236755 Topic 3: Consensus

Winter 2019-20

Prof. Hagit Attiya

Consensus, More Formally

Each process p_i proposes a binary **input value**, x_i , and returns an **output value** (**decision**), y_i

Only two conditions on the output:

Agreement: all processes decide on the same value **Validity**: this value is the proposal of some process

© Hagit Attiya

236755 (2019-20) Consensus

3

Consensus is Easy...

If processes can wait for each other.

© Hagit Attiya

236755 (2019-20) Consensus

Termination (Liveness)

Solo-termination (also called **obstruction-freedom**): A process has to terminate if (eventually) it runs by itself.

© Hagit Attiya

236755 (2019-20) Consensus

Termination (Liveness)

Solo-termination (also called **obstruction-freedom**): A process has to terminate if (eventually) it runs by itself.

Nonblocking: From any configuration, if some process takes infinitely many steps, then some process (not necessarily the same one) terminates, regardless of steps by other processes. (Analogue of no deadlock for mutex.)

© Hagit Attiya

236755 (2019-20) Consensus

Termination (Liveness)

Solo-termination (also called **obstruction-freedom**):

A process has to terminate if (eventually) it runs by itself.

Nonblocking: From any configuration, if some process takes infinitely many steps, then some process (not necessarily the same one) terminates, regardless of steps by other processes.

lock-free

Wait-freedom: From any configuration, if some process takes infinitely many steps, then the process terminates, regardless of steps by other processes.

(Analogue of no starvation for mutex.)

© Hagit Attiya

236755 (2019-20) Consensus

7

Consensus with Compare&Swap

Wait-free consensus for any number of processes using compare&swap is easy

```
compare&swap(R,old,new):
  temp = R
  if R == old
    R = new
  return temp
```

Use a single shared variable, first, initially \(\triangle \)

```
propose(x)
  v = cas(first, \(\perp \, x\))
  if v == \(\perp \) decide x
  else decide v
```

What happens if we use only reads and writes?

© Hagit Attiya

236755 (2019-20) Consensus

Graded Consensus (Adopt-Commit)

Like consensus but the decision is (grade, y_i), grade is either adopt or commit, such that

Graded agreement: if a process decides **(commit,y_i)** then all processes decide

either (adopt,y_i) or (commit,y_i)

Validity: y_i was proposed by some process

Convergence: If only y_i is proposed before p outputs (grade, y_i) then grade = commit

- Two special cases: (a) p runs alone (b) same proposals

© Hagit Attiya

236755 (2019-20) Consensus

9

Graded Consensus (Adopt-Commit)

Like consensus but the decision is (grade, y_i), grade is either adopt or commit, such that

Graded agreement: if a process decides **(commit,y_i)** then all processes decide

either (adopt,y_i) or (commit,y_i)

Validity: y, was proposed by some process

Convergence: If only **y**_i is proposed before p

outputs (grade,yi) then grade = commit

Wait-Free Adopt-Commit **Provides Solo Terminating Consensus**

Use infinitely many copies of adopt-commit₁, ...

```
propose (v)
  for ( m = 1; ; m++)
      (grade, value) = adopt-commit_m(v)
      if grade == commit return value
      else v = value
```

Validity and agreement are immediate from the related properties of the adopt-commit protocol Solo termination follow from convergence (a)

© Hagit Attiya

236755 (2019-20) Consensus

11

Adopt-Commit with SW Registers

Two arrays of single-writer variables A[1,...,n] B[1,...,n], all initially ⊥

```
must be v
adopt-commit(v)
    write v to A[i]
                                /// one by one
    read A[1],...,A[n]
    if only one non-\bot value w, B[i] = "commit w"
    else B[i] = "adopt v"
    read B[1],...,B[n]
                                 // one by one
    if only "commit w", return (commit,w)
    else if contains "commit w", return (adopt,w)
    else return (adopt, v)
© Hagit Attiya
                      236755 (2019-20) Consensus
```

Proof of SW Adopt-Commit

- √ Validity is clear
- ✓ Convergence follows from inspecting the code

```
adopt-commit(v)

write v to A[i]

read A[1],...,A[n] // one by one

if only one non-⊥ value w, B[i] = "commit w"

else B[i] = "adopt v"

read B[1],...,B[n] // one by one

if only "commit w", return (commit,w)

else if contains "commit w", return (adopt,w)

else return (adopt,v)

© Hagit Attiya 236755 (2019-20) Consensus 13
```

Graded Agreement of SW Adopt-Commit

```
Lemma: If p_i writes "commit v" to B[i], then no process writes "commit w" to B, w \neq v
```

v must be the first value written in the array A

If p_i returns (commit,v), then "commit v" is the first value written in B \Rightarrow all processes commit or adopt v

© Hagit Attiya

236755 (2019-20) Consensus

Adopt-Commit with MW Registers shared variables: Proposal, initially \bot R₀, R₁, initially \bot local variable preference adopt-commit(v) R_v = 1 if Proposal $\ne \bot$ preference = Proposal else preference = v Proposal = preference if R_{1-v} $\ne \bot$ return (adopt, preference) else return (commit, preference)

What about Wait-Free Consensus?

