236755

Topic 5:
Sub-Consensus Problems
Winter 2019-20

Prof. Hagit Attiya

Problems Weaker than Consensus

* Take fewer rounds in the synchronous model

* Have wait-free algorithms in the asynchronous
model, using only reads and writes

e But there are still limitations

Two examples:
* Set agreement
» Adaptive / non-adaptive renaming

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 2

©Hagit Attiya

k-Set Agreement

Each process starts with an input x; and has to
decide on an output y;, such that

* k-agreement: at most k different values are
decided

* Validity: every decided value is an input

There is a wait-free algorithm for k-Set

Agreementifandonlyifk > n

Algorithm is trivial...

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

Impossibility of
(n — 1)-Set Agreement

Given a wait-free (n — 1)-set agreement algorithm

C,,= all executions such that:

* Only processes py, ..., Pm—1 take steps
* Process p; has input i

e Allvalues 0, ..., m — 1 are decided

We show that C,, # @, for restricted executions

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

©Hagit Attiya

Immediate Snapshot (IS) Execution

A sequence of blocks: sets of processes that
— Write together and then
— Scan (read everything) together

la} {a}{ana}{a}{a}{a}{a}

IS Executions: Indistinguishability

* Indistinguishable executions: a ~,, a,
if process p has the same view in aand in a’

{a} {a}{a'a7a} {a}
{a} {a}{a}{a a} {a}

©Hagit Attiya

IS Executions:
Seen & Unseen Processes

* Indistinguishable executions: a ~,, a’,
if process p has the same view in a and in '

e A process is seenin « if it appears in some
other process' view; otherwise, it is unseen

{a} {s} {22} {a}

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

IS Executions: AR Lemma

* Indistinguishable executions: a ~,, a,
if process p has the same view in a and in '

* A process is seen in « if it appears in some
other process' view; otherwise, it is unseen

If p; is seen in an IS execution a by processes P,
then there is a unique IS execution a’ # a by P s.t.

!
* A~p_p @

Also, p; is seenin a’

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

©Hagit Attiya

AR Lemma: Proof Sketch (Case 1)

p; not alone in its last seen round (e.g., yellow)

{a} {a}{a}{sa}{a} ,
{a} {a}{a}{a}{a}{a}

If p; is seen in an IS execution a by processes P,

then there is a unique IS execution a’ # a by P s.t.

SR i

Also, p; is seenin a’

AR Lemma: Proof Sketch (Case 2)

p; alone in its last seen round (e.g., blue)

la} {a}{a}{sa}{a} ,
{a} {a}{ana}{a}

If p; is seen in an IS execution a by processes P,

then there is a unique IS execution a’ # a by P s.t.

!

* A~p_p @

Also, p; is seenin a’

©Hagit Attiya

Set Agreement Lower Bound

C,= all IS executions such that:

* Only processes py, ..., Pm—1 take steps

* Process p; has input i

e Allvalues 0, ..., m — 1 are decided Relies on

. . Cy, being
The sizeof C;;;,, 1 < m < n,is odd finite

Proof by induction onm
C contains one IS py-solo execution = decide 0
The induction step shows |C,,,| = |C,p41](mod 2)

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 1"

|Cm| = |Cm+1|(m0d 2)

X411 = alltuples (a,p;), IS execution a, in which
processes # p; decide {0, ..., m — 1}

| Xm+1] = [Cpy1/(mod 2)

!

m+1 S X1 such that {0, ..., m} are decided in
1-1
Claim 1. X;, 11 < Cinyq

= For (a,p;) € X;,11, @ € Cypy1, P; is the unique process
deciding m in & and there is no other (a,p;) € X;, 4,

A Fora € Cy,41, @ unique process p; decides min a,
giving a unique (a,p;) € X/, 41

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 12

©Hagit Attiya

|Cn| = 1 Xm+1] = [Cpg1](mod 2)

Xm+q = all tuples (a,p;), IS execution a, in which
processes # p; decide {0, ..., m — 1}

| Xm+1l = |1Cp411(mod 2)

Xins1 € Xppeq such that {0, ..., m} are decided in a

Claim 2. | X441 \ X741 is even

(a,p;) € X1 \ Xjpe1 = p; decidesv # mina
= a unique process p; # p; also decides v in
= a partitioning of X,,,;1 \ X;,4+1 into pairs

