Preserving Hyperproperties when using Concurrent Objects

Hagit Attiya (Technion)

Constantin Enea (Ecole Polytechnique)

Jennifer Welch (Texas A&M University)

Abstraction

E.g., Using an Abstract Multi-Writer Register

Implemented from Single-Writer Registers

Or in Message-Passing

```
Write(v)
                                        Program P
bcast ("query") & wait
   for > n/2 replies
t = largest timestamp
bcast ("update", v, t+1) & wait
   for > n/2 acks
Read()
bcast ("query") & wait
   for > n/2 replies
(v,t) = pair with largest t
bcast ("update", v, t) & wait
   for > n/2 acks
return v
              [A, Bar-Noy, Dolev]
              [Lynch, Schwarzmann]
```

Refinement (Trace Inclusion)

Obj ≤ Spec iff ∀ program P, Traces(P X Obj) ⊆ Traces(P X Spec)

Refinement Preserves Trace Properties

Obj ≤ Spec iff ∀ program P, Traces(P X Obj) ⊆ Traces(P X Spec)

If φ is a property of a trace, it is preserved when the atomic object is replaced with a linearizable implementation

Simulations

Prove refinement by relating states of abstract and concrete objects

Forward $\begin{array}{c} cs_1 & \longrightarrow cs_2 \\ sim & sim \end{array}$ $as_1 & \longrightarrow \exists as_2$

Forward simulations ≡ proofs based on **explicit** linearization points, e.g., universal constructions using consensus objects or Compare&Swap

Simulations

Prove refinement by relating states of abstract and concrete objects

In some cases, find an after-the-fact relation (e.g, based on timestamps)

Linearizability can always be proved with forward & backward simulation [Lynch, Vaandrager]

Hyper (Safety) Properties

Security policies: e.g., noninterference (high clearance values cannot be observed by low clearance users)

Quantitative properties: termination w.h.p., mean response time, probability distributions

Hyperproperties are properties of sets of traces

Hyper safety properties are properties of sets of finite traces

Hyperproperties vs. Refinement

Refinement does not preserve hyperproperties
[McLean 1994]

Linearizability does not
preserve probability
distributions under strong /
weak adversaries
[Golab, Higham, Woelfel, STOC 2011]

Example w/ MWSR Register

R C

```
Initially R = \perp, C = -1

Code for p_0, p_1:

R \leftarrow i

if i = 0 then C \leftarrow flip 0 or 1

Code for p_2:

r \leftarrow R; c \leftarrow C

if (c = 0 \land r = \perp) \lor (c = 1 \land r \neq \perp)

then loop forever

else terminate
```

 p_2 terminates with probability > $\frac{1}{2}$ w/ atomic mwsr register

Example w/ MWSR Register


```
\begin{array}{c} p_0 \\ p_1 \\ p_2 \\ \bot \leftarrow R \end{array} \qquad \begin{array}{c} R \leftarrow 0 \\ C \leftarrow ? \\ R \leftarrow 1 \\ ? \leftarrow C \end{array}
```

```
R C
```

```
Initially R = \perp, C = -1
Code \ for \ p_0, \ p_1:
R \leftarrow i
if i = 0 then C \leftarrow flip 0 or 1
Code \ for \ p_2:
r \leftarrow R; \ c \leftarrow C
if (c = 0 \land r = \perp) \lor (c = 1 \land r \neq \perp)
then loop forever else terminate
```

 p_2 terminates with probability > $\frac{1}{2}$ w/ atomic mwsr register

Example w/ MWSR Register


```
R C
```

```
Initially R = \perp, C = -1 Code\ for\ p_0,\ p_1: R \leftarrow i if i = 0 then C \leftarrow flip 0 or 1 Code\ for\ p_2: r \leftarrow R; c \leftarrow C if (c = 0 \land r = \perp) \lor (c = 1 \land r \neq \perp) then loop forever else terminate
```

 p_2 terminates with probability > $\frac{1}{2}$ w/ atomic mwsr register

Using VA Implementation

```
Initially R = \perp, C = -1

Code for p_0, p_1:

R \leftarrow i

if i = 0 then C \leftarrow flip 0 or 1

Code for p_2:

r \leftarrow R; c \leftarrow C

if (c = 0 \land r = \perp) \lor (c = 1 \land r \neq \perp)

then loop forever

else terminate
```