Nonblocking consensus implies wait-free consensus (using a mw register R)

- Execute the nonblocking consensus
- After deciding, write decision to R
- Interleave reading R with nonblocking consensus

© Hagit Attiya

236755 (2019-20) Consensus

What about Wait-Free Consensus?

Wait-free consensus is impossible Even if we can wait for all but one process

Fischer

Lynch

Patterson

Implies the same for nonblocking consensus Holds for message passing and shared memory

© Hagit Attiya

236755 (2019-20) Consensus

17

Potence of a Configuration C

 C is v-potent if v is decided in some configuration reachable from C

© Hagit Attiya

236755 (2019-20) Consensus

Impossibility of Two-Process Consensus using Reads / Writes

Proof overview: If there is a 2-process wait-free consensus algorithm

- Show there is a bivalent initial configuration
- Show that from every bivalent configuration there is an execution leading to a bivalent configuration
- ⇒No process decides

For simplicity assume single-writer variables

There is a Bivalent Initial Configuration Assume all initial configurations are univalent (0,0) (0,1) (1,1) by validity (a) Hagit Attiya 236755 (2019-20) Consensus 22

There is a Bivalent Initial Configuration

Assume all initial configurations are univalent These configurations look the same to p₁

Extending a Bivalent Configuration

Lemma: If C is bivalent then a bivalent configuration C' is reachable from C.

Consider the configurations reachable by a single step of each process

If either of them is bivalent ⇒ we are done Both are univalent ⇒ 1-valent & 0-valent

© Hagit Attiya

236755 (2019-20) Consensus

Extending a Bivalent Configuration, One Step at a Time

Lemma: If C is bivalent then a bivalent configuration C' is reachable from C.

Consider the configurations reachable by a single step of each process

If either of them is bivalent ⇒ we are done Both are univalent ⇒ 1-valent & 0-valent

© Hagit Attiya

236755 (2019-20) Consensus

25

Extending a Bivalent Configuration, Steps that Commute

Lemma: If C is bivalent then a bivalent configuration C' is reachable from C.

Case 1: both read or both write (different variables)
Their steps commute

© Hagit Attiya

236755 (2019-20) Consensus

Extending a Bivalent Configuration, Overwriting Step

Lemma: If C is bivalent then a bivalent configuration C' is reachable from C.

Case 2: p_0 reads, p_1 writes (or vice versa) to the same variable

Covering...

© Hagit Attiya

236755 (2019-20) Consensus

27

Extending a Bivalent Configuration, Overwriting Step

Lemma: If C is bivalent then a bivalent configuration C' is reachable from C.

Case 2: p_0 reads, p_1 writes (or vice versa) to the same variable

Look the same to p₁

© Hagit Attiya

236755 (2019-20) Consensus

The Full Impossibility Result

- In an asynchronous system, consensus cannot be solved when the algorithm has to tolerate even just a single failure
 - n-1 processes cannot take an infinite number of steps without deciding
- Holds for the shared-memory model as well as for the message-passing model
- Describe both proofs in a unified manner using layered executions
 - below, f is the number of processes that may fail,
 we concentrate on the case f = 1

© Hagit Attiya

236755 (2019-20) Consensus

29

Layered Schedules

f-layer: sequence of at least n-f different processes

Order is sometimes important
 f-schedule: sequence of f-layers

- p₂ is **faulty** in layer 2, but nonfaulty in layer k
- p_n crashes in layer 3 faulty in every layer r, 3≤r≤k

An f-schedule σ and an initial configuration I determine a layered execution $\alpha(\sigma, I)$

© Hagit Attiya

236755 (2019-20) Consensus

Proving the Key Lemma

Lemma: For every input configuration I, process p and round r, $\alpha(\sigma, I) \approx \alpha(crash(\sigma, p, r), I)$

The proof is very model dependent

- Shared memory: read / write (single-writer) ✓
- Message passing

Need to assume bounded executions

© Hagit Attiya

236755 (2019-20) Consensus

Algebraically

 $delay(\sigma,p,r) = \\ swap^k(rollover(swap^{k'}(delay(\sigma,p,r+1),p,r),p,r),p,r+1)$

k' is p's distance from the end of layer r k is p's distance from the beginning of layer r+1

Similarly

 $crash(\sigma,p,r) = crash(delay(\sigma,p,r),p,r+1)$

© Hagit Attiya

236755 (2019-20) Consensus

41

Impossibility Result for Message-Passing Systems

Original context of this result (FLP)
Original proof has a different structure (similar to previous lecture)

© Hagit Attiya

236755 (2019-20) Consensus

Message-passing: Model of Computation

In each step, send messages to all processes
In layered executions, we synchronize the steps

Message-passing

- Crash p_i by removing it from all layers
 - Incremental ⇒ remove messages from p_i to p_i
 - Inductively, crash p_i in following layers
- Repeat for all layers ⇒ p_i crash

© Hagit Attiya 236755 (2019-20) Consensus

Bounding the Executions

- Why?
- To have a well-defined base case for the (backwards) induction on the layer number
- How?
- The proof considers a fixed (and bounded) set of executions from n+1 input configurations

© Hagit Attiya

236755 (2019-20) Consensus

45

Consensus in Synchronous Systems

"Then we are agreed nine to one that we will say our previous vote was unanimous!"