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 13

|Cm| = |Xm+1| = |Cm+1|(m0d 2)

X+ = all tuples (a,p;), IS execution a, in which
processes # p; decide {0, ..., m — 1}

| Xin+1| = [Crn[(mod 2)

15t subset: (a,py,) € X;n41 and p,, is unseen in a

In a prefix of a, processes py, ..., P;m—1 run alone &
decide {0, ...,m — 1}

= 1t subset has 1:1 mapping with C,,, and hence,
the same size

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 14

©Hagit Attiya

|Cn| = 1 Xm+1] = [Cpg1](mod 2)

Xma1 = all tuples (a,p;), IS execution «, in which
processes # p; decide {0, ..., m — 1}

| Xm+1l = |Cpy|(mod 2)

2" subset: (a,p;) € X1, Piy L # M, is unseenin a

In a, processes Py, ..., Pi—1, Pi+1, ---» Pm run alone
and cannot decide i (by Validity)

= contradiction
= 2"d subset is empty

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 15

|Cm| = |Xm+1| = |Cm+1|(m0d 2)

X+ = all tuples (a,p;), IS execution a, in which
processes # p; decide {0, ..., m — 1}

| Xim+1| = [Cn[(mod 2)
39 subset: (a,p;) € X;n41 and p; is seenin

AR lemma = 3 unique a’ # a in which p; is seen,
s.t.,, @' and a indistinguishable to processes # p;
= In a’, they decide {0, ..., m — 1}

= (a',p;) € X1

= The size of the 37 subset is even

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 16

©Hagit Attiya

|ICin| = [Xim41| = [Cpt1](mod 2)

Xma1 = all tuples (a,p;), IS execution «, in which
processes # p; decide {0, ..., m — 1}

| Xim+1| = [Cn[(mod 2)

|Cm+1| = |Xm+1| = |Cm|(m0d 2)

By induction on |C,,|, |Cyy41] is odd
= 3 execution in which {0, ..., m} are decided
Contradiction to n-agreement, whenm =n

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 17

Use More Processes?

Can n > k processes solve k—set agreement with k crash
failures?

Simulate an f-tolerant n-process algorithm by a wait-free
(f+1)-process algorithm

k-tolerant k—set agreemer;t implies
wait-free (n — 1)—set agreement

@

. _— v N\

O -
contradiction 9

O T o

O

o

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 18

©Hagit Attiya

10

BG Simulation

All f+1 processes simulate all steps of all n processes

Agree on each step???

Only need safe agreement!

Q00000
EEEENEN
EEEEEN
EEEEEN
EEEEEN

© Hagit Attiya

236755 (2019-20) 05: subconsensus tasks

Safe Agreement: Specification

Separate the voting / negotiation on a decision
from figuring out the outcome

Two wait-free procedures:

Propose(view)
#.
ack «e——

Propose and Read

Read()

. —
Validity of non-@ views view or @
Agreement on non-@ views returned by Read

Termination:
If all processes that invoked Propose return,

then Read returns non-@ view

© Hagit Attiya

236755 (2019-20) 05: subconsensus tasks

safe
agreement
object

20

©Hagit Attiya

11

BG Simulation: Outline

Try to simulate a step (calculate locally and propose)
If read @, step is “unresolved”, move to next process

d Some faulty process accounts for unresolved step

Q00000
EEEEEN
EEEREEN
EEEEEN
EEEENN
EEEENEN
EEEENEN

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 21

BG Simulation: Termination

If some process decides, take its output

Good for some problems (e.g., consensus and set
consensus) but not for others (e.g., renaming)

000000
EEEEEN
EEEEEN
EEEEEN
EEEEEN
EEEEEN
EEEENEN

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 22

©Hagit Attiya

12

Safe Agreement: Implementation

Use an atomic snapshot object and an array R

Propose(V)
update(V)
scan
write returned view to R[i]

Read() returns view
find minimal view C written in R
it all processes in C wrote their view
& it contains C
return C // or min(C) if single value needed
else return @

U u s U U S

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 23

Safe Agreement: Safety

Let C be the minimal view returned by any scan

Can prove that all non-@ views are equal to C

Must be a view of some process in C

Gu)ss uu s

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 24

©Hagit Attiya

13

Safe Agreement: Liveness

Clearly, both procedures are wait-free
But Read sometimes returns
a meaningless value, @

If some process invokes Propose, then after all
processes that invoke Propose return,
a Read returns a non-@ value

Jy u U £ s U U S

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 25

Hierarchy? What Hierarchy?

