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Abstract
Auditing data accesses helps preserve privacy and ensures account-

ability by allowing one to determine who accessed (potentially

sensitive) information. A prior formal definition of register au-

ditability was based on the values returned by read operations,

without accounting for cases where a reader might learn a value with-

out explicitly reading it or gain knowledge of data access without

being an auditor.

This paper introduces a refined definition of auditability that

focuses on when a read operation is effective, rather than relying

on its completion and return of a value. Furthermore, we formally

specify the constraints that prevent readers from learning values

they did not explicitly read or from auditing other readers’ accesses.

Our primary algorithmic contribution is a wait-free implemen-

tation of a multi-writer, multi-reader register that tracks effective

reads while preventing unauthorized audits. The key challenge is

ensuring that a read is auditable as soon as it becomes effective,

which we achieve by combining value access and access logging

into a single atomic operation. Another challenge is recording ac-

cesses without exposing them to readers, which we address using

a simple encryption technique (one-time pad).

We extend this implementation to an auditable max register that

tracks the largest value ever written. The implementation deals

with the additional challenge posed by the max register semantics,

which allows readers to learn prior values without reading them.

The max register, in turn, serves as the foundation for imple-

menting an auditable snapshot object and, more generally, versioned

types. These extensions maintain the strengthened notion of au-

ditability, appropriately adapted from multi-writer, multi-reader

registers.
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1 Introduction
Auditing is a powerful tool for determining who had access to

which (potentially sensitive) information. Auditability is crucial for

preserving data privacy, as it ensures accountability for data access.

This is particularly important in shared, remotely accessed storage

systems, where understanding the extent of a data breach can help

mitigate its impact.

1.1 Auditable Read/Write Registers
Auditability was introduced by Cogo and Bessani [9] in the con-

text of replicated read/write registers. An auditable register extends

traditional read and write operations with an additional audit op-

eration that reports which register values have been read and by

whom. The auditability definition by Cogo and Bessani is tightly

coupled with their multi-writer, multi-reader register emulation in

a replicated storage system using an information-dispersal scheme.

An implementation-agnostic auditability definition was later

proposed [6], based on collectively linearizing read, write, and audit

operations. This work also analyzes the consensus number required

for implementing auditable single-writer registers, showing that

it scales with the number of readers and auditors. However, this

definition assumes that a reader only gains access to values that

are explicitly returned by its read operations. This assumption does

not account for situations where a reader learns the register’s value

before it has officially returned, making the read operation effective.

Hence, a notable limitation of this definition is that a process with

an effective read can refuse to complete the operation, thereby

avoiding detection by the audit mechanism.

Prior work has also overlooked the risk of non-auditors learn-

ing values without explicitly reading them or inferring accesses

of other processes. Even when processes follow their prescribed

algorithms without active misbehavior, existing auditable register

implementations allow an “honest but curious” process to learn

https://doi.org/10.1145/3732772.3733516
https://doi.org/10.1145/3732772.3733516
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more than what its read operations officially return. Additionally,

extending auditability beyond read/write registers remained an

unexplored territory.

1.2 Our Contributions and Techniques
In this work, we propose a stronger form of auditability for read-

/write registers, ensuring that all effective reads are auditable and

that non-auditors cannot infer the values read by other processes.

We further extend these properties to other data structures and

propose new algorithms that fulfill these guarantees.

We define new properties that ensure operations do not leak

information when processes are honest-but-curious [14]. Firstly,

we introduce an implementation-agnostic definition of an effective

operation, which is applicable, for instance, to read operations in

an auditable register. An operation is effective if a process has

determined its return value in all executions indistinguishable to it.

Secondly, we define uncompromised operations, saying, for example,

that in a register, readers do not learn which values were read by

other readers or gain information about values they do not read.

This definition is extended beyond registers. For arbitrary data

objects, we specify that an operation is uncompromised if there is

an indistinguishable execution where the operation does not occur.

Enforcing uncompromised operations in auditable objects poses

a challenge since it is, in a sense, antithetical to securely logging

data accesses. Our primary algorithmic contribution (Section 3) is a

wait-free, linearizable implementation of an auditable multi-writer,

multi-reader register. Our implementation ensures that all effec-

tive reads are auditable while preventing information leaks: reads

are uncompromised by other readers, and cannot learn previous

values — unless they actually read them. As a consequence, the

implementation is immune to a honest-but-curious attacker.

