236755
Topic 4: Simulating
Shared Objects

Winter 2019-20

Prof. Hagit Attiya

Abstract Data Types (ADT)

* Cover many concurrent applications

* Abstract representation of data & operations for
accessing it
— Signature
— Specification

© Hagit Attiya 236755 (2019-20) object simulations

©Hagit Attiya

Implementing High-Level ADT

Using lower-level ADTs & procedures
High-level operations translate into primitives on base objects

— read, write
— compare&swap —
— read-modify-write | =

Low-level (primitive) operations
are often implemented fro
more primitive operations

— A hierarchy of
implementations

© Hagit Attiya 236755 (2019-20) object simulations 3

Interleaving Operations’ Executions

invocationl Tresponse
P,

— —_— —— —

P — — — —
2
P —_— —_— —_— —
3
© Hagit Attiya 236755 (2019-20) object simulations 4

©Hagit Attiya

Interleaving Operations’ Executions

R 2 % S
! I

P3 —_— —_— —_— —

© Hagit Attiya 236755 (2019-20) object simulations

Sequential executions

ot

—_— s — — —

— — — —

Sequential execution: invocations & responses
alternate and match (on process & object)

Sequential specification: All legal sequential
executions, satisfying ADT’s semanticS

— E.g., stack: pop returns the last item pushed

—_—) —p

© Hagit Attiya 236755 (2019-20) object simulations

©Hagit Attiya

Correctness: Linearizability

* For every concurrent execution, there is a sequential
execution of the same operations that
— Is legal (obeys the specification of the ADTs), and
— Preserves the real-time order of non-overlapping operations
* Equivalently, each operation appears to takes effect
instantaneously at some point between its invocation and its
response (atomicity)

* When processes fail (there is a partitioning of processes

into faulty and nonfaulty), this holds for all completed
operations and a subset of the pending operations

Some operations

never complete

© Hagit Attiya 236755 (2019-20) object simulations 7

Linearizability is Composable (Local)

* The whole system is linearizable
< each object is linearizable

* Allows to implement and verify objects
separately

© Hagit Attiya 236755 (2019-20) object simulations 8

©Hagit Attiya

General Objects

Registers support read and write operations

Later, we'll see wait-free simulations of one kind of
register out of another kind (# values, readers, writers)

What about (wait-free) simulating a significantly
different kind of data type out of registers?

More generally, what about (wait-free) simulating an
object of type X out of objects of type Y ?

© Hagit Attiya 236755 (2019-20) object simulations

Key Insight

* Focus on asynchronous, wait-free simulations
— Typically, in shared memory

Ability to simulate object of type X using only
objects of type Y and registers is related to the
ability of those data types to solve consensus
(or other problems)

© Hagit Attiya 236755 (2019-20) object simulations

©Hagit Attiya

Example: FIFO Queue

* invocation eng(x) and response ack
* invocation deq and response ret(x)

Each degq returns oldest enqueued value that is
not yet been dequeued (L if queue is empty)

Eng(x)

ack

. . D
Wait-free two-process algorithm for =
consensus with an initialized queue ret (x)
prefer[i] = input
if deg(queue) ==
then return prefer[i]
else return prefer[1l-i]
© Hagit Attiya 236755 (2019-20) object simulations 1"
Example: FIFO Queue
Eng(x)
. !nvocat!on enqg(x) and response ack ack
* invocation deq and response ret(x)
Each deg returns oldest enqueued value that is
not yet been dequeued (L if queue is empty)
. . . 2 Deq
Can we simulate a queue with registers-
No! Otherwise, can solve 2-processes ret(x)
consensus w/ registers:
— simulate a FIFO queue using registers No 3-
— run consensus algorithm with queues using rocesses
simulated queue to solve 2-process conse P
consensus w/
registers

© Hagit Attiya 236755 (2019-20) object simulations

©Hagit Attiya

Example: k-Sliding Window Register

Sequence of values accessed with two operations:
k-write(v) adds v at the end of the sequence

k-read() returns an ordered sequence of the last k
values written (pad if < k values have been written)