For any integers k; = k-, there are two objects
X1, with consensus number k;, and

X,, with consensus number k-, such that
X1 cannot wait-free implement X,

We’ll show for k; = kand k, =1
2-set agreement object: returns one of the first
two values proposed sropose(\,amg; o

agreement

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 26

©Hagit Attiya

14

Consensus Number of 2-Set Objectis 1

Two processes cannot solve consensus using 2-set
agreement objects and read / write registers

Bivalence-style proof

Interesting case when py and p; apply operations to

the same 2-set agreement object X

e Case 1: No prior operations on X Iy@\Q
= Return self-arguments...

* Case 2: Propose (V) applied to X before C
= Return V to both operations...

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 27

Consensus Objects Do not Help
with Set Agreement

2k + 1 processes cannot solve 2-set agreement,
with k-consensus objects and read / write registers

Otherwise, BG simulation (extended to consensus
objects) allows 3 processes to simulate this
algorithm using only read / write registers

Contradicting the impossibility of a wait-free
3-process algorithm for 2-set agreement

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 28

©Hagit Attiya

15

2-Set Agreement Object

* Has consensus humber 1

* Gives a (trivial) wait-free algorithm for 2-set
agreement, for any number of processes

= 2k + 1 processes cannot wait-free implement 2-
set agreement objects with k-consensus objects
and read / write registers

Interesting recent extensions to deterministic
objects. Even number of processes?

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 29

M-Renaming

Each process starts with an unbounded name x;
and decides on a new name y; € {0, ..., M — 1},
such that

* Uniqueness: no two processes get the same
new name

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 30

©Hagit Attiya

16

Bounds for Non-Adaptive Renaming

nisa

M| 1..n n+l.. 2n2 2n-1,.
prime

nis not % o
a prime x 4 ? / V
power B

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 31

Weak Symmetry Breaking (WSB)

Each process starts with an unbounded name x;
and decides on y; € {0,1}, such that

* not all processes decide O
* not all processes decide 1

WSB <& (2n-2)-renaming

If new name < n output 1, otherwise, output O

WSB solvable <& nis a prime power

© Hagit Attiya 236755 (2019-20) 05: subconsens 32

©Hagit Attiya

17

Adaptive M-Renaming

Each process starts with an unbounded name Xx;
and decides on a new name y; € {0, ..., M — 1},
such that

* Unigueness: no two processes get the same
new name

* Adaptiveness: if k processes participate,
names in {0, ..., f (k)}

(2k — 2)-adaptive renaming = k-set agreement

= no wait-free adaptive (2k — 2)-renaming

Hagit Attiya ubconsensus tasks

Adaptive Step Complexity

The step complexity of the algorithm depends
only on the number of participating processes

Total contention: The number of processes that
(ever) take a step during the execution.

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

©Hagit Attiya

18

Detecting Contention: Recall Splitter

k processes

< k-1 processes

left| < k-1 processes

A process stops if it is alone in the splitter
O(1) steps

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 36

Putting Splitters Together

* A triangular matrix of
; right
splitters '
* Traverse array, starting |,
at the top left,

according to the values
returned by splitters

* Until stopping in some
splitter

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 49

©Hagit Attiya

19

Putting Splitters Together
k
E:I

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 50

> one process does not
go in each direction

= After < k movements, a
process is alone in a

splitter
P k

= A process stops at row,
column < k

= At most O(k) steps

Putting Splitters Together:
k? -Renaming

Diagonal association of

names with splitters ;&E V‘ L
0)-14 .

=>Take a name < k?