© Hagit Attiya

236755 (2019-20) Consensus

Synchronous Systems

- Processes take steps in rounds
- In each round, a process
 - sends messages to all (other) processes
 - receive messages from all other processes
 - does some local computation

Crash Failures in Synchronous Systems

- All but at most f faulty processes take an infinite number of steps (or until everyone decides)
- Once a faulty processor fails to take a step in a round, it takes no more steps
- In the last step of a faulty process, some subset of its outgoing messages are sent

Consensus Algorithm for Crash Failures

- Tolerates f < n crash failures
- Requires f + 1 rounds

© Hagit Attiya

236755 (2019-20) Consensus

Consensus Algorithm for Crash Failures

Each process executes the following code

```
v = my input
in each round 1 through f+1:
  if v not sent before, send v to all
  wait to receive messages for this round
   v = \min of received values and current value of v
in round f+1, decide on v
```

- Tolerates *f* < *n* crash failures
- Requires *f* + 1 rounds
- A total of $\leq n^2/V/$ messages each with log/V/ bits, where V is the input set.

© Hagit Attiya

236755 (2019-20) Consensus

An Execution of the Algorithm: p_i with input v_i

Correctness of Crash Consensus Algorithm

Termination: By the code, finish in round f+1.

Validity: processes do not create values.

If all inputs are the same, then that is the only value ever sent around (and decided)

© Hagit Attiya

236755 (2019-20) Consensus

Crash Consensus Algorithm: Agreement

Suppose in contradiction $\mathbf{p}_{\mathbf{j}}$ decides on a smaller value, \mathbf{x} , than $\mathbf{p}_{\mathbf{i}}$ does

- \Rightarrow x was hidden from p_i by a chain of faulty processes (one for each round)
- ⇒ This chain has f + 1 faulty processors, a contradiction

53

Is this the Best Round Complexity?

© Hagit Attiya

236755 (2019-20) Consensus

Rounds Lower Bound: Initial Lemma

Lemma: From some initial configuration, there are two executions γ and α , in which two different values are decided. γ is failure-free, and in α , one process crashes before taking any steps, but no other processes fail.

$$C_0 = (0,0,...,0,0)$$
 $v_0 = 0$ (by validity)

$$C_i = (0,0,...,1,1)$$
 failure-free v_i is decided

$$C_n = (1,1,...,1,1)$$
 $v_n = 1 \text{ (by validity)}$

© Hagit Attiya 236755 (2019-20) Consensus

Rounds Lower Bound: Proof of Initial Lemma

Lemma: From some initial configuration, there are two executions γ and α , in which two different values are decided. γ is failure-free, and in α , one process crashes before taking any steps, but no other processes fail.

$$C_j = (0,0,...,0,1)$$
 failure-free 0 is decided

 p_j crashes at the start 0 is decided?

 $C_{j+1} = (0,0,...,1,1)$ 1 is decided

 $C_{j+1} = (0,0,...,1,1)$

© Hagit Attiya

236755 (2019-20) Consensus

56

Rounds Lower Bound: Proof of Initial Lemma

Lemma: From some initial configuration, there are two executions γ and α , in which two different values are decided. γ is failure-free, and in α , one process crashes before taking any steps, but no other processes fail.

$$C_{j} = (0,0,...,0,1)$$

$$p_{j} \text{ crashes at the start } 1 \text{ is decided}$$

$$C_{j+1} = (0,0,...,1,1)$$

$$failure-free$$

$$1 \text{ is decided}$$

© Hagit Attiya

236755 (2019-20) Consensus

57

Rounds Lower Bound: Main Lemma

We consider only f-round executions such that:

- f ≤ n-2
- At most one process crashes in each round and at most f processes crash in each execution.
- In the round in which a process crashes, it sends messages to a prefix of processes, ordered by id's

Lemma: For any f-round execution α , $\alpha \approx \gamma$, where γ is the same as α during the first r rounds but has no crashes after round r, $0 \le r \le f$.

Hagit Attiya

236755 (2019-20) Consensus

Rounds Lower Bound: Proof of Main Lemma (Base)

By backward induction on r

The base case, r = f, $\alpha = \gamma$ and the lemma is obvious

Lemma: For any f-round execution α , $\alpha \approx \gamma$, where γ is the same as α during the first r rounds but has no crashes after round r, $0 \le r \le f$.

