236755
Topic 3: Consensus

Winter 2019-20

Prof. Hagit Attiya

Consensus

Processes propose values and must agree on a
common decision value, proposed by some process
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Consensus, More Formally

Each process p; proposes a binary input value, x,
and returns an output value (decision), y,

decide y,

Only two conditions on the output:
Agreement: all processes decide on the same value
Validity: this value is the proposal of some process
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Consensus is Easy...

If processes can wait for each other.

propose (v)
R[i] = Vv
while true
read R[1l,..,n] to 1[1,..,n]
if all 1[1,..,n] # L
decide on min 1[1,..,n]
(and return)
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Termination (Liveness)

Solo-termination (also called obstruction-freedom):
A process has to terminate if (eventually) it runs by itself.
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Termination (Liveness)

Solo-termination (also called obstruction-freedom):
A process has to terminate if (eventually) it runs by itself.

Nonblocking: From any configuration, if some process takes
infinitely many steps, then some process (not necessarily the

same one) terminates, regardless of steps by other processes.

(Analogue of no deadlock for mutex.)

© Hagit Attiya 236755 (2019-20) Consensus

©Hagit Attiya



Termination (Liveness)

Solo-termination (also called obstruction-freedom):
A process has to terminate if (eventually) it runs by itself.

Nonblocking: From any configuration, if some process takes
infinitely many steps, then some process (not necessarily the

same one) terminates, regardless of steps by otheiﬂisses.

Wait-freedom: From any configuration, if some process takes
infinitely many steps, then the process terminates, regardless
of steps by other processes.

(Analogue of no starvation for mutex.)
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Consensus with Compare&Swap

compareé&swap (R, old, new) :

Wait-free consensus for temp = R
if R == old
any number of processes R = new

. . return temp
using compare&swap IS easy

Use a single shared variable, £irst, initially L

propose (x)
v = cas(first, 1, x)
if v == 1| decide x
else decide v

What happens if we use only reads and writes?
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Graded Consensus
(Adopt-Commit)

Like consensus but the decision is (grade, y;),
grade is either adopt or commit, such that

Graded agreement: if a process decides (commit,y;)
then all processes decide
either (adopt,y;) or (commit,y;)
Validity: y, was proposed by some process
Convergence: If onlyy; is proposed before p
outputs (grade,y;) then grade = commit

— Two special cases: (a) p runs alone (b) same proposals
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Graded Consensus
(Adopt-Commit)

Like consensus but the decision is (grade, y;),
grade is either adopt or commit, such that

Graded agreement: if a process decides (commit,y;)
then all processes decide

either (adopt,y;) or (commit,y;)

Validity: y;, was proposed by some process

Convergence: If onlyy, is proposed before p
outputs (grade,y;) then grade = commit
(commit,0) |(adopt,0) (adopt,1)1 (commit,1)]
o o) o) o)

{ )
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Wait-Free Adopt-Commit
Provides Solo Terminating Consensus

Use infinitely many copies of adopt-commit;, ...

propose (v)

for (m = 1; ; m++)
(grade,value) = adopt-commit, (v)
if grade == commit return value

else v = value

Validity and agreement are immediate from the
related properties of the adopt-commit protocol

Solo termination follow from convergence (a)
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Adopt-Commit with SW Registers

Two arrays of single-writer variables A[1,...,n] B[1,...,n],
all initially L

adopt-commit (v)
write v to A[i]

read A[l],..,A[n] // one by one

if only one non-l value w, B[i] = “commit w”
else B[i] = “adopt v”

read B[1l],..,B[n] // one by one

if only “commit w”, return (commit,w)
else if contains “commit w”, return (adopt,w)
else return (adopt,v)
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Proof of SW Adopt-Commit

v'Validity is clear
v’ Convergence follows from inspecting the code

adopt-commit (v)
write v to A[i]

read A[1l],..,A[n] // one by one

if only one non-l value w, B[i] = “commit w”
else B[i] = “adopt v”

read B[1l],..,B[n] // one by one

if only “commit w”, return (commit,w)
else if contains “commit w”, return (adopt,w)
else return (adopt,v)

© Hagit Attiya 236755 (2019-20) Consensus

Graded Agreement of SW Adopt-Commit

Lemma: If p;, writes “commit v” to BJi],

then no process writes “commit w” to B, w #v

v must be the first value written in the array A
If p;, returns (commit,v), then “commit v” is the first value written in B
= all processes commit or adopt v

adopt-commit (v)
write v to A[i]

read A[l],..,A[n] // one by one

if only one non-l value w, B[i] = “commit w”
else B[i] = “adopt v”

read B[1l],..,B[n] // one by one

if only “commit w”, return (commit,w)
else if contains “commit w”, return (adopt,w)
else return (adopt,v)
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Adopt-Commit with MW Registers

shared variables: Proposal R, R
Proposal, initially L
Ry Ry, initially L

local variable preference

adopt-commit (v)

R, = 1
if Proposal # | preference = Proposal
else

preference = v

Proposal = preference
if R, , # 1 return (adopt, preference)
else return (commit, preference)
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What about Wait-Free Consensus?

Nonblocking consensus implies wait-free
consensus (using a mw register R)

* Execute the nonblocking consensus

° 1di % Nonblockin
Aft.er deC|.d.|ng, m— ZE SRR
write decision to R —

. . Write v

* Interleave reading R with to R

nonblocking consensus
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What about Wait-Free Consensus?