“

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 51

©Hagit Attiya

20

Store & Collect

* Each process has to store information
(periodically)

* Processes col lect the recent information
stored by all processes (pairs of {(id, val))

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

52

Better Things with a Splitter: Store

* Associate a register

with each splitter

[4]

11

where it stops

* Mark a splitter if
accessed by some

process i

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

1
e A process writes its id q

6

10

12
+ value in the splitter i
e

53

©Hagit Attiya

21

Better Things with a Splitter: Collect

* Associate a register
with each splitter

access k? splitters...

10

112 % 7] 11
* The current values can i
be collected from the i‘i 8|12
associated registers —_—
g 6 Lk 13
* Going in diagonals, :
until reaching an 10 Lh
unmarked diagonal %
© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 54
Even Better Things with a Splitter:
Store and Collect
* The f|r§t store accesses L5 . - Wi
< k splitters
“TIEE
* A collect may need to 6 . 13

Can we do better?

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

55

©Hagit Attiya

22

Binary Collect Tree

lef ight

v

© Hagit Attiya 236755 (2019-2{(;)5?2 subconsensus

Binary Collect Tree

* To store: traverse the
tree until stopping in
some splitter

* Later, write in the
register associated
with this splitter

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

©Hagit Attiya

23

Binary Collect Tree

* To collect: DFS
traverse the marked
tree, and read the
associated registers

 Marked tree contains
< 2k-1 splitters

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

Size of Marked Sub-Tree

In the inorder sequence
of the marked sub-
tree...

There is an acquired
node (where a process
stops), between every
pair of marked nodes

= < 2k+1 nodes

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

©Hagit Attiya

24

Simple Things to Do
with a Linear Collect
* Every algorithm with f(k) iterations of collect
and store operations can be made adaptive

* E.g., double-collect atomic snapshots
O(k) iterations = O(k?) steps

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

60

Be More Adaptive?

* In a long-lived algorithm...
...processes come and go.

* What if many processes start the execution,
then stop participating?

&, §

...then start again...
...then stop again...

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

61

©Hagit Attiya

25

Long-Lived Adaptive M-Renaming

* A process has to acquire a unique new name in
{0,..,M-1}; later, it may release it
* The range of new names should be small

— Preferably adaptive: depending only on the number of
active processes

— Must have M > 2k-1

Renaming is a building block for adaptive algorithms
— First obtain names in an adaptive range
— Then apply an ordinary algorithm using these names

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 62

Who's Active Now?

Interval contention during an operation:
The number of processes (ever) taking a step
during the operation

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 63

©Hagit Attiya

26

Who's Active Now?

Point contention of an operation:
Max number of processes taking steps
together during the operation

Clearly, point contention < interval contention

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

64

Recall Safe Agreement

Wait-free Propose and Read Propose(view)|
ack «— safe
Use an atomic snapshot object and array R s
Propose(view) :
update(view) Read() object
scan i — >
write returned view to R[i] view or @

Read() returns view

find minimal view C written in R

if all processes in C wrote their view
& it contains C
return C

else return @

Validity and Agreement on non-@ views returned by Read

Termination: If all processes that invoked Propose return,
then Read returns non-@ view

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

65

©Hagit Attiya

27

Safe Agreement: Even Better

A Read by some process in C returns a non-@ value
E.g., the last process in C to write its view
These processes are called winners

u u s U U s

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 66

Safe Agreement: Concurrency

All processes in C execute

Propose concurrently
i : Propose(view)|
In particular, all winners ack L e
agreement
Read () object
Use a doorway variable PE——
A "~ Yy view or @
Inside to avoid
unnecessary update / scan
(by non-winners)
236755 (2019-20) 05: subconsensus 67

© Hagit Attiya tasks

©Hagit Attiya

28

Safe Agreement: Concurrency

All processes in C execute
Propose concurrently

In particular, all winners

Use a doorway variable
Inside to avoid

Propose(view)
ﬁ.
S

true / false

Read()

view or @

adaptive
safe
agreement
object

unnecessary update / scan

(by non-winners)

236755 (2019-20) 05: subconsensus

© Hagit Attiya tasks

Adaptive Safe Agreement

Propose(info)

iIT not inside then
inside = true
update(info)
scan
write returned view
return(true)

else return(false)

Propose(view)
#.