Hagit Attiya

236755 (2019-20) Consensus

59

Rounds Lower Bound: Proof of Main Lemma (Inductive Step)

Assume r < f and that the lemma holds for r+1.

Rounds Lower Bound: Proof of Main Lemma (Inductive Step)

Assume r < f and that the lemma holds for r+1.

Let β be the same as α during its first r+1 rounds and has no crashes after round r+1

By induction, $\alpha \approx \beta$; we need to show $\beta \approx \gamma$

61

Rounds Lower Bound: Proof of Main Lemma (Inductive Step)

What happens in β?

p is the single process that crashes in round r+1 of β (if none fails then we are done)

q₁, ..., q_t are the **correct** processes to which p does **not** send a message in round r+1 (in order of id's)

Rounds Lower Bound: Chain of Executions

 β_k is the same as β in the first r+1 rounds, except that p sends messages to $q_1,...,q_k$ in round r+1 $\beta_0 = \beta$

A correct process does not distinguish β_t from γ

63

Rounds Lower Bound: r = f-1

Some correct process \neq q_k does not distinguish between β_k and β_{k-1} (there is one since f < n-2)

$$\Rightarrow \beta \approx \beta_t \approx \gamma$$

Rounds Lower Bound:

$$\beta_k \approx \beta_{k-1}$$
 for $r < f-1$

 γ_k is the same as β_k for the first r+1 rounds, but q_k crashes in the beginning of round r+2 (cleanly) and there are no crashes after round r+2. By induction, $\beta_k \approx \gamma_k$

 γ_k ' is the same as β_{k-1} for the first r+1 rounds, but q_k crashes in the beginning of round r+2 (cleanly) and there are no crashes after round r+2. By induction, $\beta_{k-1} \approx \gamma_k$ '

Rounds Lower Bound: Completing the Proof

Theorem: Any consensus algorithm for $n \ge f+2$ processes that tolerates f crashes requires $\ge f+1$ rounds

Otherwise, apply initial configuration lemma There is an initial configuration from which there are two executions α and γ that decide different values In α and γ no processes crashes, except for one process that crashes before the start of γ

By previous lemma, α ≈γ ⇒ Same value is decided in both

© Hagit Attiya

236755 (2019-20) Consensus

66

Byzantine Failures

© Hagit Attiya

236755 (2019-20) Consensus

67

How Many Processes can Solve Consensus with One Byzantine Failure?

Validity: If all nonfaulty processes have input v, decide v

Two processes?

If p_0 has input 0 and p_1 has 1, someone has to change, but not both

What if one processor is faulty? How can the other one know?

· Three processes?

If p_0 has input 0, p_1 has input 1, and p_2 is faulty, then a tie-breaker is needed, but p_2 can act maliciously

© Hagit Attiya

236755 (2019-20) Consensus

Processes Lower Bound for f = 1 Theorem: Any consensus algorithm for one Byzantine failure must have at least four processes Suppose in contradiction there is a consensus algorithm for 3 processes and 1 Byzantine failure Get two copies Buy one for one Byzantine failure is a consensus algorithm for 3 processes and 1 Byzantine failure is a consensus algorithm for 3 processes and 1 Byzantine failure is a consensus algorithm for 3 processes and 1 Byzantine failure is a consensus algorithm for 3 processes and 1 Byzantine failure is a consensus algorithm for 3 processes and 1 Byzantine failure is a consensus algorithm for 3 processes and 2 Byzantine failure is a consensus algorithm for 3 processes and 2 Byzantine failure is a consensus algorithm for 3 processes and 2 Byzantine failure is a consensus algorithm for 3 processes and 2 Byzantine failure is a consensus algorithm for 3 processes and 2 Byzantine failure is a consensus algorithm for 3 processes and 2 Byzantine failure is a consensus algorithm for 3 processes and 2 Byzantine failure is a consensus algorithm for 3 processes and 2 Byzantine failure is a consensus algorithm for 3 processes and 2 Byzantine failure is a consensus algorithm for 3 processes and 2 Byzantine failure is a consensus algorithm for 3 processes and 3 Byzantine failure is a consensus algorithm for 3 processes and 3 Byzantine failure is a consensus algorithm for 3 byzantine failure is a consensus algorithm for

n > 3f for arbitrary f

Theorem: Any consensus algorithm for *f* Byzantine failures must have at least *3f+1* processes

Proof by reduction to the 3:1 case

- Suppose in contradiction there is an algorithm A for f > 1 failures and n = 3f total processes
- Use A to construct an algorithm for 1 failure and 3 processors, a contradiction

© Hagit Attiya

236755 (2019-20) Consensus

75

The Reduction

Partition the $n \le 3f$ processes into three sets, Q_0 , Q_1 , and Q_2 , each of size at most f

- p₀ simulates Q₀
- p₁ simulates Q₁
- p₂ simulates Q₂

If one process is faulty in the n = 3 system, then at most f processes are faulty in the simulated system