Boils down to an ordinary register, when k = 1

© Hagit Attiya 236755 (2019-20) object simulations 13

Example: k-Sliding Window Register

Sequence of values accessed with two operations:
k-write(v) adds v at the end of the sequence

k-read() returns an ordered sequence of the last k
values written (pad if < k values have been written)
Can solve consensus among k processes
propose (v;)
k-register.write(v;)
seq — k-register.read()

return first non-1 value in seq

© Hagit Attiya 236755 (2019-20) object simulations 14

©Hagit Attiya

Example: k-Sliding Window Register

Sequence of values accessed with two operations:
k-write(v) adds v at the end of the sequence

k-read() returns an ordered sequence of the last k
values written (pad if < k values have been written)

Can solve consensus among k processes

Cannot solve consensus among k+1 processes
Standard bivalence-style proof (similar to queue)

© Hagit Attiya 236755 (2019-20) object simulations 15

Core Case of the Proof

Critical configuration, where the next steps by all k+1
processes are writes to the same window register R

3 since all processes
write to R

p;-free execution with k-1 writes to R All processes
b (except py)
C 0 . ,(02 decide O
wewt
P P : All processes
: -free execution with k-1 writes to R P
Writq Yo ‘ Po P1 (except py;)
R still decide O
© Hagit Attiya 236755 (2019-20) object simulations 16

©Hagit Attiya

Consensus Numbers

Data type X has consensus
number CN(X) = n if nis the
largest number of processes for
which consensus can be solved
using only objects of type X and
read/write registers

Determine if there is a wait-free
simulation of Y from X based on
their consensus number

© Hagit Attiya

data type consensus
number

read/write 1

register,

snapshots

FIFO queue, 2

fetch&Inc

k-window k

register

compare o

&swap

236755 (2019-20) object simulations

Consensus Numbers

Data type X has consensus
number CN(X) = n if nis the
largest number of processes for
which consensus can be solved
using only objects of type X and
read/write registers

data type consensus
number

read/write 1

register,

snapshots

FIFO queue, 2

fetch&Inc

k-window k

register

'Theorem: If n = CN(Y) > CN(X) = m, then there is no

wait-free simulation of an object of type Y using objects
of type X and read/write registers for > m processes

© Hagit Attiya

236755 (2019-20) object simulations

©Hagit Attiya

10

Consensus Numbers: Proof

v
Assume there is a wait-free simulation

of Y using X and registers in
a system with k, n > k > m processes [reg] [reg] [reg]

Consensus algorithm for k processes

* Since CN(Y) = n, there is a k-process consensus
algorithm using Y and registers

* Execute this algorithm using simulated objects of
type Y from objects of type X (and registers)

Theorem: If n = CN(Y) > CN(X) = m, then there is no

wait-free simulation of an object of type Y using objects
of type X and read/write registers for > m processes

© Hagit Attiya 236755 (2019-20) object simulations

Sample Corollaries

There is no wait-free simulation of any object with
| consensus number > 1 using read/write registers

There is no wait-free simulation of any object with
consensus number > 2 using queues and read/write
MEANES

There is no wait-free simulation of any object with
consensus number > k using k-window registers

© Hagit Attiya 236755 (2019-20) object simulations 20

©Hagit Attiya

11

Universality of Consensus Numbers

Data type is universal if objects of that type and read /
write registers can wait-free simulate any data type

Theorem: A data type with consensus number n

is universal for a system with < n processes

1. A non-blocking n-process algorithm to simulate
any data type using compare & swap

2. Modify to use objects with consensus number n
3. Modify to be wait-free

4. Bound the shared memory used and handle non-
determinism

© Hagit Attiya 236755 (2019-20) object simulations 21

Universal Simulation Using CAS

Represent object by a linked list with the sequence of
operations applied to the simulated object

Apply an operation on the simulated object by inserting
an appropriate node at the head of the linked list

Use compare&swap on the Head pointer of the list

S

Head

- -

anchor
© Hagit Attiya 236755 (2019-20) object simulations 22

©Hagit Attiya

The Linked List

Each linked list node has
* operation invocation (= type and parameters)
new state of the simulated object

* operation response
pointer to previous node (= previous op)

invocation invocation 1
i:l_f state state initial state
1

response response
Head
before — before —1 1
anchor
© Hagit Attiya 236755 (2019-20) object simulations 23