To achieve these properties, our algorithm carefully combines

value access with access logging. Additionally, access logs are

encrypted using one-time pads known only to writers and audi-

tors. The subtle synchronization required in our implementation

is achieved by using compare&swap and fetch&xor (in addition to

ordinary reads and writes). Such strong synchronization primitives

are necessary since even simple single-writer auditable registers

can solve consensus [6]. The correctness proof of the algorithm, of

basic linearizability properties as well as of advanced auditability

properties, is intricate and relies on a careful linearization function.

Our second algorithmic contribution is an elegant extension of

the register implementation to other commonly-used objects. We

first extend our framework to a wait-free, linearizable implemen-

tation of an auditable multi-writer, multi-reader max register [2],

which returns the largest value ever written. The semantics of a max

register, together with tracking the number of operations applied to

it (needed for logging accesses), may leak information to the reader

about values it has not effectively read. We avoid this leakage by

adding a random nonce, serving to introduce some noisiness, to

the values written. (See Section 4.) As before, all effective reads are

auditable, and no additional information is leaked.

In Section 5, we demonstrate how an auditable max register

enables auditability in other data structures. Specifically, we imple-

ment auditable extension of atomic snapshots [1] and more gener-

ally, of versioned types [12]. Many useful objects, such as counters

and logical clocks, are naturally versioned or can be made so with

minimal modification.

Additional proofs and details can be found in the full version [3].

1.3 Related Work
Cogo and Bessani [9] present an algorithm to implement an au-

ditable regular register, using 𝑛 ≥ 4𝑓 + 1 atomic read/write shared

objects, 𝑓 of which may fail by crashing. Their high-level register

implementation relies on information dispersal schemes, where the

input of a high-level write is split into several pieces, each written

in a different low-level shared object. Each low-level shared object

keeps a trace of each access, and in order to read, a process has to

collect sufficiently many pieces of information in many low-level

shared objects, which allows to audit the read.

In asynchronous message-passing systems where 𝑓 processes

can be Byzantine, Del Pozzo, Milani and Rapetti [11] study the

possibility of implementing an atomic auditable register, as defined

by Cogo and Bessani, with fewer than 4𝑓 + 1 servers. They prove

that without communication between servers, auditability requires

at least 4𝑓 + 1 servers, 𝑓 of which may be Byzantine. They also

show that allowing servers to communicate with each other admits

an auditable atomic register with optimal resilience of 3𝑓 + 1.
Attiya, Del Pozzo, Milani, Pavloff and Rapetti [6] provides the

first implementation-agnostic auditability definition. Using this def-

inition they show that auditing adds power to reading and writing,

as it allows processes to solve consensus, implying that auditing

requires strong synchronization primitives. They also give several

implementations that use non-universal primitives (like swap and

fetch&add), for a single writer and either several readers or several

auditors (but not both).

When faulty processes are malicious, accountability [7, 8, 15, 19]

aims to produce proofs of misbehavior in instances where processes

deviate, in an observable way, from the prescribed protocol. This

allows the identification and removal of malicious processes from

the system as a way to clean the system after a safety violation. In

contrast, auditability logs the processes’ actions and lets the auditor

derive conclusions about the processes’ behavior.

In addition to tracking access to shared data, it might be desirable

to give to some designated processes the ability to grant and/or

revoke access rights to the data. Frey, Gestin and Raynal [13] specify

and investigate the synchronization power of shared objects called

AllowList and DenyList, allowing a set of manager processes to

grant or revoke access rights for a given set of resources.