⇒ The simulated system is correct

Processes in the n = 3 system decide as the simulated processes

⇒ Their decisions are correct

© Hagit Attiya

236755 (2019-20) Consensus

Tree Algorithm

- This algorithm uses
 - -f+1 rounds (optimal)
 - -n = 3f + 1 processors (optimal)
 - exponential size messages (very bad)
- Each process keeps a local tree data structure
- Values are filled in the tree during the f + 1 rounds
- Then, the decision is calculated from the tree values

© Hagit Attiya

236755 (2019-20) Consensus

Local Tree Data Structure

Each node is labeled with a sequence of unique process identifiers

Root's label is the empty sequence λ ; its level is 0 Root has n children, labeled 0 .. n - 1

Local Tree Data Structure

Child node labeled *i* has *n* - 1 children, labeled *i* : 0 .. *i* : *n*-1 (skipping *i* : *i*)

Node at level d with label v has n - d children, labeled v : 0 .. v : n-1 (skipping any index in v)

Filling in the Tree Nodes

- Initially store your input in the root (level 0)
- Round 1:
 - send level 0 of your tree to all
 - store value x received from each p_j in tree node labeled j (level 1); use a default if necessary
 - "p_i told me that p_i's input is x"
- Round 2:
 - send level 1 of your tree to all
 - store value x received from each p_j for each tree node k in tree node labeled k : j (level 2); use a default if necessary
 - " p_i told me that p_k told p_i that p_k 's input is x"
- Continue for f + 1 rounds

© Hagit Attiya

236755 (2019-20) Consensus

Calculating the Decision

- In round f + 1, each process uses the values in its tree to compute its decision
- Recursively compute $resolve(\lambda)$ for the root, based on the "resolved" values for its children

© Hagit Attiya

Resolved Values are Consistent

Lemma: If p_i and p_j are nonfaulty, then p_i 's resolved value for tree node labeled π j (what p_j tells p_i for node π) equals what p_i stores in its node π

part of p's tree

Proof by induction π 's height (starting at the leaves)

By inductive hypothesis, resolved values for π children corresponding to nonfaulty processes are consistent

 π π π $\sigma riginal$ value = v

value = v

part of p's tree

Since n > 3f and π has $\geq n - f$ children majority of children correspond to nonfaulty processes

© Hagit Attiya

236755 (2019-20) Consensus

85

Resolved Values are Valid

- Suppose all nonfaulty processes have input v
- Nonfaulty process p_i decides resolve(λ), which is the majority among resolve(j), $0 \le j \le n-1$, based on p_i 's tree
- Since resolved values are consistent, resolve(j) (at p_i) is the value stored at the root of p_j's tree, which is p_j's input value if p_j is nonfaulty
- Since there is a majority of nonfaulty processes, p_i decides v

© Hagit Attiya

236755 (2019-20) Consensus

Common Nodes

A tree node π is **common** if all nonfaulty processes compute the same value of resolve(π)

part of p_i 's tree

part of p_j 's tree

© Hagit Attiya

236755 (2019-20) Consensus

Common Frontiers

A tree node π has a **common frontier** if there is a common node on every path from π to a leaf

Common Nodes and Frontiers

Lemma: If π has a common frontier, then π is common

Proof by induction on height of π , since resolve uses majority

Implies agreement:

- On each root-leaf path there is at least one node corresponding to a nonfaulty process
 - The nodes on the path correspond to f + 1 different processes
 - There are at most f faulty processes
- ⇒ This node is common (by consistency of resolved values)
- ⇒ The root has a common frontier
- ⇒ The root is common

© Hagit Attiya

236755 (2019-20) Consensus

89

Complexities of the Tree Algorithm

- *n > 3f* processors
- *f* + 1 rounds
- exponential size messages:
 - each message in round r contains n(n-1)(n-2)...(n-(r-2)) values
 - When r = f + 1, this is exponential if f is more than a constant relative to n

© Hagit Attiya

236755 (2019-20) Consensus

A More Efficient Algorithm?

Better message complexity by increasing the number of rounds and ratio of nonfaulty processes

• n > 4t, 2(f + 1) rounds

t = max # of failures f = actual # of failures

Aside: there are algorithms with

- Polynomial number of message bits
- f+1 rounds
- n > 3t

© Hagit Attiya

236755 (2019-20) Consensus

91

Phase King Algorithm (n > 4t, 2(f+1) rounds)

Code for process p_i

```
pref = my input \frac{\text{first round of phase } k, \ 1 \le k \le f+1:}{\text{send pref to all}} send pref to all receive prefs of others let maj be value that occurs > n/2 times // default 0 let mult be number of times maj occurs \frac{\text{second round of phase } k:}{\text{if } i = k \text{ then send maj to all } // \text{ I am the phase king receive tie-breaker from } p_k \ // \text{ default 0 if mult > } n/2 + f \text{ then pref := maj}} else \text{pref := tie-breaker} if k = f + 1 then decide pref
```

