Preserving Hyperproperties
when using
Concurrent Objects

Hagit Attiya (Technion)
Constantin Enea (Ecole Polytechnique)
Jennifer Welch (Texas A&M University)

Abstraction

E.g., Using an Abstract
Multi-Writer Register

Implemented from
Single-Writer Registers

Or in Message-Passing

Refinement (Trace Inclusion)

When the abstract object is sequential,
= linearizability [Herlihy, Wing]

Refinement Preserves

Trace Properties

F @

If @ is a property of a trace, it is preserved when the
atomic object is replaced with a linearizable implementation

Simulations

Prove refinement by relating states of abstract and concrete objects

Forward
CS1 > \/CSz
Sim | : Sim

as =1

Forward simulations = proofs based on explicit linearization points,
e.g., universal constructions using consensus objects or Compare&Swap

Simulations

Prove refinement by relating states of abstract and concrete objects

Forward Backward

- -

Sim | : Sim Sim Sim

E—a e SIES e

In some cases, find an after-the-fact relation (e.g, based on timestamps)

Linearizability can always be proved with forward & backward simulation
[Lynch, Vaandrager]

Hyper (Safety) Properties

Security policies: e.g., noninterference (high clearance values
cannot be observed by low clearance users)

Quantitative properties: termination w.h.p.,
mean response time, probability distributions

Hyperproperties are properties of sets of traces

Hyper safety properties are properties of sets of finite traces

Hyperproperties
vs. Refinement

Refinement does not

preserve hyperprope rties
[McLean 1994]

Refinement (e.g.,
Linearizability)

-

Linearizability does not

preserve probability

Concrete object
(implementation)

distributions under strong /

weak adversaries
[Golab, Higham, Woelfel, STOC 2011]

Example w/ MWSR Register

p, terminates with probability > 7 w/ atomic mwsr register

Example by Noa Schiller

Example w/ MWSR Register

Po @ @ > Po ® o

R« 0 C «? R«<0 C(C &?
P1 ® - D1 @
R« 1 R« 1
Do ® o— Do ® o—
OQOorl«< R?«(C 1l <R 7« C

p, terminates with probability > 7 w/ atomic mwsr register

Example w/ MWSR Register
o

Po ® ® : Po ®
R«<0 e\ef\Terminate w.p. % R « C

P1 ® P1 .
R <1 \ \ — Terminate w.p. %
P2 g o— [9)) O o

OorlX\B)?eC 1< R 7« C

p, terminates with probability > 7 w/ atomic mwsr register

Using VA Implementation

A strong adversary can make p, always loop forever

Using VA Implementation

pl ® Write R ...

A strong adversary can make p, always loop forever

Example w/ VA: Coin =1

Returns 1

A strong adversary can make p, always loop forever

Example w/ VA: Coin =1

Do . Write R, ... @ ...
R, < (0,1,0) Loop
D1 . Write R P fEvavEr
Rl < (1;2;1>
Dy o—e—Read R . @ 1 .ReadD R
1,0,0) « R 1,2,1) « R

A strong adversary can make p, always loop forever

Example w/ VA: Coin=0

Po o Write Ry oo @
RO « (Orl;())

D1 . Write R . .
(112;1) « Rl
D, ..e—e—~ReEAd R .Returns |
1,0,0) « R 1,0,1) « R

A strong adversary can make p, always loop forever

Example w/ VA: Coin=0

Po o Write Ry oo @
RO « (Orl;())

D1 . Write R . . R
(l,ZM Loop
Dy .o—e—REAA R . Rﬁins 1 Bead>ﬂ<— () forever
1,0,0) <R 1,0,1) «

A strong adversary can make p, always loop forever

Another Example

When R is an atomic register,
p, terminates with probability > %

Initially: R=1,C=-1

Code forp,,i=0, 1:
R« i
if (i==1) then C <« flip fair coin (O or 1)

Code for p,:

ul< R;u2<R;c«C

if (ul#c)or(u2#1-c))thenloop forever
else terminate

[A, Enea, Welch, arxiv 2106.15554]
Distilled from [Hadzilacos, Hu, Toueg, PODC 2021]

Example w/ ABD

When R is implemented in message-passing,
a strong adversary can make p, always loop forever

Initially: R=1,C=-1

Code forp,,i=0, 1:
R«
if (i==1) then C <« flip fair coin (0 or 1)

Code for p,:

ul< R;u2<R;c«C

if (ul#c)or(u2#1-c))thenloop forever
else terminate

[A, Enea, Welch, arxiv 2106.15554]
Distilled from [Hadzilacos, Hu, Toueg, PODC 2021]

Strong Linearizability

Linearization points are prefix preserving

Preserves probability distributions under

strong adversaries

Strong
linearizability

-

Concrete object

(implementation) [Golab, Higham, Woelfel, STOC 2011]

More Generally,
Strong Refinement

Preserves Hyperproperties

= Forward Simulation

[A, Enea, DISC 2019]

—> Strong Refinement
Composes

Locality (horizontal composition)

Ee-E8 - &8

Parametrized objects (hierarchical composition)