2 Definitions
Basic notions. We use a standard model, in which a set of pro-

cesses 𝑝1, . . . , 𝑝𝑛 , communicate through a shared memory consist-

ing of base objects. The base objects are accessed with primitive

operations. In addition to atomic reads and writes, our implemen-

tations use two additional standard synchronization primitives:

compare&swap(𝑅, 𝑜𝑙𝑑, 𝑛𝑒𝑤) atomically compares the current value

of 𝑅 with 𝑜𝑙𝑑 and if they are equal, replaces the current value of 𝑅

with 𝑛𝑒𝑤 ; fetch&xor(𝑅, 𝑎𝑟𝑔) atomically replaces the current value

of 𝑅 with a bitwise XOR of the current value and 𝑎𝑟𝑔.1

1fetch&xor is part of the ISO C++ standard since C++11 [10].
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An implementation of a (high-level) object𝑇 specifies a program

for each process and each operation of the object𝑇 ; when receiving

an invocation of an operation, the process takes steps according

to this program. Each step by a process consists of some local

computation, followed by a single primitive operation on the shared

memory. The process may change its local state after a step, and it

may return a response to the operation of the high-level object.

Implemented (high-level) operations are denoted with capital

letters, e.g., read, write, audit, while primitives applied to base

objects, appear in normal font, e.g., read and write.

A configuration 𝐶 specifies the state of every process and of

every base object. An execution 𝛼 is an alternating sequence of

configurations and events, starting with an initial configuration; it

can be finite or infinite. For an execution𝛼 and a process 𝑝 ,𝛼 |𝑝 is the
projection of 𝛼 on events by 𝑝 . For two executions 𝛼 and 𝛽 , we write

𝛼
𝑝∼ 𝛽 when 𝛼 |𝑝 = 𝛽 |𝑝 , and say that 𝛼 and 𝛽 are indistinguishable

to process 𝑝 .

An operation 𝑜𝑝 completes in an execution 𝛼 if 𝛼 includes both

the invocation and response of 𝑜𝑝; if 𝛼 includes the invocation of

𝑜𝑝 , but no matching response, then 𝑜𝑝 is pending. An operation 𝑜𝑝

precedes another operation 𝑜𝑝′ in 𝛼 if the response of 𝑜𝑝 appears

before the invocation of 𝑜𝑝′ in 𝛼 .

A history 𝐻 is a sequence of invocation and response events; no

two events occur at the same time. The notions of complete, pending

and preceding operations extend naturally to histories.

The standard correctness condition for concurrent implementa-

tions is linearizability [16]: intuitively, it requires that each opera-

tion appears to take place instantaneously at some point between

its invocation and its response. Formally:

Definition 1. Let A be an implementation of an object 𝑇 . An exe-

cution 𝛼 of A is linearizable if there is a sequential execution 𝐿 (a

linearization of the operations on 𝑇 in 𝛼) such that:

• 𝐿 contains all complete operations in 𝛼 , and a (possibly empty)

subset of the pending operations in 𝛼 (completed with response

events),

• If an operation 𝑜𝑝 precedes an operation 𝑜𝑝′ in 𝛼 , then 𝑜𝑝

appears before 𝑜𝑝′ in 𝐿, and

• 𝐿 respects the sequential specification of the high-level object.

A is linearizable if all its executions are linearizable.

An implementation is lock-free if, whenever there is a pending

operation, some operation returns in a finite number of steps of

all processes. Finally, an implementation is wait-free if, whenever

there is a pending operation by process 𝑝 , this operation returns in

a finite number of steps by 𝑝 .

Auditable objects. An auditable register supports, in addition to

the standard read and write operations, also an audit operation

that reports which values were read by each process. Formally, an

audit has no parameters and it returns a set of pairs, ( 𝑗, 𝑣), where 𝑗
is a process id, and 𝑣 is a value of the register. A pair ( 𝑗, 𝑣) indicates
that process 𝑝 𝑗 has read the value 𝑣 .

Formally, the sequential specification of an auditable register

enforces, in addition to the requirement on read and write opera-

tions, that a pair appears in the set returned by an audit operation

if and only if it corresponds to a preceding read operation. In prior

work [6], this if and only if property was stated as a combination

of two properties of the sequential execution: accuracy, if a read is

in the response set of the audit, then the read is before the audit

(the only if part), and completeness, any read before the audit is

in its response set (the if part).

We wish to capture in a precise, implementation-agnostic man-

ner, the notion of an effective operation, which we will use to ensure

that an audit operation will report all effective operations. Assume

an algorithm A that implements an object 𝑇 . The next definition

characterizes, in an execution in which a process 𝑝 invokes an

operation, a point at which 𝑝 knows the value that the operation

returns, even if the response event is not present.