Using VA Implementation

```
p_0 Write R R_0 \leftarrow \langle 0,1,0 \rangle p_1 Write R p_2 Read R \langle \bot,0,0 \rangle \leftarrow R_0
```

```
Write(v,R)
read TS_0, ..., read TS_{n-1}
TS_i = max TS_j + 1
write \langle v, TS_i, i \rangle to R_i

Read(R)
read R_0, ..., read R_{n-1}
return v_i with maximal \langle TS_j, j \rangle
```

```
Initially R = \perp, C = -1
Code \ for \ p_0, \ p_1:
R \leftarrow i
if i = 0 then C \leftarrow flip 0 or 1
Code \ for \ p_2:
r \leftarrow R; \ c \leftarrow C
if (c = 0 \land r = \perp) \lor (c = 1 \land r \neq \perp)
then loop forever else terminate
```

```
p_0 Write R
             R_0 \leftarrow \langle 0, 1, 0 \rangle
     p_1 ......Write R
                                     R_1 \leftarrow \langle 1, 2, 1 \rangle
     p_2 Read R
                                                           Returns 1
          \langle \perp, 0, 0 \rangle \leftarrow R_0
                                           (1,2,1) \leftarrow R_1
                                                             Initially R = \perp, C = -1
                                                             Code for p_0, p_1:
Write(v,R)
read TS<sub>0</sub>,...,read TS<sub>n-1</sub>
                                                             R \leftarrow i
TS_i = max TS_i + 1
                                                             if i = 0 then C \leftarrow flip 0 or 1
write \langle v, TS_i, i \rangle to R_i
                                                             Code for p_2:
                                                             r \leftarrow R; c \leftarrow C
Read(R)
                                                             if (c = 0 \land r = \bot) \lor (c = 1 \land r \neq \bot)
read R_0, \ldots, read R_{n-1}
return v<sub>j</sub> with maximal <TS<sub>j</sub>,j>
                                                                     then loop forever
                                                             else terminate
```

```
p_0 Write R
            R_0 \leftarrow \langle 0,1,0 \rangle
                                                                                         Loop
     p_1 ..... Write R
                                                                                        forever
                                 R_1 \leftarrow \langle 1, 2, 1 \rangle
                                                          Returns 1 Read 1 \leftarrow C
     p_2 Read R
                                             \langle 1,2,1 \rangle \leftarrow R_1
         \langle \perp, 0, 0 \rangle \leftarrow R_0
                                                            Initially R = \perp, C = -1
                                                            Code for p_0, p_1:
Write(v,R)
read TS_0, \ldots, read TS_{n-1}
                                                            R \leftarrow i
TS_i = max TS_i + 1
                                                            if i = 0 then C \leftarrow flip 0 or 1
write \langle v, TS_i, i \rangle to R_i
                                                            Code for p_2:
                                                            r \leftarrow R; c \leftarrow C
Read(R)
read R_0, \ldots, read R_{n-1}
                                                            if (c = 0 \land r = \bot) \lor (c = 1 \land r \neq \bot)
return v<sub>j</sub> with maximal <TS<sub>j</sub>,j>
                                                                    then loop forever
                                                            else terminate
```

```
p_0 Write R
             R_0 \leftarrow \langle 0,1,0 \rangle
     p_1 Write R
                                                    \langle 1,2,1 \rangle \leftarrow R_1
     p_2 Read R
                                                           Returns 1
          \langle \perp, 0, 0 \rangle \leftarrow R_0
                                              \langle \perp, 0, 1 \rangle \leftarrow R_1
                                                             Initially R = \perp, C = -1
                                                             Code for p_0, p_1:
Write(v,R)
read TS_0, \ldots, read TS_{n-1}
                                                             R \leftarrow i
TS_i = max TS_i + 1
                                                             if i = 0 then C \leftarrow flip 0 or 1
write \langle v, TS_i, i \rangle to R_i
                                                             Code for p_2:
                                                             r \leftarrow R; c \leftarrow C
Read(R)
                                                             if (c = 0 \land r = \bot) \lor (c = 1 \land r \neq \bot)
read R_0, \ldots, read R_{n-1}
return v<sub>j</sub> with maximal <TS<sub>j</sub>,j>
                                                                      then loop forever
                                                             else terminate
```

```
p_0 Write R
             R_0 \leftarrow \langle 0,1,0 \rangle
     p_1 Write R
                                                                                                    Loop
                                                    \langle 1,2,1\rangle \leftarrow R_1
                                                          Returns \perp Read 0 \leftarrow C
     p_2 Read R
         \langle \perp, 0, 0 \rangle \leftarrow R_0
                                               \langle \perp, 0, 1 \rangle \leftarrow R_1
                                                             Initially R = \perp, C = -1
                                                             Code for p_0, p_1:
Write(v,R)
read TS_0, \ldots, read TS_{n-1}
                                                             R \leftarrow i
TS_i = max TS_i + 1
                                                             if i = 0 then C \leftarrow flip 0 or 1
write \langle v, TS_i, i \rangle to R_i
                                                             Code for p_2:
                                                             r \leftarrow R; c \leftarrow C
Read(R)
read R_0, \ldots, read R_{n-1}
                                                             if (c = 0 \land r = \bot) \lor (c = 1 \land r \neq \bot)
return v<sub>j</sub> with maximal <TS<sub>j</sub>,j>
                                                                     then loop forever
                                                             else terminate
```