Wait-free consensus is impossible

Even if we can wait for all but one process

Fischer Lynch Patterson

it &

Implies the same for nonblocking consensus
Holds for message passing and shared memory

© Hagit Attiya 236755 (2019-20) Consensus 17

Potence of a Configuration C

* Cisv-potent if vis decided
in some configuration
reachable from C

oJojo{of:]1]: Rololy]
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Valence of a
Configuration C

* Cisv-potent if vis decided in
some configuration reachable
from C

* Cis v-univalent if it is v-potent
but not (1-v)-potent
(univalent in general)

* Cis bivalent if it is both
0-potent and 1-potent 00 DAOR AR BOR
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Univalent Similarity

Lemma: If C, and C, are both univalent and they are similar w.r.t.

some process p, then they have the same valence.

Proof:
v-univalent By wait-
C, only o
- , reedom
pronty p; decides f
J v
CZ
. (3
w-univalent p, decides
v
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Impossibility of Two-Process
Consensus using Reads / Writes

Proof overview: If there is a 2-process H&EAS
wait-free consensus algorithm
— Show there is a bivalent initial configuration

— Show that from every bivalent configuration there
is an execution leading to a bivalent configuration

=No process decides
For simplicity assume single-writer variables

initial bivalent bivalent bivalent bivalent
bivalent
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There is a Bivalent Initial Configuration

Assume all initial configurations are univalent

000
0,1
( )O w.l.o.g.
1. @
by validity
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There is a Bivalent Initial Configuration

Assume all initial configurations are univalent
These configurations look the same to p,

ps-only
IN@®) 0
| p, decides 0
p4-only
1@ 0
p, decides 0

© Hagit Attiya 236755 (2019-20) Consensus 23

Extending a Bivalent Configuration

Lemma: If Cis bivalent then a bivalent configuration C’ is

reachable from C.

Consider the configurations reachable by a single
step of each process

If either of them is bivalent © we are done
Both are univalent ® 1-valent & 0-valent

C Po 0
(Y

P4
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Extending a Bivalent Configuration,
One Step at a Time

Lemma: If Cis bivalent then a bivalent configuration C’ is

| reachable from C.

Consider the configurations reachable by a single
step of each process

If either of them is bivalent = we are done
Both are univalent = 1-valent & 0-valent
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Extending a Bivalent Configuration,
Steps that Commute

Lemma: If Cis bivalent then a bivalent configuration C’ is

| reachable from C.

Case 1: both read or both write (different variables)

Their steps commute

Po O P+

C
(Y -
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Extending a Bivalent Configuration,
Overwriting Step

Lemma: If Cis bivalent then a bivalent configuration C’ is

| reachable from C.

Case 2: p, reads, p, writes (or vice versa) to the
same variable

Covering...

Po O P+

C 0 reads writes

P4 .

writes

© Hagit Attiya 236755 (2019-20) Consensus

27

Extending a Bivalent Configuration,
Overwriting Step

Lemma: If Cis bivalent then a bivalent configuration C’ is

| reachable from C.

Case 2: p, reads, p, writes (or vice versa) to the
same variable

Look the same to p,

{ )Py
Po writes
CO reads es O
e @ F -
writes
© Hagit Attiya 236755 (2019-20) Consensus
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The Full Impossibility Result

* In an asynchronous system, consensus cannot be
solved when the algorithm has to tolerate
even just a single failure
— n-1 processes cannot take an infinite number of steps
without deciding
* Holds for the shared-memory model as well as
for the message-passing model

* Describe both proofs in a unified manner using
layered executions

— below, f is the number of processes that may fail,
we concentrate on thecasef=1
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Layered Schedules

f-layer: sequence of at least n-f different processes
— Order is sometimes important
f-schedule: sequence of f-layers

P1 Py Pn P1 Ps Pn P1 Py Pn-1
0] - O (el - 0l - 1oel - 0
layer 1 layer 2 layer k

— p, is faulty in layer 2, but nonfaulty in layer k
— p, crashes in layer 3 —faulty in every layer r, 3<r<k

An f-schedule o and an initial configuration | determine a
layered execution a(o, 1)
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p
a1~a2

In execution a,

Similarity

1 Py P2

Pn

Py P2 Pns

Ps  Pn.1 P4

layer 1

layer 2

layer k

In execution a,

& L0 - O

layer

1

layer 2

layer k

© Hagit Attiya
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p:
decide v

p:
decide v

31

Connectivity
!
A~ Ay =y X ay ~ az ~...~ a,,= same decision
P1 P2 Pn P1 P2 Pr-f Ps  Pn-1 P4 :
Il . . decide v
aq R a,
p.p:
IZ .. . .. . .. . deciqev
a, p~ a3
L N RN - B e
..... ot Ly,
L |[OE - 8 BE .- 8- |BE - B ey

© Hagit Attiya
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Key Lemma: Crashing a Process

crash(o,p,r): p crashes in layer r of o

Py P2 Ps P1 P2 Pg Pg Ps P4

OO (08 - 8 - (Be - O
layer 1 layer 2 layer k

P1 P Ps P1 P2 8 Pg Ps P4
0.0 o0 X X1 . L
layer 1 layer 2 S t layer k

crash(o,pg,2)

Lemma: For every input configuration |, f-schedule o,

process p and round r, a(a,I) = a(crash(o,p,r),I)

© Hagit Attiya 236755 (2019-20) Consensus

Deriving the Impossibility Result:
Input Connectivity

Consider a sequence of input configurations

l, = (0,0,...,0)

l,=(1,0,..,0) =
l,=(1,1,.,0) ~
| =(1,1,..,1) ~

Claim: a(oy, 1) = a(op, I,,), where o is the layered schedule

= Same decision in |, (all zeroes) and | | (all ones)
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Getting the Claim from Key Lemma