Definition 2 (effective operation). An operation 𝑜𝑝 on object 𝑇 by

process 𝑝 is 𝑣-effective after a finite execution prefix 𝛼 if, for every

execution prefix 𝛽 indistinguishable from 𝛼 to 𝑝 (i.e., such that 𝛼
𝑝∼ 𝛽),

𝑜𝑝 returns 𝑣 in every extension 𝛽 ′ of 𝛽 in which 𝑜𝑝 completes.

Observe that in this definition, 𝛼 itself is also trivially an execu-

tion prefix indistinguishable to 𝑝 , and hence in any extension 𝛼 ′ in
which 𝑜𝑝 completes returns value 𝑣 . Observe as well that 𝑜𝑝 could

already be completed in 𝛼 or not be invoked (yet). However, the

most interesting case is when 𝑜𝑝 is pending in 𝛼 .

We next define the property that an operation on 𝑇 is not com-

promised in an execution prefix by a process. As we will see, in

our register algorithm, a read by 𝑝 is linearized as soon as it be-

comes 𝑣-effective, in a such way that in any extension including a

complete audit, 𝑝 is reported as a reader of 𝑣 by this audit. This,

however, does not prevent a curious reader 𝑝 from learning another

value 𝑣 ′ for which none of its read operations is 𝑣 ′-effective. In
such a situation, the write operation with input 𝑣 ′ is said to be

compromised by 𝑝 . The next definition states that this can happen

only if a read operation by 𝑝 becomes 𝑣 ′-effective. The definition
is general, and applies to any object.

Definition 3 (uncompromised operation). Consider a finite execu-

tion prefix 𝛼 and an operation 𝑜𝑝 by process 𝑞 whose invocation is

in 𝛼 . We say that 𝑜𝑝 is uncompromised in 𝛼 by process 𝑝 if there is

another finite execution 𝛽 such that 𝛼
𝑝∼ 𝛽 and 𝑜𝑝 is not invoked in 𝛽 .

A value 𝑣 is uncompromised by a reader 𝑝 if all write(𝑣) oper-

ations are uncompromised by 𝑝 , unless 𝑝 has an effective read

returning 𝑣 .

One-time pads. To avoid data leakage, we employ one-time pads

[18, 20]. Essentially, a one-time pad is a random string—known

only to the writers and auditors—with a bit for each reader. To

encrypt a message𝑚,𝑚 is bitwise XORed with the pad obtaining a

ciphertext 𝑐 . Our algorithm relies on an infinite sequence of one-

time pads. A one-time pad is additively malleable, i.e., when 𝑓 is

an additive function, it is possible to obtain a valid encryption of

𝑓 (𝑚) by applying a corresponding function 𝑓 ′ to the ciphertext 𝑐

corresponding to𝑚.

Attacks. We consider an honest-but-curious (also called semi-

honest and passive) [14] attacker that interacts with the implemen-

tation of 𝑇 by performing operations, and adheres to its code. It

may however stop prematurely and perform arbitrary local compu-

tations on the responses obtained from base objects. For instance,

for an auditable register, the attacker can attempt to infer in a read
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operation the current or a past value of the register, without being

reported in audit operations.

3 An Auditable Multi-writer, Multi-reader
Register

We present a wait-free and linearizable implementation of a multi-

writer, multi-reader register (Alg. 1), in which effective reads are

auditable. Furthermore, the implementation does not compromise

other reads, as while performing a read operation, a process is

neither able to learn previous values, nor whether some other pro-

cess has read the current value. We ensure that a read operation is

linearized as soon as, and not before it becomes effective. Audits

hence report exactly those reads that have made enough progress

to infer the current value of the register. As a consequence, the

implementation is immune to an honest-but-curious attacker.