Another Example

When R is an atomic register,

 p_2 terminates with probability > $\frac{1}{2}$

R

```
Initially: R = \bot, C = -1

Code for p_i, i = 0, 1:
R \leftarrow i
if (i == 1) then C \leftarrow flip fair coin (0 \text{ or } 1)

Code for p_2:
u1 \leftarrow R; u2 \leftarrow R; c \leftarrow C
if ((u1 \neq c) \text{ or } (u2 \neq 1 - c)) then loop forever else terminate
```

Example w/ ABD

When R is implemented in message-passing, a strong adversary can make p₂ always loop forever

Write(v)

bcast ("query") and wait for > n/2 replies (v,t) t = largest timestamp bcast ("update",v,t+1) and wait for > n/2 acks

Read()

bcast ("query") and wait for > n/2 replies
(v,t) = pair with largest timestamp
bcast ("update",v,t) and wait for > n/2 acks
return v

```
Initially: R = \bot, C = -1

Code for p_i, i = 0, 1:
R \leftarrow i
if (i == 1) then C \leftarrow flip fair coin (0 \text{ or } 1)

Code for p_2:
u1 \leftarrow R; u2 \leftarrow R; c \leftarrow C
if ((u1 \neq c) \text{ or } (u2 \neq 1 - c)) then loop forever else terminate
```

Strong Linearizability

Linearization points are prefix preserving

Preserves probability distributions under strong adversaries

[Golab, Higham, Woelfel, STOC 2011]

More Generally, Strong Refinement

Obj \leq_s Spec iff \forall program P, \forall deterministic scheduler S_1 of P X Obj,

∃ deterministic scheduler S₂ of P X Spec,

Traces(P X Obj X S₁) = Traces(P X Spec X S₂)

Preserves Hyperproperties

■ Forward Simulation

⇒ Strong Refinement Composes

Locality (horizontal composition)

Parametrized objects (hierarchical composition)

Many Objects Don't Have Strongly Linearizable Implementations

Counter-example ⇒ V&A MW register is not strongly linearizable

In fact, there is no wait-free strongly-linearizable MW register implementation from SW registers

Also, no wait-free strongly-linearizable snapshot implementation

[Helmi, Higham, Woelfel, PODC 2012]

No message-passing simulation of a register

Given a SL message-passing implementation of a multi-writer multi-reader register n processes, f << n possible failures

Obtain a SL shared-memory implementation of a multi-writer multi-reader register, using only single-writer multi-reader registers f+1 processes, f possible failures (strong simulation)

Which is impossible by [Helmi et al. 2012]

Take inspiration from program indistinguishable obfuscation [Barak et al. 2012] and oblivious RAMs [Goldreich and Ostrovsky, 1996]

Perturb the concrete object to blunt the adversary, while keeping its functionality indistinguishable

Use randomization...