P1 P Ps P1 P Ps P1 P2 Pn
a, = Ay
p2 ps p2 ps p2 pn
LK B K KB B 2.
P # py
p2 ps p2 ps p2 pn
v |KE - B KE - B K - B
a3z = ay
P1 P2 Ps P1 P2 Ps P1 P2 Pn
L S0 ol -0 oE - 0
L EE.-E EE.-m - ‘.. .’
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Proving the Key Lemma

Lemma: For every input configuration |, process p and

iroundr, a(o,1) = a(crash(o,p,1),1)

The proof is very model dependent

* Shared memory: read / write (single-writer) v/
* Message passing

Need to assume bounded executions
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swap(o,p;,r)

Process p; is swapped with the next process (pj) in layer r

P1 P2 Pn Pi B Ps Ps P P4
L - 0. [
layer 1 \{éyer 2 layer k
¥ X
P1 P2 Pn Pi b Ps Ps P P4
00 B8 -5 0.0
layer 1 layer 2 layer k

swap(c,p;,2)

Both read or write (different registers) = no process distinguishes.
p; reads and p; writes = only p; distinguishes at the end of layer r

© Hagit Attiya
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swap(o,p;,r): only p; distinguishes

P1 P2 Pn Pi B Ps Ps P P+
L] 1. [ LI [
layer 1 layer 2 layer k
N
P1 Py Pn Pi P Pg Ps YO P4
g X B -
layer 1 \gyer 2 layer k
P1 Ps Pn F: ?)i Pg X Ps R P4
b Bf- B X B A
layer 1 layer 2 layer k
P1 P2 Pn Pi P Pg Ps P P+
0l - 8 0 - 08
@ Hagit Alayer 1 laye6522019-20) Consensus layer k

induction

> hypo. on
crash

>similar
to pg

induction

>hypo. on
crash

38
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delay(o,p,1)

The idea is to crash p, by swapping every
appearance of p, until after the end of the schedule

But cannot swap with another appearance of p,
Delay p; by one layer, starting from layer r

P1 P2 P Pi B Ps Ps P P+
0. 0] |EIET - - [HE - B
layer 1 \ N \ Ia\eN\
~ ~__ O~
N
P1 P2 i Pi b Ps Ps Pi P+ \
g K oo g - - )
layer 1 layer 2 layer k
© Hagit Attiya 39

Swaps + Delays = Crash

ﬁp.z Ps Ps Pi P4
LI - £ 0 -
Pi P2 Pg Ps Pi P4
a0 -0 - B8 8
r 5 e
Y/ P2 Pg Ps Bi P4 ‘K
0. 0 [] /
AN . .
Now continue swapping...
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Algebraically

delay(o,p,r) =

swapX(rollover(swapX(delay(o,p,r+1),p,r),p,r),p,r+1)

k” is p’s distance from the end of layer r
k is p’s distance from the beginning of layer r+1

Similarly
crash(o,p,r) = crash(delay(o,p,r),p,r+1)
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Impossibility Result for
Message-Passing Systems

Original context of this result (FLP)

Original proof has a different structure
(similar to previous lecture)
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Message-passing: Model of Computation

In each step, send messages to all processes
In layered executions, we synchronize the steps

P2

© Hagit Attiya 236755 (2019-20) Consensus

Message-passing

* Crash p, by removing it from all layers
— Incremental = remove messages from p; to p,
— Inductively, crash p; in following layers

* Repeat for all layers = p, crash

o
N

© Hagit Attiya 236755 (2019-20) Consensus
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Bounding the Executions

Why?

To have a well-defined base case for the
(backwards) induction on the layer number
How?

The proof considers a fixed (and bounded) set
of executions from n+1 input configurations
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Consensus in Synchronous
Systems

"Then we are agreed nine to one that we
will say our previous vote was unanimous!"
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Synchronous Systems

Processes take steps in rounds

In each round, a process

— sends messages to all (other) processes

— receive messages from all other processes
— does some local computation

2

Bl: Bl

© Hagit Attiya 236755 (2019-20) Consensus 47

Crash Failures in Synchronous Systems

All but at most f faulty processes take an infinite number of
steps (or until everyone decides)

Once a faulty processor fails to take a step in a round, it takes
no more steps

In the last step of a faulty process, some subset of its outgoing
messages are sent

o]

=
N

P

=
N

N
Bl: Bl

F]
=
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Consensus Algorithm for Crash Failures

Ray Strng "Danny Dolev

* Tolerates f < n crash failures
* Requires f + 1 rounds

© Hagit Attiya 236755 (2019-20) Consensus 49

/7%

Consensus Algorithm for Crash Failures

Each process executes the following code

v = my input
in each round 1 through f+1:
if v not sent before, send v to all
wait to receive messages for this round
v = min of received values and current value of v

in round f+1, decide on v

* Tolerates f < n crash failures
* Requires f + 1 rounds

* Atotal of < n?/V| messages
each with log/V/ bits, where Vs the input set.

© Hagit Attiya 236755 (2019-20) Consensus 50

©Hagit Attiya



26

An Execution of the Algorithm:
p; with input v,

v = my input
in each round 1 through f+1:

if v not sent before, send v to all

wait to receive messages for this round

v = min of received values and current value of v
in round f+1, decide on v

* round 1:
[E; — send input
— receive round 1 messages
Dgi — compute value for v
"~ ¢ round 2:
Pi — send v (if this is a new value)
: — receive round 2 messages
E — compute value for v

© Hagit Attiya 236755 (2019-20) Consensus 51

Correctness of Crash Consensus
Algorithm

Termination: By the code, finish in round f+1.