3.1 Description of the Algorithm
The basic idea of the implementation is to store in a single register

𝑅, the current value and a sequence number, as well as the set of its

readers, encoded as a bitset. Past values, as well as their reader set,

are stored in other registers (arrays 𝑉 and 𝐵 in the code, indexed

by sequence numbers), so auditors can retrieve them. Changing the

current value from 𝑣 to𝑤 consists in first copying 𝑣 and its reader

set to the appropriate registers 𝑉 [𝑠] and 𝐵 [𝑠], respectively (where

𝑠 is 𝑣 ’s sequence number), before updating 𝑅 to a triple formed by

𝑤 , a new sequence number, and an empty reader set. This is done

with a compare&swap in order not to miss changes to the reader

set occurring between the copy and the update. An auditor starts

by reading 𝑅, obtaining the current value𝑤 , its set of readers, and

its sequence number 𝑠 . Then it goes over arrays 𝐵 and𝑉 to retrieve

previous values written and the processes that have read them.

In an initial design of the implementation, a read operation

obtains from 𝑅 the current value 𝑣 and the reader set, adding locally

the ID of the reader to this set before writing it back to 𝑅, using

compare&swap. This simple design is easy to linearize (each oper-

ation is linearized with a compare&swap or a read applied to 𝑅).

However, besides the fact that read and write are only lock-free,

this design has two drawbacks regarding information leaking:

First, a reader can read the current value without being reported

by audit operations, simply by not writing to the memory after

reading 𝑅, when it already knows the current value 𝑣 of the register.

This step does not modify the state of 𝑅 (nor of any other shared

variables), and it thus cannot be detected by any other operation.

Therefore, by following its code, but pretending to stop immediately

after accessing 𝑅, a reader is able to know the current value without

ever being reported by audit operations.

Second, each time 𝑅 is read by some process 𝑝 , it learns which

readers have already read the current value. Namely, while per-

forming a read operation, a process can compromise other reads.

Alg. 1 presents the proposed implementation of an auditable

register. We deflect the “crash-simulating” attack by having each

read operation apply at most one primitive to 𝑅 that atomically

returns the content of 𝑅 and updates the reader set. To avoid partial

auditing, the reader set is encrypted, while still permitting insertion

by modifying the encrypted set (i.e., a light form of homomorphic

encryption.). Inserting the reader ID into the encrypted set should

be kept simple, as it is part of an atomic modification of 𝑅. We

apply to the reader set a simple cipher (the one-time pad [18, 20]),

and benefit from its additive malleability. Specifically, the IDs of

the readers of the current value are tracked by the last𝑚 bits of 𝑅,

where𝑚 is the number of readers. When a new value with sequence

number 𝑠 is written in 𝑅, these bits are set to a random𝑚-bit string,

rand𝑠 , only known by writers and auditors. This corresponds to

encrypting the empty set with a randommask. Process 𝑝𝑖 is inserted

in the set by XORing the 𝑖th tracking bit with 1. Therefore, retrieving

the value stored in 𝑅 and updating the reader set can be done

atomically by applying fetch&xor. Determining set-membership

requires the mask rand𝑠 , known only to auditors and writers.

The one-time pad, as its name indicates, is secure as long as

each mask is used at most once. This means we need to make sure

that different sets encrypted with the same mask rand𝑠 are never

observed by a particular reader, otherwise, the reader may infer

some set member by XORing the two ciphered sets. To ensure

that, we introduce an additional register SN, which stores only

the sequence number of the current value. A read operation by

process 𝑝𝑖 starts by reading SN, and, if it has not changed since the

previous read by the same process, immediately returns the latest

value read. Otherwise, 𝑝𝑖 obtains the current value 𝑣 and records

itself as one of its readers by applying a fetch&xor(2𝑖 ) operation
to 𝑅. This changes the 𝑖th tracking bit, leaving the rest of 𝑅 intact.

Finally, 𝑝𝑖 updates SN to the current sequence number read from

𝑅, thus ensuring that 𝑝𝑖 will not read 𝑅 again, unless its sequence

number field is changed. This is done with a compare&swap to

avoid writing an old sequence number in 𝑆𝑁 .