© Hagit Attiya

236755 (2019-20) Consensus

92

Unanimous Phase Lemma

Lemma: If all nonfaulty processes prefer *v* at start of phase *k*, then all prefer *v* at end of phase *k*

Since n > 4f, it follows that n - f > n/2 + f

Therefore, if all nonfaulty processes have input v

- ⇒ At start of phase 1, all nonfaulty processes prefer v
- \Rightarrow At end of phase 1, all nonfaulty processes prefer v
- ⇒ At start of phase 2, all nonfaulty processes prefer v
- ⇒ At end of phase 2, all nonfaulty processes prefer *v* ⇒
- \Rightarrow At end of phase f + 1, all nonfaulty processes prefer v and decide v

© Hagit Attiya

236755 (2019-20) Consensus

93

Nonfaulty King Lemma

Lemma: If p_k is nonfaulty, then all nonfaulty processes have same preference at end of phase k

Proof: If two nonfaulty processes p_i and p_j use p_k 's tie-breaker, they have same preference

If p_i uses a majority value v and p_j uses p_k 's tiebreaker then p_k majority value is also v

If both p_i and p_j use their majority value, then it must be the same value

© Hagit Attiya

236755 (2019-20) Consensus

Agreement in Phase King Algorithm

f + 1 iterations ⇒ at least one with a nonfaulty king
Nonfaulty King Lemma ⇒ at the end of that phase,
all nonfaulty processes have same preference
Unanimous Phase Lemma ⇒ from that phase on,
all nonfaulty processes have same preference
⇒ All nonfaulty processes decide on the same value

© Hagit Attiya

236755 (2019-20) Consensus

95

Phase Queen Algorithm (n > 3t, 3(f+1) rounds)

Code for process p_i

```
pref = my input
first round of phase k, 1 \le k \le f+1:
  send pref to all
  receive pref's of other processes
  pref = abort
if some value v appears \geq n-f times then pref = v second round of phase k, 1 \leq k \leq f+1:
  send pref to all
  receive pref's of others
  if some value v appears mult > f times then
      pref = smallest such v
                                        // abort is largest
third round of phase k, 1 \le k \le f+1:
                                        // I am phase queen
  if i = k then send pref
  receive tie-breaker from k
  if ( pref = abort or mult < n-f )</pre>
            and (tie-breaker # abort)
      then pref = min(1, tie-breaker)
```

Unanimous Phase Lemma

Lemma: If all nonfaulty processes prefer *v* at start of phase *k*, then all prefer *v* at end of phase *k*

For each phase k:

- At the end of the first round, the value of pref for all nonfaulty processes, is v or abort, for some v ∈ {0,1}
- At the end of the second round, the value of pref for all nonfaulty processes, is v or abort, for the same v

© Hagit Attiya

236755 (2019-20) Consensus

97

Nonfaulty Queen Lemma

Lemma: If p_k is nonfaulty, then all nonfaulty processes have same preference at end of phase k

- All nonfaulty processes accept the phase king's message
- Some nonfaulty process ignores the king since mult ≥ n-t.
 Then mult > f for every nonfaulty process , and its pref is the same.

After this phase, Unanimous Phase Lemma ensures agreement is maintained until the algorithm terminates

© Hagit Attiya

236755 (2019-20) Consensus

Randomized Consensus

- Weaken the termination condition and measure the expected time to termination
- · Agreement and validity remain the same
- Allow to overcome the asynchronous impossibility and the synchronous lower bound (we'll see only the first)

© Hagit Attiya

236755 (2019-20) Consensus

99

Two Sources of Nondeterminism

 In a randomized algorithm, processes flip coins to determine their next steps

- Several possible executions
- But even a deterministic algorithm has several possible executions (from a fixed input)
 - Due to asynchrony and/or failures
- Separate the latter under the control of an adversary
 - Determines the next event to occur after an execution prefix
 - Must obey admissibility conditions according to model
 - May have other limitations (what information it can observe, how much computational power it has)

© Hagit Attiya

236755 (2019-20) Consensus

100

Evaluating a Distributed Randomized Algorithm

- An execution of a specific algorithm, $exec(C_0, R, \mathcal{A})$, is uniquely determined by
 - an initial configuration C_0
 - a sequence of random numbers R
 - an adversary A
- Given a predicate *Pred* on executions,
 a fixed adversary A and an initial configuration C₀

 $Pr[Pred] = Prob \{R : exec(C_0, R, \mathcal{A}) \text{ satisfies } Pred\}$

• Let *T* be a random variable (time)

$$\exp(T, \mathcal{A}, C_0) = \sum_t t \Pr[T = t]$$

© Hagit Attiya

236755 (2019-20) Consensus

10

Expected Time Complexity of a Randomized Distributed Algorithm

The **expected time complexity** is the max over all admissible adversaries \mathcal{A} and initial configurations C_0 , of the expected time for that particular \mathcal{A} and C_0

$$\max_{\text{adversary }\mathcal{A}, \text{ initial configuration } C_0} \exp(T(\text{Alg, },\mathcal{A},C_0))$$

Worst-case average: for the worst adversary (asynchrony and failures) and initial configuration, average over the random choices of the algorithm Extend naturally to other measures (like RMRs)

© Hagit Attiya

236755 (2019-20) Consensus

Structure of Consensus Algorithm

The algorithm has two components

 Phase-based voting scheme using individual processors' preferences to reach agreement (when possible)

We use extended adopt-commit

 A shared coin procedure used to break ties among these preferences

© Hagit Attiya

236755 (2019-20) Consensus

103

Shared Coin

A shared coin with agreement probability ρ (with no input) returns a binary output, s.t.