Validity: processes do not create values.
If all inputs are the same, then that is the only
value ever sent around (and decided)
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Crash Consensus Algorithm:

Agreement
Suppose in contradiction p; decides on a smaller value,
X, than p, does

= x was hidden from p, by a chain of faulty processes
(one for each round)

= This chain has f + 1 faulty processors, a contradiction

© Hagit Attiya 236755 (2019-20) Consensus 53

Is this the Best Round
Complexity?
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Rounds Lower Bound: Initial Lemma

Lemma: From some initial configuration, there are two
executions y and a, in which two different values are decided.

y is failure-free, and in a, one process crashes before taking any
| steps, but no other processes fail.

C,=(0,0,...,0,0) Vo = O (by validity)
C.= (0.0,..1.1) failure-free
IR v; is decided
C,=(1,1,...,1,1) v, = 1(by validity)
© Hagit Attiya 236755 (2019-20) Consensus 55

Rounds Lower Bound:
Proof of Initial Lemma

Lemma: From some initial configuration, there are two
executions y and a, in which two different values are decided.

y is failure-free, and in a, one process crashes before taking any
| steps, but no other processes fail.

C,=(0,,....0,1) failure-free 0 is decided
p; crashes at the start Ois decided’}
. ’ v
G = (0.0,...1,1) —taiure-free 1is decided
© Hagit Attiya 236755 (2019-20) Consensus 56
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Rounds Lower Bound:
Proof of Initial Lemma

Lemma: From some initial configuration, there are two
executions y and a, in which two different values are decided.

y is failure-free, and in a, one process crashes before taking any
| steps, but no other processes fail.

C,=(00,...,0,1) failure-free 0 is decided
p; crashes at the start 1is decided')}
Gt =(0,0,...,1,1) railure-free 1is decided
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Rounds Lower Bound: Main Lemma

We consider only f-round executions such that:
—f<n-2

— At most one process crashes in each round and at
most f processes crash in each execution.

— In the round in which a process crashes, it sends
messages to a prefix of processes, ordered by id’s

Lemma: For any f-round execution a, a =y,
| where v is the same as a during the first r rounds but

! has no crashes afterroundr, 0 <r<f.

©Hagit Attiya
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Rounds Lower Bound:
Proof of Main Lemma (Base)

By backward induction onr

The base case, r=f,a=y
and the lemma is obvious

| Lemma: For any f-round execution a, o =y,
| where y is the same as a during the first r rounds but

has no crashes after roundr, 0 <r<f.

Rounds Lower Bound:
Proof of Main Lemma (Inductive Step)

Assume r < f and that the lemma holds for r+1.

D round r+1

© Hagit Attiya 236755 (2019-20) Consensus 60
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Rounds Lower Bound:
Proof of Main Lemma (Inductive Step)

Assume r < f and that the lemma holds for r+1.

Let B be the same as a during its first r+1 rounds
and has no crashes after round r+1

By induction, a = 3; we need to show B =y
I:l D round r+1

[]
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Rounds Lower Bound:
Proof of Main Lemma (Inductive Step)

What happensin 8?

p is the single process that crashes in round r+1 of B
(if none fails then we are done)

q,, -, O, are the correct processes to which p does
not send a message in round r+1 (in order of id’s)

|:| D round r+1

: D
] ]
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Rounds Lower Bound:
Chain of Executions

B, is the same as B in the first r+1 rounds, except
that p sends messages to q,...,q, in round r+1

D round r+1

[]

© Hagit Attiya 236755 (2019-20) Consensus

Rounds Lower Bound: r = f-1

Some correct process # g, does not distinguish
between B, and B, ; (there is one since f < n-2)

64
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Rounds Lower Bound:
Bk = Bk-l fOI’ I" < f‘l

Y, is the same as B, for the first r+1 rounds, but q, crashes in
the beginning of round r+2 (cleanly) and there are no crashes
after round r+2. By induction, B, =y,

Vi is the same as B, , for the first r+1 rounds, but g, crashes in
the beginning of round r+2 (cleanly) and there are no crashes
after round r+2. By induction, B, ; =y,

V=V = By =Bia
I:l 7I:l round r+1
— ____________ >|:|
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Rounds Lower Bound:
Completing the Proof

Theorem: Any consensus algorithm for n > f+2

processes that tolerates f crashes requires > f+1 rounds

Otherwise, apply initial configuration lemma

There is an initial configuration from which there are two
executions a and y that decide different values

In o and y no processes crashes, except for one process
that crashes before the start of y

By previous lemma, a =y
= Same value is decided in both
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Byzantine Failures

© Hagit Attiya 236755 (2019-20) Consensus 67

How Many Processes can Solve
Consensus with One Byzantine Failure?

Validity: If all nonfaulty processes have input v, decide v

* Two processes?
If py has input 0 and p, has 1, someone has to
change, but not both
What if one processor is faulty?
How can the other one know?

