code> & exit
Long-Lived Fast Mutex

Shared variables:
- race: initially ⊥
- door: initially false
- inside[0,…,n-1]: all initially false
- checking: initially false

procedure slow-path

<n-process entry code>

<2-process entry code (0)>

<critical section>

<2-process exit code (0)>

<n-process exit code> & exit

<n-process entry code>

<2-process entry code (1)>

<critical section>

<2-process exit code (1)>

<n-process exit code> & exit

<n-process entry code>

<2-process entry code (1)>

<critical section>

<2-process exit code (1)>

<n-process exit code> & exit

<n-process entry code>

<2-process entry code (1)>

<critical section>

<2-process exit code (1)>

<n-process exit code> & exit

<n-process entry code>

<2-process entry code (1)>

<critical section>

<2-process exit code (1)>

<n-process exit code> & exit

<n-process entry code>

<2-process entry code (1)>

<critical section>

<2-process exit code (1)>

<n-process exit code> & exit

<n-process entry code>

<2-process entry code (1)>

<critical section>

<2-process exit code (1)>

<n-process exit code> & exit

<n-process entry code>

<2-process entry code (1)>

<critical section>

<2-process exit code (1)>

<n-process exit code> & exit
Long-Lived Fast Mutex

At each time, at most one process is in Lines 6-10

- Mutual exclusion and no starvation

1: race = id
2: inside[i] = true
3: if door or checking == true slow-path()
4: door = true
5: if race == id
6: <2-process entry code (0)>
7: <critical section>
10: <2-process exit code (0)>
8: door = false
9: inside[i] = false
11: else slow-path()

At each time, at most one process is in Lines 16-23

- checking == true when a process is in Lines 19-21

procedure slow-path
15: <n-process entry code>
16: <2-process entry code (1)>
17: <critical section>
18: checking = true
19: inside[i] = false
20: if for all j, inside[j] == false
21: door = false
22: checking = false
23: <2-process exit code (1)>
24: <n-process exit code> & exit

Shared variables:
- race: initially \(\perp \)
- door: initially false
- inside[0,..,n-1]: all initially false
- checking: initially false

procedure slow-path

15: <n-process entry code>
16: <2-process entry code (1)>
17: <critical section>
18: checking = true
19: inside[i] = false
20: if for all j, inside[j] == false
21: door = false
22: checking = false
23: <2-process exit code (1)>
24: <n-process exit code> & exit

Long-Lived Fast Mutex: Complexity

A process running solo executes O(1) steps

Otherwise, execute O(n) steps (regardless of n-process mutex algorithm)