— For every $v \in \{0,1\}$, all nonfaulty processors executing the procedure **output v with probability at least** ρ

A simple and very resilient shared coin with $\rho=1/2^n$ bias is when each process outputs a (uniform) random bit

There are more sophisticated constructions

© Hagit Attiya

236755 (2019-20) Consensus

Recall: Adopt-Commit

The decision is (grade, y_i), where grade is either adopt or commit, such that

- Graded agreement: if a process decides (commit,y_i) then all processes decide (adopt,y_i) or (commit,y_i)
- Validity: y_i was proposed by some process
- Convergence: If only y_i is proposed before p outputs (grade,y_i) then grade = commit
- Termination: A process returns within a finite number of steps

Extended Adopt-Commit

The decision is either \perp (abort) or (grade, y_i), where grade is either adopt or commit, such that

- Graded agreement: if a process decides (commit,v)
 then all processes decide (adopt,v) or (commit,v) and
 if a process decides (adopt,v) then no process adopts a
 different value
- Validity: if all nonfaulty processes propose v then all nonfaulty processes return (commit,v)
- Termination: A process returns within a finite number of steps

106

53 ©Hagit Attiya

Implementing Extended Adopt-Commit w/ Byzantine Failures

- Assumes *n* > 3*f*
- 2 (asynchronous) rounds

```
send v to all
receive values from others
let maj be value that occurs > n/2 times (0 if none)
let mult be number of times maj occurs
if mult \geq n-f then send maj to all

receive values from others
let maj' be value that occurs most times
let mult' be number of times maj' occurs
if mult' \geq n-f return (commit, maj')
else if mult' \geq f+1 return (adopt, maj')
else return abort

© Hagit Attiya

236755 (2019-20) Consensus
```

Randomized Consensus w/ Extended Adopt-Commit

Assume we have a shared coin algorithm with agreement probability ρ and time complexity T_{coin}

© Hagit Attiya 236755 (2019-20) Consensus

Validity

Unanimous Phase Lemma: If all nonfaulty processes prefer *v* at start of phase *k*, then all do at end of phase *k*

If all processes have input $v \Rightarrow$ all prefer v in phase 1 By the lemma (and graded agreement), all nonfaulty processes decide v in phase 1

© Hagit Attiya

236755 (2019-20) Consensus

109

Agreement

Lemma: If p_i decides v in phase r, then all nonfaulty processes decide v by phase r + 1

Proof: Let r be the earliest phase in which a process (say, p_i) decides (say, on v)

p_i got (commit,v) in phase r

All other processes got (adopt,v) in phase r, so they prefer v in phase r+1 and by previous lemma, decide v

© Hagit Attiya

236755 (2019-20) Consensus

Termination

Lemma: The probability that all nonfaulty processes decide in a phase is at least ρ

Proof: If all nonfaulty processes set their preference in phase *r* using Shared-coin

• With probability 2ρ , they all get the same value (ρ for 0 and ρ for 1); lemma follows from unanimous phase lemma

If some processes **do not** set their preference using Shared-coin

- All of them have the save value v as phase r preference
- With probability $\geq \rho$, all processes get v from Shared-coin

© Hagit Attiya

236755 (2019-20) Consensus

111

Expected Number of Phases

Probability of all deciding in any given phase $\geq \rho$

- \Rightarrow Probability of terminating after *i* phases is $(1-\rho)^{i-1}\rho$
- \Rightarrow Number of phases until termination is a geometric random variable whose expected value is $1/\rho$

The time complexity of the algorithm is $\rho^{-1}(T_{EAC}+T_{coin})$, T_{EAC} is the time complexity of Extended Adopt-Commit T_{coin} is the time complexity of Shared-coin

© Hagit Attiya

236755 (2019-20) Consensus

112

56 ©Hagit Attiya

Better Shared Coin

Back to shared memory and crash failures...