Use Randomization to Blunt the Adversary

E.g., Blunting w/ One Coin Flip

p₂ terminates with constant probability with VA²

```
Initially R = \perp, C = -1

Code for p_0, p_1:

R \leftarrow i

if i = 0 then C \leftarrow flip 0 or 1

Code for p_2:

r \leftarrow R; c \leftarrow C

if (c = 0 \land r = \perp) \lor (c = 1 \land r \neq \perp)

then loop forever

else terminate
```

Tail Strong Linearizability

Identify a preamble of the operation, after which, it is

mapped in a prefix-preserving manner ("strongly linearizable")

Effect-free preamble doesn't impact concurrently-running processes

Blunting

Tail strongly linearizable objects with an effect-free preamble

- Repeat the preamble k times
- Randomly pick one of the iterations to continue with

```
Write(v,X)

read TS_0,...,read TS_{n-1}

TS_i = max TS_i + 1

write \langle v, TS_i, i \rangle to R_i

Read(X)

read R_0,...,read R_{n-1}

v1 = v_j with maximal \langle TS_j, j \rangle

read R_0,...,read R_{n-1}

v2 = v_j with maximal \langle TS_j, j \rangle

return v1 or v2 with prob. \frac{1}{2}
```

Blunting, Specifically

Tail strongly linearizable objects with a read-only preamble, e.g.,

- Multi-reader registers from single-reader registers [Israeli, Li 1993]
- Multi-writer registers from single-writer registers [Vitanyi, Awerbuch 1986]
- ABD, Snapshots [Afek et al.]

For an n-process program P with r coin flips, using tail-strongly-linearizable objects 0 with effect-free preambles & any $k \ge r$,

$$\Pr[O^k] \le \Pr[O_a] + (\Pr[O] - \Pr[O_a]) \left(1 - \left(\frac{k-r}{k}\right)^{n-1}\right)$$

probability of a **bad** outcome B when P uses k-preamble-iterated versions of objects in O

probability of B when P uses atomic versions of objects in O

probability of B when P uses objects in O

E.g., in Our Example

 p_2 terminates with probability $> \frac{1}{8}$ with VA^2

and $> \frac{2}{9}$ with VA^3

$$1 - \left(\frac{3-1}{3}\right)^2 = \frac{5}{9}$$

Non-termination probability w/ VA²

1/2

 $1 - \frac{1}{2}$

$$1 - \left(\frac{2-1}{2}\right)^2 = \frac{3}{4}$$

$$\Pr[O^k] \le \Pr[O_a] + (\Pr[O] - \Pr[O_a]) \left(1 - \left(\frac{k - r}{k}\right)^{n-1}\right)$$

probability of a **bad** outcome B when P uses k-preamble-

iterated versions of objects in O

probability of B when P uses atomic versions of objects in O

probability of B when P uses objects in O

Let X be the event that all random choices in O^k objects return an iteration of the preamble that does NOT overlap any random step of the program, then

$$\Pr[O^k] = \Pr[O^k|X] \cdot \Pr[X] + \Pr[O^k|\neg X] \cdot (1 - \Pr[X])$$

 $\leq \Pr[O_a] \cdot \Pr[X]$ when chosen preambles don't overlap any program random steps, O^k objects behave like atomic objects

when chosen preamble overlaps program random step, O^k objects are no worse than O objects $O^k = Pr[O] \cdot (1 - Pr[X])$

Since $\Pr[X] \ge \left(\frac{k-r}{k}\right)^{n-1}$, rearrangement gives that

$$\Pr[O^k] \le \Pr[O_a] + (\Pr[O] - \Pr[O_a]) \left(1 - \left(\frac{k - r}{k}\right)^{n - 1}\right)$$

probability of a **bad** outcome B when P uses k-preamble-

iterated versions of objects in O

probability of B when P uses atomic versions of objects in O

probability of B when P uses objects in O

Wrap-Up

Write strong linearizability does not help with our example

[Hadzilacos, Hu, Toueg, PODC 2021]

Tradeoff between # iterations and decreased prob. of bad outcome Reduce # random steps considered in the analysis, based on program structure (e.g., communication-closed layers)

Object implementations w/o effect-free preambles

Transactions & Cryptographic protocols

References

- Attiya, Enea, Welch: Blunting an Adversary Against Randomized Concurrent Programs with Linearizable Implementations. PODC 2022
- Attiya, Enea, Welch: Impossibility of Strongly-Linearizable Message-Passing Objects via Simulation by Single-Writer Registers. DISC 2021
- Attiya, Enea: Putting Strong Linearizability in Context: Preserving Hyperproperties in Programs that Use Concurrent Objects. DISC 2019