——
true / false

Read()

view or @

adaptive
safe
agreement
object

Concurrency: If a process returns Fal se then some
“concurrent” process is accessing the object

236755 (2019-20) 05: subconsensus

© Hagit Attiya tasks

69

©Hagit Attiya

29

© Hagit Attiya

Long-Lived Adaptive Safe Agreement

Enhance the interface with

Propose(view)
—_—

Booiean,c long-lived
Read(c) adaptive
 e— safe
view or ¢ agreement

Release(c) object

a generation number
(nondecreasing counter)

Validity, agreement and termination as before but
relative to a single generation

Concurrency: If a process returns false, c then some
process is concurrently in generation c of the object

236755 (2019-20) 05: subconsensus

tasks 70

© Hagit Attiya

Long-Lived Adaptive Safe Agreement

Synchronization: processes are inside the same
generation simultaneously

=Their number < point contention

= Can employ algorithms adaptive to total
contention within each generation
= e.g., collect, atomic snapshots

236755 (2019-20) 05: subconsensus

tasks a

©Hagit Attiya

30

Long-Lived Adaptive Safe Agreement:

Implementation

* Many copies of one-shot
safe agreement
— count points to the current copy

adaptive
safe

agreement

object

N0 (n O

* Winners of each copy are synchronized
— Increase count by 1.
— Monotone...

When all processes release a generation, open the
next generation by enabling the next copy

236755 (2019-20) 05: subconsensus

tasks 2

© Hagit Attiya

Catching Processes

with Safe Agreement
* When processes access an adaptive long-lived
safe agreement object simultaneously,

at least one wins w

* If a process accesses an adaptive long-lived
safe agreement object and does not win,
some other process is accessing the object

Good for adaptivity...

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 73

©Hagit Attiya

31

Things to do with Long-Lived Safe
Agreement: Renaming

oo ey im -

return (4, rank in C)

Agreement in each long-lived safe agreement object
= Uniqueness of names.

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 74

Renaming: Size of Name Space

return (4, rank in C)

Concurrency for each long-lived safe agreement object
= An object is skipped only due to a concurrent process

= A process skips < r objects
= ris the interval contention

= Range of names = r?

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 75

©Hagit Attiya

32

Renaming: Size of Name Space

!,
-

P’sinterval ...
— P/sinterval ...
P, skips because of P, _ P/sinterval ...
= P;skips because of P,
= P, skips because of ...
They all overlap
© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

We promised point
contention .

Renaming: Complexity
& Size of Name Space

Proof is subtle since a process skips
either due to a concurrent winner
or due to a concurrent non-winner in C

(which it can meet again later in the row)

* Use a potential-function proof to show that a
process skips < 2k-1 objects

— k is the point contention

=Name = k?
=f(k) step complexity
© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

©Hagit Attiya

Store

Place objects in a row

2 2n-1

L]
Pu €C

Agreement on set of candidates and uniqueness
of copies

=p, Writes the values of all candidates in a
register associated with the object

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 78
2 2n-1

* Go over the associated registers and read...

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 79

©Hagit Attiya

34

Collect: A Problem

B [# &

* p,and all other operations complete.

* A collect still has to reach the object in which
p,, has written its value!

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

80

Bubble-Up

* Before completing an operation,
move information from far away objects
to the top.

57

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

81

©Hagit Attiya

35

Bubble-Up

write 1L to C[p][t] 7/ working on it
last[t] = p
Clpl[t] = Gather(t)

view

last []

CM
14 view
CIn
© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks 82
Bubble-Up
write 1 to C[p][t] // working on it t t+1 t+2
last[t] = p view

Clpl[t] = Gather(t)

Gather(t)
q = last[t]
tmp = C[q][t]
if tmp == L then
tmp = Gather(t+1l) n view[t]
return tmp

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

Iast[_h

L

C[1

| view

CIn

83

©Hagit Attiya

36

Bubble-Up

write 1L to C[p][t] 7/ working on it
last[t] = p
Clpl[t] = Gather(t)

Gather (t)

q = last[t]

tmp = Cla][t]

if tmp == L then

tmp = Gather(t+l) n view[t]
return tmp
¢

O

After storing in r, bubble-up fromr to 1
To collect, Gather (1)

© Hagit Attiya 236755 (2019-20) 05: subconsensus tasks

©Hagit Attiya

