Blunting an Adversary Against
Randomized Concurrent
Programs with Linearizable
Implementations

Hagit Attiya (Technion)
Constantin Enea (Ecole Polytechnique)
Jennifer Welch (Texas A&M University)

Using an Abstract
Multi-Writer Register

Implemented from
Single-Writer Registers

Linearizability Preserves
Trace Properties

If @ is a property of a trace, it is preserved when atomic
object is replaced with a linearizable implementation

Trace
inclusion

s

Linearizability

Concrete object
(implementation
[Herlihy, Wing]

But not Hyper-properties

Linearizability does not preserve
properties of sets of traces

E.g., probability distributions

Trace
inclusion

T

Linearizability

Concrete object

[Golab, Higham, Woelfel, STOC 2011]
(implementation

Example w/ MWSR Register

p, terminates with probability > % w/ atomic mwsr register

Example by Noa Schiller, based on [A, Enea, Welch]
and [Hadzilacos, Hu, Toueg, PODC 2021]

Example w/ MWSR Register

Po @ @ > Po ® o

R«<0 C «? R«<0 C(C &?
P1 ® - D1 @
R« 1 R« 1
Do ® o— Do ® o—
OQorl«< R?« (C 1l <R 7« C

p, terminates with probability > % w/ atomic mwsr register

Example w/ MWSR Register
o

Po ® ® : Po ®
R«<0 e\ef\Terminate w.p. % R « C

P1 ® P1 .
R <1 \ \ — Terminate w.p. %;
P2 g o— [9)) O o

OorlX\B)%—C 1< R 7« C

p, terminates with probability > % w/ atomic mwsr register

Using VA Implementation

A strong adversary can make p, always loop forever

Using VA Implementation

pl ® Write R ...

A strong adversary can make p, always loop forever

Example w/ VA: Coin =1

Po o Write Ry vy
R, < (0,1,0)
P1 . Write R P
R, « (1,2,1)
D, .e—e—REAd R . Returns1
1,0,0) « R 1,2,1) « R

A strong adversary can make p, always loop forever

Example w/ VA: Coin =1

R, < (0,1,0) Loop
D1 . Write R P fEvavEr
Rl < (1;2;1>
Dy o—e—Read R . @3 1 .ReadD R
1,0,0) « R 1,2,1) « R

A strong adversary can make p, always loop forever

Example w/ VA: Coin=0

Do .JALr_Lte_R._.é ___
R, « (0,1,0)

D1 . Write R . .
(112;1) « Rl
D, ..e—e—~ReEAd R .Returns |
1,0,0) « R 1,0,1) « R

A strong adversary can make p, always loop forever

Example w/ VA: Coin=0

Do .JALr_Lte_R._.é ___
R, « (0,1,0)

D1 . Write R . . R
(l,ZM Loop
Dy .o—e—REAA R . Rﬁins 1 Bead>ﬂ<— () forever
1,0,0) <R 1,0,1) «

A strong adversary can make p, always loop forever

Strong Linearizability

Linearization points are prefix preserving

Preserves probability distributions under

strong adversaries

Strong
linearizability

N

Concrete object

(implementation) [Golab, Higham, Woelfel, STOC 2011]

Many Objects Don’t Have Strongly
Linearizable Implementations

Counter-example = V&A MW register is not strongly linearizable

In fact, there is no wait-free strongly-linearizable MW register
implementation from SW registers

Also, no wait-free strongly-linearizable snapshot implementation

[Helmi, Higham, Woelfel, PODC 2012]

No message-passing simulation of a register
[A, Enea, Welch, DISC 2021] [Chan, Hadzilacos, Hu, Toueg]

Use Randomization
to Blunt the Adversary

termination

I: with high

probability

E.g., Blunting w/ One Coin Flip

p, terminates with constant probability with VA2

Tail Strong Linearizability

ldentify a preamble of the operation, after which, it is

mapped in a prefix-preserving manner (“strongly linearizable”)

| Write(v,X)

read TS,,...,read TS ,
TS; = max TS, +1

write (v,TS;,i) to R;
Read (X)

read R,,...,read R,

v = v; with maximal <TS,, j>

. return v /"‘

Q 4

& =

Effect-free preamble doesn’t impact concurrently-running processes

Blunting

Tail strongly linearizable objects with an effect-free preamble
 Repeat the preamble k times
 Randomly pick one of the iterations to continue with

/,/ \\\
 Write(v,X)

read TS,,...,read TS ,

TS, = max TS, +1

write (v,TS;,i) to R;

Read (X)

read R,,...,read R_;

vl = v. with maximal <TS., j>

read EO, .., read E:_l

v2 = v. with maximal <TS., j>

[Teturn VI or v2 with prob. -

\\\)

— //'

Blunting, Specifically

Tail strongly linearizable objects with a read-only preamble, e.g.,

 Multi-reader registers from single-reader registers [istaeli, Li 1993]

 Multi-writer registers from single-writer registers [vitanyi, Awerbuch 1986]
 ABD, Snapshots [afek et al]

For an n-process program P with r coin flips, using tail-strongly-
linearizable objects O with effect-free preambles & any k = 7,

n-1
Pr[0%] < Pr[0,] + (Pr[0] = Pr[O,]) | 1 — (k — T)

\ NG :

probability of a bad outcome B probability of B when P
when P uses k-preamble- uses atomic versions of

iterated versions of objects in O objects in O

probability of B when P
uses objects in O

E.g., in our Example

p, terminates with probability > /5 with VA?

and > 2/, with VA3 4 A

e e | [Y
\ ! e 2 1 n—-1
Pr[0%] < Pr[0,] + (Pr[0] — Pr[O,]) (1 — (-))

\

[probability of a bad outcome B] [probability of B when P

when P uses k-preamble- uses atomic versions of

iterated versions of objects in O objects in O uses objects in O

——

probability of B when P]

Let X be the event that all random choices in O*objects return an iteration of the
preamble that does NOT overlap any random step of the program, then

Pr[0%] = Pr[0%|X]-Pr[X] + Pr[O%|-X]- (1 — Pr[X])

when chosen preambles don’t overlap any program
< PI'[Oa] PI'[X] random steps, O objects behave like atomic objects

when chosen preamble overlaps program random

step, 0% objects are no worse than O objects + PF[O]) (1 o PI'[X])

Since Pr[X]| = (kki)n_l, rearrangement gives that

Pr[0%] < Pr[0,] + (Pr[0] — Pr[O,]) | 1 —

\

probability of a bad outcome B probability of B when P .
: : probability of B when P
when P uses k-preamble- uses atomic versions of

iterated versions of objects in O uses objects in O

objectsin O

Wrap-Up

Write strong linearizability [Hadzilacos, Hu, Toueg, PODC 2021]
does not help with our example

Tradeoff between # iterations and decreased prob. of bad outcome
Reduce # random steps considered in the analysis, based on
program structure (e.g., communication-closed layers)

Object implementations
w/o effect-free preambles

-

Transactions &
Cryptographic protocols