Writing a new value𝑤 requires retrieving and storing the IDs of

the readers of the current value 𝑣 for future audit, writing𝑤 , the

new sequence number 𝑠+1, and an empty reader set encrypted with

a fresh mask rand𝑠+1 to 𝑅 before announcing the new sequence

number in SN . To that end, 𝑝 𝑗 first locally gets a new sequence

number 𝑠 + 1, where 𝑠 is read from 𝑆𝑁 . It then repeatedly reads 𝑅,

deciphers the tracking bits and updates shared registers 𝑉 [𝑠] and
𝐵 [𝑠] accordingly until it succeeds in changing it to (𝑠+1,𝑤, rand𝑠+1)
or it discovers a sequence number 𝑠′ ≥ 𝑠+1 in 𝑅. In the latter case, a

concurrentwrite(𝑤 ′) has succeeded, and may be seen as occurring

immediately after 𝑝 𝑗 ’s operation, which therefore can be abandoned.

In the absence of a concurrent write, the compare&swap applied

to 𝑅 may fail as the tracking bits are modified by a concurrent read.

This happens at most𝑚 times, as each reader applies at most one

fetch&xor to 𝑅 while its sequence number field does not change.

Whether or not 𝑝 𝑗 succeeds in modifying 𝑅, we make sure that

before write(𝑤 ) terminates, the sequence number 𝑆𝑁 is at least

as large as the new sequence number 𝑠 + 1. In this way, after that,

write operations overwrite the new value𝑤 and read operations

return𝑤 or a more recent value.

Because SN and 𝑅 are not updated atomically, their sequence

number fields may differ. In fact, an execution of Alg. 1 alternates

between normal 𝐸 phases, in which both sequence numbers are

equal, and transition 𝐷 phases in which they differ. A transition

phase is triggered by awrite(𝑤 ) with sequence number 𝑠 and ends

when the write completes or it is helped to complete by updating

𝑆𝑁 to 𝑠 . Care must be taken during a 𝐷 phase, as some read, which

is silent, may return the old value 𝑣 , while another, direct, read

returns the value𝑤 being written. For linearization, we push back
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silent read before the compare&swap applied to 𝑅 that marks the

beginning of phase 𝐷 , while a direct read is linearized with its

fetch&xor applied to 𝑅.

An audit starts by reading 𝑅, thus obtaining the current value

𝑣 , and its sequence number 𝑠 ; it is linearized with this step. It then

returns the set of readers for 𝑣 (inferred from the tracking bits read

from 𝑅) as well as for each previously written value (which can be

found in the registers 𝑉 [𝑠′] and 𝐵 [𝑠′], for 𝑠′ < 𝑠 .). In a 𝐷 phase,

a silent read operation may start after an audit reads 𝑅 while

being linearized before this step, so we make sure that the 𝐷 phase

ends before the audit returns. This is done, as in direct read and

write, by making sure that SN is at least as large as the sequence

number 𝑠 read from 𝑅. In this way, a silent read (this also holds

for a write that is immediately overwritten) whose linearization

point is pushed back before that of an audit is concurrent with

this audit, ensuring that the linearization order respects the real

time order between these operations.

Suppose that an audit by some process 𝑝𝑖 reports 𝑝 𝑗 as a reader

of some value 𝑣 . This happens because 𝑝𝑖 directly identifies 𝑝 𝑗 as a

reader of 𝑣 from the tracking bits in 𝑅, or indirectly by reading the

registers 𝑉 [𝑠] and 𝐵 [𝑠], where 𝑉 [𝑠] = 𝑣 . In both cases, in a read

instance 𝑜𝑝 , reader 𝑝 𝑗 has previously applied a fetch&xor to 𝑅 while

its value field is 𝑣 . Since the response of this fetch&xor operation
completely determines the return value of 𝑜𝑝 , independently of

future or past steps taken by 𝑝 𝑗 , 𝑜𝑝 is effective. Therefore, only

effective operations are reported by audit, and if an audit that

starts after 𝑜𝑝 is effective, it will discover that 𝑝 𝑗 read 𝑣 , again either

directly in the tracking bits of 𝑅, or indirectly after the reader set

has been copied to 𝐵 [𝑠].

3.2 Proof of Correctness
Partitioning into phases. We denote by 𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙 and 𝑅.𝑏𝑖𝑡𝑠 the

sequence number, value and𝑚-bits string, respectively, stored in 𝑅.