- constant agreement probability ρ
- polynomial total number of steps T_{coin}

```
Shared SumCoins[i], NumFlips[i], initially 0

while ()

c = random(-1,+1)

SumCoins[i] += c // written only by i, atomic

NumFlips[i]++ // written only by i, atomic

read NumFlips[0,..,n-1]

if \( \Sigma \) NumFlips[0,..,n-1] > n^2

read SumCoins[0,..,n-1]

return( sign(\( \Sigma \) SumCoins[0,..,n-1] ))
```

Step Complexity

- Number of coins flipped (= iterations of the while loop) < n²+n
- O(n) steps per iteration \Rightarrow O(n³) total work

```
Shared SumCoins[i], NumFlips[i], initially 0

while ()

c = random(-1,+1)

SumCoins[i] += c // written only by i, atomic

NumFlips[i]++ // written only by i, atomic

read NumFlips[0,..,n-1]

if \( \Sigma \) NumFlips[0,..,n-1] > n^2

read SumCoins[0,..,n-1]

return( sign(\( \Sigma \) SumCoins[0,..,n-1] ))
```

57 ©Hagit Attiya

Agreement Parameter

- Among t^2 +t independent unbiased coins, the minority is less than $t^2/2$ with probability > $\frac{1}{2}$
- Probability all processes get same value > ¼

```
Shared SumCoins[i], NumFlips[i], initially 0

while ()

c = random(-1,+1)

SumCoins[i] += c // written only by i, atomic

NumFlips[i]++ // written only by i, atomic

read NumFlips[0,..,n-1]

if E NumFlips[0,..,n-1] > n<sup>2</sup>

read SumCoins[0,..,n-1]

return( sign( E SumCoins[0,..,n-1] ))
```

Space Lower Bound

 $\Omega(n)$ registers are necessary for nondeterministic solo-terminating consensus using reads and writes

Leqi Zhu, 2016]

© Hagit Attiya

236755 (2019-20) Consensus

116

Recall Valence w/ Small Twist

For a configuration C, and processes p_i and p_i

- p_i is **v-solo-potent** in C if p_i can decide v in some solo execution from C
- p_i is **v-solo-univalent** in C if p_i is v-solo-potent but not \overline{v} -solo-potent in C (solo-univalent in general)
- p_i and p_i are **solo-bivalent** in C if p_i is v-solo-potent in C and p_i is \overline{v} -solo-potent in C

p₀ and p₁ are solo-bivalent in some initial configuration

Follows by a standard proof

© Hagit Attiya

236755 (2019-20) Consensus

Also, Recall Covering

A process covers a register R in a configuration C if it is about to write to R in C Extend to a set of k processes covering k registers

block p_i -only write to R decide v pi writes Block write: all processes write decide

Assume processes P cover registers R in a configuration C. Let C' be the configuration after their block write from C, and assume process $p_i \neq p_i$ is \overline{v} -potent in C'. If a process $p_i \notin P$, $p_i \neq p_i$, is v-solo-potent in C, then p_i writes to a register ∉R in its solo execution

Proof by Contradiction

If p_i writes only to R Apply the solo execution of p_j after the block write p_i still decides \overline{v}

⇒ Contradiction to agreement

Assume processes P cover registers R in a configuration C. Let C' be the configuration after their block write from C, and assume process $p_j \neq p_i$ is \overline{v} -potent in C'. If a process $p_i \notin P$, $p_j \neq p_i$, is v-solo-potent in C, then p_i writes to a register $\notin R$ in its solo execution

Hagit Attiya

236755 (2019-20) Consensus

113

Key Lemma

If p_0 and p_1 are solo-bivalent in a configuration C then there is a $\{p_0, ..., p_k\}$ -only execution from C ending in C' s.t. p_0 and p_1 are solo-bivalent in C' and p_2 , ..., p_k cover k-1 different registers in C'

Apply the lemma with k=n-1, starting from an initial configuration in which \mathbf{p}_0 and \mathbf{p}_1 are solo-bivalent

 $\Rightarrow n-2$ space lower bound

Can be improved to n-1

© Hagit Attiya

236755 (2019-20) Consensus

Back to Proving the Key Lemma

If p_0 and p_1 are solo-bivalent in a configuration C then there is a $\{p_0, ..., p_k\}$ -only execution from C ending in C' s.t. p_0 and p_1 are solo-bivalent in C' and $p_2, ..., p_k$ cover k-1 different registers in C'

By induction on k, with a trivial base case k=1
For the induction step (k+1)
Repeated apply induction hypothesis & help lemma

© Hagit Attiya

236755 (2019-20) Consensus

Back to Proving the Key Lemma

If p_0 and p_1 are solo-bivalent in a configuration C then there is a $\{p_0, ..., p_k\}$ -only execution from C ending in C' s.t. p_0 and p_1 are solo-bivalent in C' and p_2 , ..., p_k cover k-1 different registers in C'

Repeated apply induction hypothesis & help lemma For some i < j, $R_i = R_i$

© Hagit Attiya

236755 (2019-20) Consensus

127

Back to Proving the Key Lemma

If p_0 and p_1 are solo-bivalent in a configuration C then there is a $\{p_0, ..., p_k\}$ -only execution from C ending in C' s.t. p_0 and p_1 are solo-bivalent in C' and $p_2, ..., p_k$ cover k-1 different registers in C'