Simulation w/ CAS: In Pictures
point invocation If CAS indicates that
. state Head changed, try again
h response with the new Head
befqre
,)
invocation invocation 1
state state initial state
response response 1
Head
before —1 before — 1
anchor
© Hagit Attiya 236755 (2019-20) object simulations 24

12

©Hagit Attiya

13

Simulation w/ CAS: The Code

Initially Head points to anchor node
— represents initial state of simulated object

local variables h, point

When inv is invoked:

allocate a new linked list node in shared memory,
pointed to by local var point

point.inv = inv

repeat depends on
h = Head simulated data type
point.state, point.response =|apply|(inv,h.state)
point.before = h Head not changed,
until [compare&swap (Head,h,point) == h]point it to new node

do the output indicated by point.response

© Hagit Attiya 236755 (2019-20) object simulations 25

Strengthening the Algorithm 1:
Using Arbitrary Consensus Objects

Replace compare&swap object with an
arbitrary n-process consensus object

decide(x;

Use it to decide on the next operation

Since a consensus object is one-shot, use many copies,
each allowing to thread an additional operation to the list

invocation \ invocation \ y 1
I:IJ> state state initial state
1

Head? response response
eaar’]

anchor
© Hagit Attiya 236755 (2019-20) object simulations 26

©Hagit Attiya

14

Strengthening the Algorithm 1.:
Finding the Head of the List

Per-process Head pointer, to the last node it has inserted
Sequence numbers allow to identify the latest node

0 1 n-1
Head ~
X I

seq seq 0

invocation A invocation A L

state state initial state

response response gl
anchor

© Hagit Attiya 236755 (2019-20) object simulations 27

Algorithm with Consensus Objects

Initially all Head entries point to the anchor node

when inv occurs
point = new opr, point.inv = inv
for j=0 to n-1 find node with maximum sequence number
if Head[]j] .seq > Head[i] .seq then Head[i]=Head[]]
repeat try to thread your operation
win = decide (Head[i] .after,point)
win.seq = Head[i] .seqg+l
win.state, win.response =
apply(win.inv, Head[i].state)
Head[i]= win point to the following node
until win = point
return point.response

© Hagit Attiya 236755 (2019-20) object simulations 28

©Hagit Attiya

15

Non-Blocking Universal Simulation:
In Pictures

Successful case

0 1 | n-1
Head
o N —
oint |
Cpone 4 \
seq seq 0
invocation A invocation A invocation A L
- state state initial state
== response | response gl
anchor
© Hagit Attiya 236755 (2019-20) object simulations 29

Strengthening the Algorithm 2:
Making it Wait-Free

0] n-1

Announce ~

* Use helping: processes help each\
other to finish pending operations g —
(not just their own)

. . invocation
« When appending the rth operation,
help process j =r mod n (if j has a -
pending operation) e
* Announce array stores pending _
operations

© Hagit Attiya 236755 (2019-20) object simulations 30

©Hagit Attiya

16

Code for Wait-Free Simulation

Initially all Head and Announce entries point to anchor

When inv occurs
Announce[i] = new opr, Announce[i] .inv,seq = inv,0
for j=0 to n-1
if Head[]j].seq > Head[i] .seq then Head[i]=Head[]]

while Announce[i] .seq == 0 do
priority = Head[i] .seqg+l mod n process with priority
if Announce[priority].seq == 0 then help is needed
point = Announce[priority] help the other process
else point = Announce[i] perform own operation
win = decide (Head[i] .after, point) like before

win.state,reponse = apply(win.inv, Head[i] .state)
win.seq = Head[i] .seqg+l
Head[i] = win

return Announce|[i] .response

Strengthening the Algorithm 3:
Bounding the List

A process allocates nodes from a private pool

A node is recycled when it is not referenced anymore

When can we recycle node #r?

* No process trying to thread node > (r+n+1) will access node r

* When the operations that thread nodes r...r+n terminate,
node r can be recycled

* When a process p finishes threading node m it releases nodes
m-1...m-n.