Imp Imp
§-0-=-m- -

Many Objects Don’t Have Strongly
Linearizable Implementations

Counter-example = V&A MW register is not strongly linearizable

In fact, there is no wait-free strongly-linearizable MW register
implementation from SW registers

Also, no wait-free strongly-linearizable snapshot implementation

[Helmi, Higham, Woelfel, PODC 2012]

No message-passing simulation of a register

Given a SL message-passing implementation
of a multi-writer multi-reader register

n processes, f << n possible failures

Obtain a SL shared-memory implementation

.\J N
X X

of a multi-writer multi-reader register,

using only single-writer multi-reader registers

f+1 processes, f possible failures

(1 (strong simulation)

Which is impossible by [Helmi et al. 2012]

[A, Enea, Welch, DISC 2021]
A direct proof in [Chan, Hadzilacos, Hu, Toueg, arxiv 2108.01651]

Take inspiration from program indistinguishable obfuscation [Barak et al. 2012]
and oblivious RAMS [Goldreich and Ostrovsky, 1996]

Perturb the concrete object to blunt the adversary,
while keeping its functionality indistinguishable

Use randomization...

Use Randomization
to Blunt the Adversary

termination

I: with high

probability

E.g., Blunting w/ One Coin Flip

p, terminates with constant probability with VA2

Tail Strong Linearizability

Identify a preamble of the operation, after which, it is

mapped in a prefix-preserving manner (“strongly linearizable”)

y. N

S Write(v,X)

read TS,,...,read TS,_;

TS; = max TS; +1

write (v,TS;,1) to R;

Read (X)

read R,,---,read R, _;

v = v; with maximal <TS;,j>

. return v /

y

W y

=

Effect-free preamble doesn’t impact concurrently-running processes

Blunting

Tail strongly linearizable objects with an effect-free preamble
* Repeat the preamble k times
 Randomly pick one of the iterations to continue with

~
N
AN

S Write(v,X)

read TS,,...,read TS, ;

1S; = max TS; +1

write (v,TS;,1) to R;

Read (X)

read R,,---,read R, _;

vl = v; with maximal <TS;,j>

=?%ﬁﬁT?ﬁfffffﬁ%ﬁﬁfﬁfﬁf====5=========

v2 = v; with maximal <TS;, >

[Treturn vI or vZ with prob. 7% /

A

\\\

— //'

Blunting, Specifically

Tail strongly linearizable objects with a read-only preamble, e.g.,

 Multi-reader registers from single-reader registers [istaeli, Li 1993]

 Multi-writer registers from single-writer registers [vitanyi, Awerbuch 1986]
 ABD, Snapshots [afek et al]

For an n-process program P with r coin flips, using tail-strongly-
linearizable objects O with effect-free preambles & any k = 7,

n-1
Pr[0%] < Pr[0,] + (Pr[0] = Pr[O,]) | 1 — (k — T)

\ NG :

probability of a bad outcome B probability of B when P
when P uses k-preamble- uses atomic versions of

iterated versions of objects in O objects in O

probability of B when P
uses objects in O

E.g., in Our Example

p, terminates with probability > 1/ with VA?

and > 2/, with VA3 4 A

g e | [Y
\ ! e 2 1 n—-1
Pr[0%] < Pr[0,] + (Pr[0] — Pr[O,]) (1 — (-))

\

[probability of a bad outcome B] [probability of B when P

when P uses k-preamble- uses atomic versions of

iterated versions of objects in O objects in O uses objects in O

——

probability of B when P]

Let X be the event that all random choices in O*objects return an iteration of the
preamble that does NOT overlap any random step of the program, then

Pr[0%] = Pr[0%|X]-Pr[X] + Pr[O%|-X]- (1 — Pr[X])

when chosen preambles don’t overlap any program
< PI'[Oa] PI'[X] random steps, O objects behave like atomic objects

when chosen preamble overlaps program random

step, 0% objects are no worse than O objects + PF[O]) (1 o PI'[X])

Since Pr[X]| = (kki)n_l, rearrangement gives that

Pr[0%] < Pr[0,] + (Pr[0] — Pr[O,]) | 1 —

\

probability of a bad outcome B probability of B when P .
: : probability of B when P
when P uses k-preamble- uses atomic versions of

iterated versions of objects in O uses objects in O

objectsin O

Wrap-Up

Write strong linearizability [Hadzilacos, Hu, Toueg, PODC 2021]
does not help with our example

Tradeoff between # iterations and decreased prob. of bad outcome
Reduce # random steps considered in the analysis, based on
program structure (e.g., communication-closed layers)

Object implementations
w/o effect-free preambles

3

Transactions &
Cryptographic protocols

References

* Attiya, Enea, Welch: Blunting an Adversary Against
Randomized Concurrent Programs with Linearizable
Implementations. PODC 2022

e Attiya, Enea, Welch: Impossibility of Strongly-
Linearizable Message-Passing Objects via Simulation
by Single-Writer Registers. DISC 2021

 Attiya, Enea: Putting Strong Linearizability in Context:
Preserving Hyperproperties in Programs that Use
Concurrent Objects. DISC 2019