* Three processes?
If py has input O, p, has input 1, and p, is faulty, then
a tie-breaker is needed, but p, can act maliciously

© Hagit Attiya 236755 (2019-20) Consensus 68
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# Processes Lower Bound forf=1

Theorem: Any consensus algorithm for one Byzantine

failure must have at least four processes

Suppose in contradiction there is a consensus
algorithm for 3 processes and 1 Byzantine failure

Get two copies

BUY ONE
GET ONE

FREE
Po P2 P,

© Hagit Attiya 236755 (2019-20) Consensus 69

# Processes Lower Bound forf=1

Rewire the copies

Py P1
Po &2/ Lo/ @
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# Processes Lower Bound forf=1

Rewire the copies and assign inputs
This execution does not have to solve consensus
But it can specify the behavior of faulty processes

BN
AEN7e
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# Processes Lower Bound forf=1

acts as if
it has 0

acts as
if it has 1

[ must
\— decide

o .
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# Processes Lower Bound forf=1

n acts as if\‘%
% it has 1
pel
T
and ~ acts as
P1 P if it has O

must
decide 0

po and p;
must
decide
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# Processes Lower Bound forf=1

o e

acts as if acts as
it has 1 if it has O

and p,
must
decide 0

po and p;
must

decide

P1
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n > 3f for arbitrary f

Theorem: Any consensus algorithm for f Byzantine

failures must have at least 3f+1 processes

Proof by reduction to the 3:1 case

* Suppose in contradiction there is an algorithm »# for
f> 1 failures and n = 3f total processes

* Use ##to construct an algorithm for 1 failure and 3
processors, a contradiction
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The Reduction

Partition the n < 3f processes into three
sets, Q,, Q,, and Q,, each of size at most f
— pysimulates Q,

— p, simulates Q;
— p,simulates Q,

If one process is faulty in the n = 3 system, then at most f
processes are faulty in the simulated system

= The simulated system is correct

Processes in the n = 3 system decide as the simulated
processes

= Their decisions are correct
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Tree Algorithm

* This algorithm uses

— f+ 1 rounds (optimal)

— n=3f+ 1 processors (optimal)

— exponential size messages (very bad)
* Each process keeps a local tree data structure
Values are filled in the tree during the f + 1 rounds
Then, the decision is calculated from the tree values

AN

© Hagit Attiya 236755 (2019-20) Consensus

Local Tree Data Structure

Each node is labeled with a sequence of unique process
identifiers

Root's label is the empty sequence A; its level is 0
Root has n children, labeled 0..n- 1

level

- SAER

© Hagit Attiya 236755 (2019-20) Consensus

0

1

2
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Local Tree Data Structure

Child node labeled i has n - 1 children,
labeled i: 0..i:n-1 (skippingi:i)

Node at level d with label v has n - d children,
labeled v: 0 .. v:n-1(skipping any index in v)
Nodes at level f + 1 are leaves

© Hagit Attiya 236755 (2019-20) Consensus
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Filling in the Tree Nodes

Initially store your input in the root (level 0)

Round 1:
— send level 0 of your tree to all

— store value x received from each p; in tree node labeled j
(level 1); use a default if necessary

— "p, told me that p;'s input is x"
Round 2:
— send level 1 of your tree to all

— store value x received from each p; for each tree node k in
tree node labeled k : j (level 2); use a default if necessary

— "p, told me that p, told p; that p,'s input is x"
Continue for f + 1 rounds

© Hagit Attiya 236755 (2019-20) Consensus
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Example Execution: Round 1

Tree at p, 0 ] a ” 3
A
Tree at p4 Q
0 1 2 3
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Example Execution: Round 2

Tree at p, 0 1 9 3

Tree at p,
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Calculating the Decision

* Inround f+ 1, each process uses the values in its tree
to compute its decision

* Recursively compute resolve(A) for the root,
based on the "resolved" values for its children
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Calculating the Decision

value in tree node labeled = if it is a leaf
resolve(n)
majority{resolve(r') : n' is a child of «}
0 if no majority (use a default if tied)
A

(assuming 0 is the default)
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Resolved Values are Consistent

Lemma: If p; and p; are nonfaulty, then p/'s resolved

value for tree node labeled &t j (what p; tells p; for node
1) equals what p; stores in its node &

Proof by induction 7’s height (starting at the leaves)
part of p/'s tree part of p's tree

Q-
original
value =v

By inductive hypothesis,
resolved values for 7 children
corresponding to nonfaulty
processes are consistent

(i
resolved
value = v
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Since n > 3fand m has 2 n - f children
majority of children correspond
to nonfaulty processes

Resolved Values are Valid

* Suppose all nonfaulty processes have input v

* Nonfaulty process p; decides resolve(A),
which is the majority among resolve(j),
0<j<n-1, based onp,'s tree
* Since resolved values are consistent,
resolve(j) (at p;) is the value stored at the root of p/'s
tree, which is p/'s input value if p; is nonfaulty

* Since there is a majority of nonfaulty processes,
p; decides v
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Common Nodes

A tree node 1 is common if all nonfaulty processes
compute the same value of resolve(n)

r () -
N A

same resolved value

part of pj's tree part of p/'s tree

© Hagit Attiya 236755 (2019-20) Consensus
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Common Frontiers

A tree node T has a common frontier if there is a
common node on every path from & to a leaf

© Hagit Attiya 236755 (2019-20) Consensus

common nodes
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Common Nodes and Frontiers

'Lemma: If T has a common frontier, then 7 is common

Proof by induction on height of &, since resolve uses majority

Implies agreement:

* On each root-leaf path there is at least one node
corresponding to a nonfaulty process

— The nodes on the path correspond to f + 1 different processes
— There are at most f faulty processes

= This node is common (by consistency of resolved values)
= The root has a common frontier
= The root is common
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Complexities of the Tree Algorithm

* n > 3f processors
* f+ 1 rounds

* exponential size messages:
— each message in round r contains
n(n-1)(n-2)...(n-(r-2)) values

— When r = f + 1, this is exponential if fis more than
a constant relative to n
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A More Efficient Algorithm?