* After noderis released by the operations threading nodes
r..r+n, it can be recycled

©Hagit Attiya

17

Pictorially

© Hagit Attiya 236755 (2019-20) object simulations 33

Strengthening the Algorithm 3:
Randomized Consensus

* Suppose we relax the liveness condition for
linearizable shared memory:

— operations must terminate with high probability

* Now a randomized consensus algorithm can
be used to simulate any data type out of any
other data type, including read/write registers

* Need to have a non-deterministic simulation
since different processes will have different
outcomes

© Hagit Attiya 236755 (2019-20) object simulations 34

©Hagit Attiya

18

Simulating Read / Write Objects

Can we provide a shared read / write variable in
an asynchronous message-passing system, when
processes can fail?

* Yes, if we have enough nonfaulty processes

Can we provide stronger types of read / write
variables, when processes can fail?

* Yes, as long as we don’t read-and-write

© Hagit Attiya 236755 (2019-20) object simulations

35

Simulating Shared Memory

* Provide a single-writer single-reader register (this is the high-
level) in a message-passing system
— Accessed by read and write operations

* Underlying system is asynchronous message passing (this is
the low-level), where less than half the processes can crash

Write (7)(),
~N ~

(O Read

O Write (0)

© Hagit Attiya 236755 (2019-20) object simulations

36

©Hagit Attiya

19

Linearizability

Write (7)

BN

Read o 7

N

Write (7) O\ (O Read
O Write (0)
© Hagit Attiya 236755 (2019-20) object simulations 37

Simulating Shared Memory w/ Failures

* Requires a majority of nonfaulty processes

* Otherwise, the system can be partitioned
— A read “misses” the latest write

Write (7)(),

Famous CAP
theorem
[Brewer]
O Write (0)
© Hagit Attiya 236755 (2019-20) object simulations 38

©Hagit Attiya

20

Must have n > 2f

Theorem: A simulation of a 1-reader, 1-writer
read/write linearizable register in an asynchronous

message passing tolerates at most f < n/2 crash failures

Proof: Suppose in contradiction there is an algorithm
tolerating f = n/2 crash failures

Partition processes into two sets,
Q, and Q;, each of size f

© Hagit Attiya 236755 (2019-20) object simulations 39

Must have n > 2f: Writing

Consider an execution in which
— initial value of simulated register is 0
— all processes in Q, crash initially

— process p, in Q, invokes write(1) at time 0
and no other operations are invoked

— the write completes at some time t, without any process in
Q, receiving a message from any process in Q,

© Hagit Attiya 236755 (2019-20) object simulations

©Hagit Attiya

21

Must have n > 2f: Reading

Consider another execution in which
— initial value of simulated register is 0
— all processes in Q,crash initially

— process p, in Q; invokes a read at time t,+1 and no other
operations are invoked

— the read completes at some time t; without any process in
Q, receiving a message from any process in Q,

— the read returns 0, due to linearizability

© Hagit Attiya 236755 (2019-20) object simulations 41

Must have n > 2f: Arithmetic

Now paste the views of processes in Q, from the
first execution with the views of processes in Q;
from the second execution

— messages between Q, and Q, are delayed to arrive
after time t,

This execution is not linearizable, since read(0)
follows write(1)

=>» Must assume a majority of
nonfaulty processes

© Hagit Attiya 236755 (2019-20) object simulations

©Hagit Attiya

22

The Algorithm in a Nutshell: Write

* The simulated register is replicated at each
process

* Each data item has a unique sequence number
— sequence of values

* write(d, val, seq#)
— generate next sequence number

— send a message with the value and the sequence
number to all processes

— each recipient updates its replica and sends ack
— writer waits for n-f > n/2 acks

© Hagit Attiya 236755 (2019-20) object simulations 43

The Algorithm in Action: Write

© Hagit Attiya 236755 (2019-20) object simulations 44

©Hagit Attiya

23

The Algorithm in Action: Write

© Hagit Attiya 236755 (2019-20) object simulations 45

The Algorithm in a Nutshell: Read

* Each data item has a unique sequence number

« read(d) returns (val, seq#)
— send a request to all processes
— each recipient sends back current value of its replica
— wait for > n/2 replies
— return value associated with largest sequence number
— do a write-back to ensure atomicity of reads

© Hagit Attiya 236755 (2019-20) object simulations 46

©Hagit Attiya

24

The Algorithm in Action: Read

© Hagit Attiya 236755 (2019-20) object simulations 47

Key Idea for Correctness

* Each read should return the value of "the most recent" write
* Each read or write communicates with > n/2 processes