Better message complexity by increasing the
number of rounds and ratio of nonfaulty processes

* n>4t, 2(f+ 1) rounds t = max # of failures
f = actual # of failures

Aside: there are algorithms with

e Polynomial number of message bits
e f+1rounds

* n>3t

Yoram moses
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Phase King Algorithm
(n > 4t, 2(f+1) rounds)

Code for process p;

pref = my input
first round of phase k, 1 £ k < f+1:
send pref to all
receive prefs of others
let maj be value that occurs > n/2 times // default 0
let mult be number of times maj occurs

second round of phase k:
if i = k then send maj to all // I am the phase king
receive tie-breaker from p, // default 0
if mult > n/2 + f then
pref := maj
else
pref := tie-breaker
if k = f + 1 then decide pref
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Unanimous Phase Lemma

Lemma: If all nonfaulty processes prefer v at start of
phase k, then all prefer v at end of phase k
Since n > 4f, it follows thatn - f>n/2 +f

Therefore, if all nonfaulty processes have input v

= At start of phase 1, all nonfaulty processes prefer v
= At end of phase 1, all nonfaulty processes prefer v
= At start of phase 2, all nonfaulty processes prefer v
= At end of phase 2, all nonfaulty processes prefer v
= ..

= At end of phase f + 1, all nonfaulty processes prefer v
and decide v
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Nonfaulty King Lemma

Lemma: If p, is nonfaulty, then all nonfaulty processes
have same preference at end of phase k

Proof: If two nonfaulty processes p; and p; use
p,'s tie-breaker, they have same preference

If p; uses a majority value v and p; uses p,'s tie-
breaker then p, majority value is also v

If both p; and p; use their majority value, then it
must be the same value
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Agreement in Phase King Algorithm

f+ 1 iterations = at least one with a nonfaulty king

Nonfaulty King Lemma = at the end of that phase,
all nonfaulty processes have same preference

Unanimous Phase Lemma = from that phase on,
all nonfaulty processes have same preference

= All nonfaulty processes decide on the same value

Phase Queen Algorithm
(n > 3t, 3(f+1) rounds)

Code for process p;

pref = my input
first round of phase k, 1 < k < f+1:

send pref to all

receive pref’s of other processes

pref = abort

if some value v appears 2 n-f times then pref = v
second round of phase k, 1 £ k £ f+1:

send pref to all

receive pref’s of others

if some value v appears mult > f times then

pref = smallest such v // abort is largest
third round of phase k, 1 < k < f+1:
if i = k then send pref // I am phase queen

receive tie-breaker from k
if ( pref = abort or mult < n-f )
and (tie-breaker # abort)
then pref = min(1l,tie-breaker)

©Hagit Attiya
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Unanimous Phase Lemma

Lemma: If all nonfaulty processes prefer v at start of
phase k, then all prefer v at end of phase k

For each phase k:

* At the end of the first round, the value of pref for all
nonfaulty processes, is v or abort, for some v € {0,1}

* At the end of the second round, the value of pref for
all nonfaulty processes, is v or abort, for the same v
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Nonfaulty Queen Lemma

| Lemma: If p, is nonfaulty, then all nonfaulty processes
have same preference at end of phase k

* All nonfaulty processes accept the phase king's message

* Some nonfaulty process ignores the king since mult > n-t.
Then mult > f for every nonfaulty process, and its prefis
the same.

After this phase, Unanimous Phase Lemma ensures
agreement is maintained until the algorithm terminates
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Randomized Consensus

* Weaken the termination condition and
measure the expected time to termination

* Agreement and validity remain the same

* Allow to overcome the asynchronous
impossibility and the synchronous lower bound
(we’ll see only the first)
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Two Sources of Nondeterminism

* In arandomized algorithm, processes flip coins to g

determine their next steps
— Several possible executions

* But even a deterministic algorithm has several possible

executions (from a fixed input)
— Due to asynchrony and/or failures

* Separate the latter under the control of an adversary

— Determines the next event to occur after an execution prefix
— Must obey admissibility conditions according to model

— May have other limitations (what information it can
observe, how much computational power it has)
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Evaluating a Distributed
Randomized Algorithm

* An execution of a specific algorithm, exec(C, R,4),
is uniquely determined by
— an initial configuration C,
— a sequence of random numbers R
— an adversary #

* Given a predicate Pred on executions,
a fixed adversary 4 and an initial configuration C,
Pr[Pred] = Prob {R : exec(C, R, ) satisfies Pred}
* Let T be a random variable (time)
exp(T, #,C,) = Xt PrT=t]
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Expected Time Complexity of a
Randomized Distributed Algorithm

The expected time complexity is the max over all
admissible adversaries 4 and initial configurations C,
of the expected time for that particular #and C,

max exp(T(Alg,, #,C
adversary A4 initial configuration C, p(T(Alg ?)

Worst-case average: for the worst adversary st
(asynchrony and failures) and initial configuration,
average over the random choices of the algorithm

Extend naturally to other measures (like RMRs)

© Hagit Attiya 236755 (2019-20) Consensus 102

©Hagit Attiya



52

Structure of Consensus Algorithm

The algorithm has two components

* Phase-based voting scheme using individual
processors’ preferences to reach agreement
(when possible)

We use extended adopt-commit

* A shared coin procedure used to break ties
among these preferences
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Shared Coin

A shared coin with agreement probability p (with
no input) returns a binary output, s.t.