=>» The set of processes communicating with a read intersects
the set of processes communicating with a write

* Since system is asynchronous, a message on behalf of an operation
might be overtaken by a message on behalf of a later operation

— reader and writer keep track of "status" of each link

— don't send a message on a link before receiving ack on previous
message (ping-pong)

© Hagit Attiya 236755 (2019-20) object simulations 48

©Hagit Attiya

25

Proving Linearizability

Let ts(W) = sequence number of W
Let ts(R) = sequence number of write that R reads from
0, — O, denotes O, completes before O, starts

Key lemmas:

e If W, —> W,, then ts(W,) < ts(W,) ‘ one writer generates ts ‘

* If W— R, then ts(W) < ts(R) ‘ majorities intersect ‘

* IfR—> W, thents(R) < ts(W) ‘ can’t read from the future ‘
|

If R, = R,, then ts(R,) < ts(R,) ‘ majorities intersect

© Hagit Attiya 236755 (2019-20) object simulations 49

Simulating R/W Registers from R/W
single-reader Registers

single-writer
binary-valued

atomic

snapshots

single-reader

single-writer
multi-valued

multi-reader '
"N single-writer

multi-valued

multi-reader

S multi-writer
multi-valued

© Hagit Attiya 236755 (2019-20) object simulations 50

©Hagit Attiya

26

Atomic Snapshots

°* m components update
* Update a single component ok
* Scan all the components
“at once” (atomically) scan
Vs Vg

Instantaneous view of the whole memory

very useful for designing shared-memory
algorithms

Has a wait-free implementation from
read/write variables

© Hagit Attiya 236755 (2019-20) object simulations 51

Atomic Snapshots: More Formally

Operations are update

— invocation scan;, returns 'V, ok
where V is an array of n values

— invocation update(i,d) where dis scan
a data value, returns ok

Legal sequences: if scan returns 'V,
then V[k] is the parameter of
latest preceding update(k,)

For example:

\ A

update(1,x) update(2,y) scan([a,x,y]) update(0,z) scan([z,x,y])

© Hagit Attiya 236755 (2019-20) object simulations 52

©Hagit Attiya

Atomic Snapshots: 15t Idea

Store each component in a separate variable

To update: write to the respective variable

To scan: Collect (read) values of the segments
twice

— If no segment is updated during the "double
collect" = this is a valid snapshot = return it

How to tell if a segment is updated?
— Tag each value with a sequence number (1,2,3,...)

© Hagit Attiya 236755 (2019-20) object simulations 53

Atomic Snapshots: Partial Algorithm

Update (k,v) Scan ()
. collect
A[k] = (v,seq; i) repeat
[read A[l],..,A[m] J

read A[l1l],..,A[m]
if equal

: : return A[l,.,m
Linearize: [1,..,m]

» Updates with their writes
» Scans inside the double collects

© Hagit Attiya 236755 (2019-20) object simulations 54

©Hagit Attiya

28

Atomic Snapshot: Linearizability

Double collect (read a set of values twice)

If equal, there is no write between the collects
— Assuming each write has a new value (seq#)

read A[1],...,A[m] read A[1],...,A[m]
write A[j]

Creates a safe zone, where the scan is linearized

© Hagit Attiya 236755 (2019-20) object simulations 55

Wait-free Atomic Snapshot

Embed a scan within the update & write its view to the segment
Scanner returns view obtained in last collect

Update (v, k) Scan ()
V = scan repeat m
A[k] = (v,seq; i,V) read A[l],./,A[m]
read A[l],/ ,A[m]
if equal
. . return A[l,..,m]
Linearize:
« Updates with their writes else record diff
« Direct scans as before if twice p; — EEYEITY
* Borrowed scans with source [return v,] scan

© Hagit Attiya 236755 (2019-20) object simulations 56

©Hagit Attiya

29

Atomic Snapshot: Borrowed Scans

Interference by process p;
And another one...
=>p, does a scan inbeteween

read A} read A ead Al read Al
write A[] write A[]

Linearizing with the borrowed scan is OK.

© Hagit Attiya 236755 (2019-20) object simulations

Complexity of Atomic Snapshots

Uses O(m) read/write variables (some are large)
Scan needs O(n?) reads and writes, why?

Update needs O(n?) reads and writes

© Hagit Attiya 236755 (2019-20) object simulations

©Hagit Attiya

30

Simulating R/W Registers from R/W
single-reader RegiSterS

single-writer
binary-valued N OTTIIC
single-reader snapshots
b

single-writer
multi-valued

multi-reader A
==\ single-writer

multi-valued

multi-reader
S multi-writer
multi-valued

© Hagit Attiya 236755 (2019-20) object simulations 59

Multi-Writer from Single-Writer:
Key Ideas

* Each writer announces each value it wants to
write to all the readers, by writing the value to
its own (single-writer multi-reader) register

* Each reader reads all the values written by the
writers and returns the latest one

* How to determine latest value?

— use timestamps (as in Bakery algorithm)

— since multiple processes generate timestamps,
need to coordinate timestamp generation

© Hagit Attiya 236755 (2019-20) object simulations 60

©Hagit Attiya

31

Multi-Writer from Single-Writer

v Wait-free by construction

Create linearization:

— Place writes in timestamp order

— Insert each read before the write following the write it returns

Add logical time to values

Write (v, X) Read (X)

read TS,,...,read TS, read R,,...,read R,
TS; = max TS, +1 return v, with

write (v,Ts;,i) to R; maximal <TS;,3j>

© Hagit Attiya 236755 (2019-20) object simulations 61

Multi-Writer from Single-Writer

v Wait-free by construction

Create linearization:

— Place writes in timestamp order

— Insert each read before the write following the write it returns

v’ Legality is immediate
v’ Real-time order is preserved since a read returns a value (with
timestamp) larger than all preceding operations

© Hagit Attiya 236755 (2019-20) object simulations 62

©Hagit Attiya

32

Simulating R/W Registers from R/W
single-reader RegiSterS

single-writer
binary-valued atomic

single-reader snapshots
single-writer
multi-valued
multi-reader
¥ single-writer
multi-valued

multi-reader
multi-writer
multi-valued

© Hagit Attiya 236755 (2019-20) object simulations 63

Multi-Reader from Single-Reader:
15t Attempt

Use n single-reader registers 0O 0 0 0 O

Val[o] Val[n]

write: write new value in each Val[i] register
read: return value from own Vall[i] register

write 1
Pw
write 1 write 1
to Val[1] read 1 to Val[2]
P4 A
read 1 read 0 new-old
from Val[] inversion
P2 A
read 0
from Val[2]
© Hagit Attiya 236755 (2019-20) object simulations 64

©Hagit Attiya

33

Readers Must Write

Theorem: In a wait-free simulation of a multi-reader
single-writer register from single-reader single-writer

registers, at least one reader writes

Proof: Suppose, in contradiction, there is an
algorithm in which readers never write
— p,, is the writer, p; and p, are the readers
— initial value of simulated register is 0
— §, are the single-reader registers read by p,
— S, are the single-reader registers read by p,

© Hagit Attiya 236755 (2019-20) object simulations 65

Readers Must Write

* Consider execution in which p , writes 1 to
the simulated register, by a sequence of
writes, w,,...,w,, to the single-reader registers
— Each of them is either in S; or in S, (but not both)

write 1
Pw A A A A
write wy write w; write wq . write w
© Hagit Attiya 236755 (2019-20) object simulations 66

©Hagit Attiya

34

Readers Must Write

v;' denotes the value returned if p; reads after w,

For each reader p, the value of the simulated register
"switches" from 0 (old) to 1 (new), at some point

" v, l==v1=0,v ==y 1=1

= w, is a write to a register in S,

" v2l=v,2=. =y, =0, v2i=..=v?=1
= w, is a write to a register in S,

write 1
Pw A A A A
write w, write w; write W, write wy
Py s
' read v|
© Hagit Attiya 236755 (2019-20) object simulations 67

Readers Must Write

Assumea<b

Since readers do not write, they return the
same values as when running alone

= new-old inversion, not linearizable

write 1
Pw A A A A
write wy write w, write w,,, write w,
P read v,'= 1
P2 read v,2= 0
© Hagit Attiya 236755 (2019-20) object simulations 68