— For every ve{0,1}, all nonfaulty processors executing
the procedure output v with probability at least p

A simple and very resilient shared coin with
p=1/2" bias is when each process outputs a
(uniform) random bit

There are more sophisticated constructions
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Recall: Adopt-Commit

The decision is (grade, y,),
where grade is either adopt or commit, such that

Graded agreement: if a process decides (commit,y;)
then all processes decide (adopt,y;) or (commit,y;)

Validity: y, was proposed by some process

Convergence: If onlyy, is proposed before p outputs
(grade,y;) then grade = commit

Termination: A process returns within a finite number
of steps

(commit,0) ((adopt,O) (adopt,1)} (commit,1
O C @ @ ) @
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Extended Adopt-Commit

The decision is either L (abort) or (grade, y;),
where grade is either adopt or commit, such that

Graded agreement: if a process decides (commit,v)
then all processes decide (adopt,v) or (commit,v) and
if a process decides (adopt,v) then no process adopts a
different value

Validity: if all nonfaulty processes propose v then all
nonfaulty processes return (commit,v)

Termination: A process returns within a finite number
of steps

\ ) N
(commit,0) (adopt,0)| abort | (adopt,1) |(commit,1)
O O ] @ O ] @
Z
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Implementing Extended Adopt-
Commit w/ Byzantine Failures

e Assumesn > 3f
e 2 (asynchronous) rounds

send v to all

receive values from others

let maj be value that occurs > n/2 times (0 if none)
let mult be number of times maj occurs

if mult 2 n-f then send maj to all

receive values from others

let maj’ be value that occurs most times
let mult’ be number of times maj’ occurs
if mult’ 2 n-f return (commit,maj’)

else if mult’ 2 f+1 return (adopt,maj’)
else return abort
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Randomized Consensus
w/ Extended Adopt-Commit

Assume we have a shared coin algorithm with

agreement probability p and time complexity T_,,

pref = my input
Phase k
(grade,v) = Extended—adopt—commit(pref)]TEAC
flip = Shared-coin() T .
if grade == abort com
pref = flip
if grade == adopt
pref = v
else // grade == commit
decide v // but continue to echo
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Validity

' Unanimous Phase Lemma: If all nonfaulty processes
| prefer v at start of phase k, then all do at end of phase k

If all processes have input v = all prefer v in phase 1

By the lemma (and graded agreement),
all nonfaulty processes decide v in phase 1
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Agreement

| Lemma: If p; decides v in phase r, then all nonfaulty
| processes decide v by phase r + 1

Proof: Let r be the earliest phase in which a process
(say, p;) decides (say, on v)

p; got (commit,v) in phase r

All other processes got (adopt,v) in phase r, so they
prefer vin phase r+1 and by previous lemma, decide v
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Termination

Lemma: The probability that all nonfaulty processes
decide in a phase is at least p

Proof: If all nonfaulty processes set their preference in phase r
using Shared-coin

* With probability 2p, they all get the same value (p for 0 and p
for 1); lemma follows from unanimous phase lemma

If some processes do not set their preference using Shared-coin
* All of them have the save value v as phase r preference
* With probability > p, all processes get v from Shared-coin

© Hagit Attiya 236755 (2019-20) Consensus 1M1

Expected Number of Phases

Probability of all deciding in any given phase > p
= Probability of terminating after i phases is (1-p)~p

= Number of phases until termination is a geometric
random variable whose expected value is 1/p

The time complexity of the algorithm is pX(Tac+Teoin),
Teac is the time complexity of Extended Adopt-Commit

T

coin

is the time complexity of Shared-coin

© Hagit Attiya 236755 (2019-20) Consensus 112

©Hagit Attiya



S7

Better Shared Coin

Back to shared memory and crash failures...
* constant agreement probability p

* polynomial total number of steps T_,,,
Shared SumCoins[i], NumFlips[i], initially O

while () simpler than (0,1)
random(-1,+1)

Cc =
SumCoins[i] += ¢ // written only by i, atomic
NumFlips[i]++ // written only by i, atomic
read NumFlips[0,..,n-1]
if & NumFlips[O,..,n-1] > n?

read SumCoins[0,..,n-1]
return( sign( & SumCoins[0,..,n-1] ))

© Hagit Attiya 236755 (2019-20) Consensus

Step Complexity

* Number of coins flipped (= iterations of the

while loop) < n?+n
* O(n) steps per iteration = O(n3) total work

Shared SumCoins[i], NumFlips[i], initially O

while ()
c = random(-1,+1)
SumCoins[i] += ¢ // written only by i, atomic

NumFlips[i]++ // written only by i, atomic

read NumFlips[0,..,n-1]
if & NumFlips[0,..,n-1] > n?
read SumCoins[0,..,n-1]
return( sign( & SumCoins[0,..,n-1] ))
114
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Agreement Parameter

* Among t?+t independent unbiased coins, the
minority is less than t2/2 with probability > %

* Probability all processes get same value > %

Shared SumCoins[i], NumFlips[i], initially O

while ()
¢ = random(-1,+1)
SumCoins[i] += ¢ // written only by i, atomic
NumFlips[i]++ // written only by i, atomic

read NumFlips[0,..,n-1]
if & NumFlips[O,..,n-1] > n?
read SumCoins[0,..,n-1]
return( sign( & SumCoins[O0,..,n-1] ))
115
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Space Lower Bound

) (n) registers are necessary for nondeterministic

solo-terminating consensus using reads and writes

I. .I’ WI

[Leqi Zhu, 2016]

Use nondeterminism to capture randomization

& Multiple solo executions (of the same
process) from a specific configuration

Proof very similar to QQ(n) mutex space Il.b.
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Recall Valence w/ Small Twist