©Hagit Attiya

35

Corrected Multi-Reader Algorithm

Val[0] Val[n]

In the simulated read, 0 0 0 0 O
announce the value to be returned

Report[i,j]

Check values returned by previous
reads

Sequence numbers allow to compare returned values

© Hagit Attiya 236755 (2019-20) object simulations 69

Writer's Algorithm

Val[o] Val[n]

* get the next sequence# 0 0

— an integer, incremented Report[i,j]
by 1 each time

* write (value, sequence#)
to Val[1],...,.Val[n]
(one copy for each reader)

© Hagit Attiya 236755 (2019-20) object simulations 70

©Hagit Attiya

36

Reader p;'s Algorithm

Val[0] Val[n]
* read (value, sequence#) 0 0
from Valli] Report[i]

* read (value, sequence#)
from Report(j,i]

* pick pair with largest
sequence#
* write that pair to row i of Report

* return value component of that pair

© Hagit Attiya 236755 (2019-20) object simulations 7

Correctness of Multi-Reader Algorithm

* Obviously wait-free
— Write: n primitive writes
— Read: n+1 primitive reads and n primitive writes

* To prove linearizability, show a permutation of
the high-level operations that is clearly legal
and then prove it preserves real-time order of
non-overlapping operations

© Hagit Attiya 236755 (2019-20) object simulations 72

©Hagit Attiya

37

Constructing the Permutation

* Put all writes in the order they occur in the execution
— Single writer = writes do not overlap

* Consider the reads in the order of their responses in
the execution

— read R reads from write W if W generates the sequence#
associated with the value R returns

— place R immediately before the write that follows W
* By construction, the permutation is legal

© Hagit Attiya 236755 (2019-20) object simulations 73

Preserving Real-Time Order

* write-write: by construction

* read-write: R precedes W in the execution.
Then R cannot read from W or any later write.
= Ris placed before W in the permutation

* write-read: W precedes R in the execution.
Then R reads W's sequence# or a larger one from Val[]
and reads from W or a later write.
= Ris placed after W in the permutation

¢ read-read: R; by p;precedes R; by p; in the execution.
Then p; reads R;'s sequence# or a larger one from
Report[ij].
= R, reads from the write that R, read from or a later one
= R; is placed after R;in the permutation

© Hagit Attiya 236755 (2019-20) object simulations 74

©Hagit Attiya

38

Simulating R/W Registers from R/W
single-reader RegiSterS

single-writer
binary-valued

atomic
single-reader snapshots
single-writer
multi-valued

multi-reader
N single-writer
multi-valued

multi-reader
8 multi-writer
multi-valued

© Hagit Attiya 236755 (2019-20) object simulations 75

Multi-Valued From Binary

The simulated register takes values {0,...,K-1}

Binary approach: a different binary register stores
each bit of the multi-valued register being simulated

* Read algorithm reads all registers and returns the
resulting value

* Write algorithm writes the new bits in some order

Errors when the reader overlaps a slow write and
sees some new bits and some old bits

Hagit Attiya 236755 (2019-20) object simulations 76

©Hagit Attiya

39

A Unary Approach

Use an array of K binary registers, B[0..K-1]
— value vis represented with B[v] = 1 and other entries 0

* Read algorithm: read B[0], B[1],..., until finding
the first 1; return the index

* Write algorithm: set new entry of B and zero the
old entry of B

OK if reads and writes don't overlap.

0 v K-1

0O 0 1. 0 0 O

Hagit Attiya 236755 (2019-20) object simulations 77

)

When Reads and Writes Overlap...