For a configuration C, and processes p; and p;
* p;is v-solo-potentin C if
p, can decide v in some solo execution from C

* p;is v-solo-univalent in Cif p, is v-solo-potent but
not V-solo-potent in C (solo-univalent in general)

* p;and p; are solo-bivalent in C if
p; is v-solo-potent in C and p;is V-solo-potent in C

Po and p, are solo-bivalent in some initial configuration

Follows by a standard proof
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Also, Recall Covering

A proces§ covgrs a rgglster R C block c’
in a configuration C if write to R p;-only
it is about to writeto Rin C

decide v

'd

o)
Extend to a set of k processes 2. i yrites
covering k registers £R

Block write: all processes write decide
\'

Assume processes P cover registers R in a configuration C.
Let C’ be the configuration after their block write from C,

! and assume process p; # p; is V-potent in C.

If a process p; P, p; # p;, is v-solo-potent in C,

then p, writes to a register R in its solo execution
& Hagit Attiva 236755(2019-20) Consensus
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@& Hagit Attiva

Proof by Contradiction

If p, writes only to R C block c’

Apply the solo execution of p; write to R Pi-only  decide v

'd

after the block write ,
‘_—i pi writes
<! only inR

= Contradiction to agreement block

p, still decides v

decide write toR p;-only  decide ¥

\

Assume processes P cover registers R in a configuration C.
Let C’ be the configuration after their block write from C,

and assume process p; # p; is V-potent in C.
If a process p; P, p; # p;, is v-solo-potent in C,

then p, writes to a register ¢R in its solo execution
q . 23B755 (2019-20) Consensus

Key Lemma

If p, and p, are solo-bivalent in a configuration C then
there is a {p,, ...,p,}-only execution from C ending in C’

| s.t. pp and p, are solo-bivalent in C’ and
p,, -..,Py cover k-1 different registers in C’

Apply the lemma with k =n — 1,
starting from an initial configuration
in which p, and p, are solo-bivalent

= n — 2 space lower bound
Can be improvedton — 1
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Help Lemma

If p, and p, are solo-bivalent in C and processes P

(other than p, and p,) cover a set of registers R,
then p, and p, are solo-bivalent after a solo execution
by either p, or p,, followed by a block write to R

7
po and p;are C po-only or p;-only block C’ po and pyare
solo-bivalent write to R solo-bivalent
© Hagit Attiya 236755 (2019-20) Consensus 121

Proof of Help Lemma

If p, and p, are solo-bivalent in C and processes P

(other than p, and p,) cover a set of registers R,
then p, and p, are solo-bivalent after a solo execution
by either p, or p,, followed by a block write to R

7
po and pyare € block C’ py and p,are v
solo-bivalent ~ wrife to R solo-bivalent
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po and p;are
solo-bivalent

po and p;are
solo-bivalent

Proof of Help Lemma

C block C’ py and p; both
write o R v-solo-univalent

C block o po and p;are v
write fo R solo-bivalent
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Proof of Help Lemma
po and pyare € block o po and p; both
solo-bivalent[] write foR v-solo-univalent
3
=3
3
2
block po and p; both
write to R D v-solo-univalent
block . .
b write To B D’ py is v-solo-univalent
s
< . . . .
Case 1: This step is a read or a write to a register € R
decide v P1 does not distinguish D and D’ = p, is v-solo-univalent in D’
By maximality, p, is V-solo-potent in D’
= py and p, are solo-bivalent in D’ v
© Hagit Attiya
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Proof of Help Lemma

po and p; are C block o po and p; both
solo-bivalent | write foR v-solo-univalent
block po and p; both
write to R v-solo-univalent
block
> write to R D’
o
EX
<

Case 2: This step is a write to a register ¢ R
Commutativity = p4 is v-solo-univalent in D’
By maximality, p, is V-solo-potent in D’

= py and p, are solo-bivalent in D’
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decide v

Back to Proving the Key Lemma

If p, and p, are solo-bivalent in a configuration C then
there is a {p,, ...,p,}-only execution from C ending in C’

s.t. p, and p, are solo-bivalent in C’ and
p,, -..,Py cover k-1 different registers in C’

By induction on k, with a trivial base case k=1
For the induction step (k+1)
Repeated apply induction hypothesis & help lemma
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Back to Proving the Key Lemma

If p, and p, are solo-bivalent in a configuration C then
there is a {p,, ...,p,}-only execution from C ending in C’

| s.t. pp and p, are solo-bivalent in C’ and

p,, ...,P, cover k-1 different registers in C’

Ci {po..pd-only  po-onlyorpronly  {p,...pthlack Cisy
po and p; are po and p; are write “m po and p; are

solo-bivalent solo-bivalent solo-bivalent

Repeated apply induction hypothesis & help lemma
Forsomei<j, R =R,
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Back to Proving the Key Lemma

If p, and p, are solo-bivalent in a configuration C then
there is a {p,, ...,p,}-only execution from C ending in C’

| s.t. pp and p, are solo-bivalent in C’ and
p,, -..,Py cover k-1 different registers in C’

Ci {po.- .pi3-only po-only or p;-only {p2...pi} block Ci+1
po and p;are write foR; . and p;are
solo-bivalent solo-bivalent

Ajuo-tg

decide [ Complete as
v in mutex

By first lemma, p,,; writes to a regis_ lower bound

LS \
—_ /
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“Al last we've reached a consensus!
This meeting is boring!”

236755 (2019-20) Consensus

129

©Hagit Attiya