Problem: reader may never finda 1in B

Solution: write algorithm only clears (sets to 0) entries
that are smaller than the entry that is set (to 1)

0 v K-1
O 01 0 O O

© Hagit Attiya 236755 (2019-20) object simulations 78

©Hagit Attiya

40

New-old inversion

read 2 read 1
read 0 reaﬁo reaﬁ read 0 read 1
from B[0] from B[1] from B[2] from B[0] from B[1]
write 1 write 2
....................... T e -
write 1 write 1 write 0
to B[1] to B[2] to B[1]
0 1 2 K-1

O 0 0 0 O O

© Hagit Attiya 236755 (2019-20) object simulations

79

Corrected Algorithm

Read: scans up to first 1, then read down to check those entries
are still 0; return smallest index set during downward read

Write(r): set r to 1 and then set to 0 entries smaller than r

Clearly, wait-free:
» writer does at most K (primitive) writes
* reader does at most 2K-1 (primitive) reads

0 K-1
0O 01 0 0 O

© Hagit Attiya 236755 (2019-20) object simulations

80

©Hagit Attiya

41

Linearization Proof for
Multi-Valued Construction

Fix an admissible execution of the algorithm
— Primitive operations (binary read / write) are atomic

We give a permutation of the (high-level) operations
that is legal (by construction)

Show it respects real-time ordering of non-overlapping
operations

...................................... read 1 ansaan
reaﬁo reaﬁ1 reaﬁo
from B[0] from B[1] from B[0]
. erte 1 ..
wﬁ%'] wriéo
to B[1] to B[0]
© Hagit Attiya 236755 (2019-20) object simulations 82

Reads-From Relations

Primitive read r of a binary register B[v] reads from
primitive write w to B[v] if

w is the latest write to B[v] that precedes r in the execution
High-level read R reads from high-level write W if

R returns v and W contains the primitive write that

R's last primitive read of B[v] reads from

rea%O Féé 1 e rea 0

-from B[0]

L
w%1 wriéo ==> low-level reads-from
to B[1] to B[0] — high-level reads-from
© Hagit Attiya 236755 (2019-20) object simulations 83

©Hagit Attiya

42

The Permutation

Primitive read r of a binary register B[v] reads from
primitive write w to B[v] if
w is the latest write to B[v] that precedes r in the execution
High-level read R reads from high-level write W if
R returns v and W contains the primitive write that
R's last primitive read of B[v] reads from
* Place (high-level) writes in the order they occur
— no concurrent writes
* Consider each (high-level) read R in the order they occur
— no concurrent reads

* If Rreads from write W, place R immediately bef
that follows W in the permutation

construction
© Hagit Attiya 236755 (2019-20) object simulations 84

Permutation Preserves
Real-Time Order

* write-write: OK, by construction
* read-write: OK, since cannot read from a later write
* Two cases remain:

— write-read
— read-read

Lemma: Assume a high-level read R returns v, and R
read of any B[u], u < v, during its upward scan, reads

from a primitive write contained in high-level write W
Then R does not read from a write that precedes W.

© Hagit Attiya 236755 (2019-20) object simulations 85

©Hagit Attiya

43

Pictorial Explanation of Lemma

during upward top of upward

> downward scan

scan, u<v / scan or during

\ read v

A A
read O read 1

A
write 1 write 0
to B[v] to B[u]

Lemma: Assume a high-level read R returns v, and R
read of any B[u], u < v, during its upward scan, reads

from a primitive write contained in high-level write W
Then R does not read from a write that precedes W.

5 (2019-20) object simulations 86

© Hagit Attiya 236755 (20

Proof of Lemma

during upward top of upward
scan or during

.. scan, u<v
By contradiction > / downward scan
_— _\ readv b
A A
read 0 read 1
from B{u] _fromBIv]
write v W write w > u
A
write 1 write 1 write 0\ 5 |,
to B[] to B[w] to B[u]

Lemma: Assume a high-level read R returns v, and R
read of any B[u], u < v, during its upward scan, reads

from a primitive write contained in high-level write W
Then R does not read from a write that precedes W.

2019-20) object simulations

© Hagit Attiya 238785 (20

87

©Hagit Attiya

44

Proof of Lemma

during upward top of upward

. scan, u<v i
By contradiction scan or during
> downward scan

— \ read v

A A
read O read 1

Hmﬂlm

write v W vrite w = u” If w>v?
A A A
write 1 write 1 write 0 write 0
to B[v] to B[w] to B[v] to BJu]

Lemma: Assume a high-level read R returns v, and R
read of any B[u], u < v, during its upward scan, reads

from a primitive write contained in high-level write W
Then R does not read from a write that precedes W.

2368755 (2019-20) object simulations

© Hagit Attiya 236755 (20

88

©Hagit Attiya