We start by observing that the pair of values in (𝑅.𝑠𝑒𝑞, 𝑆𝑁 ) takes on
the following sequence: (0, 0), (1, 0), (1, 1), . . . , (𝑥, 𝑥 − 1), (𝑥, 𝑥), . . .
Indeed, when the state of the implemented register changes to a

new value 𝑣 , this value is written to 𝑅 together with a sequence

number 𝑥+1, where 𝑥 is the current value of 𝑆𝑁 . 𝑆𝑁 is then updated

to 𝑥 + 1, and so on.

Initially, (𝑅.𝑠𝑒𝑞, 𝑆𝑁 ) = (0, 0). By invariants that can be proved on
the algorithm, the successive values of 𝑅.𝑠𝑒𝑞 and 𝑆𝑁 are 0, 1, 2, . . .,

𝑆𝑁 ≥ 𝑥 − 1when 𝑅.𝑠𝑒𝑞 is changed to 𝑥 , and when 𝑆𝑁 is changed to

𝑥 , 𝑅.𝑠𝑒𝑞 has previously been updated to 𝑥 . Therefore, the sequence

of successive values of the pair (𝑅.𝑠𝑒𝑞, 𝑆𝑁 ) is (0, 0), (1, 0), (1, 1), . . . ,
(𝑥, 𝑥 − 1), (𝑥, 𝑥), . . .. We can therefore partition any execution into

intervals 𝐸𝑥 and 𝐷𝑥 (for 𝐸qual and 𝐷ifferent), so that 𝑅.𝑠𝑒𝑞 = 𝑥 and

𝑆𝑁 = 𝑥 during 𝐸𝑥 , and 𝑅.𝑠𝑒𝑞 = 𝑥 and 𝑆𝑁 = 𝑥 − 1 during 𝐷𝑥 :

Lemma 1. Afinite execution𝛼 can be written, for an integer𝑘 ≥ 0, ei-

ther as𝐸0𝜌1𝐷1𝜎1𝐸1 . . . 𝜌𝑘𝐷𝑘𝜎𝑘𝐸𝑘 or as𝐸0𝜌1𝐷1𝜎1𝐸1 . . . 𝜎𝑘−1 𝐸𝑘−1𝜌𝑘𝐷𝑘 ,

where:

• 𝜌ℓ and 𝜎ℓ are the steps that respectively change the value of

𝑅.𝑠𝑒𝑞 and 𝑆𝑁 from ℓ−1 to ℓ (𝜌ℓ is a successful𝑅.compare&swap,
line 14, 𝜎ℓ is also a successful SN .compare&swap, applied
within a read, line 5, a write, line 15, or an audit, line 22).

• in any configuration in 𝐸ℓ , 𝑅.𝑠𝑒𝑞 = 𝑆𝑁 = ℓ , and in any

configuration in 𝐷ℓ , 𝑅.𝑠𝑒𝑞 = ℓ = 𝑆𝑁 + 1.

Algorithm 1Multi-writer,𝑚-reader auditable register implemen-

tation

shared registers:
R: a register supporting read, compare&swap, and

fetch&xor, initially (0, 𝑣0, rand0)
⊲ store a triple (sequence number, value,𝑚-bits string)

SN : a register supporting read and compare&swap,
initially 0

𝑉 [0.. +∞] registers, initially [⊥, . . . ,⊥]
𝐵 [0.. +∞][0..𝑚 − 1] Boolean registers, initially,

𝐵 [𝑠, 𝑗] = false for every (𝑠, 𝑗) : 𝑠 ≥ 0, 0 ≤ 𝑗 < 𝑚.

local variables: reader
𝑝𝑟𝑒𝑣_𝑣𝑎𝑙, 𝑝𝑟𝑒𝑣_𝑠𝑛: latest value read (⊥ initially)

and its sequence number (−1 initially)
local variables common to writers and auditors

rand0, rand1, . . .: sequence of random𝑚-bit strings

local variables: auditor
𝐴: audit set, initially ∅;
𝑙𝑠𝑎: latest “audited” seq. number, initially 0

1: function read( ) ⊲ code for reader 𝑝 𝑗 , 0 ≤ 𝑗 < 𝑚

2: 𝑠𝑛 ← SN .read()
3: if 𝑠𝑛 = 𝑝𝑟𝑒𝑣_𝑠𝑛 then return 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙

⊲ no new write since latest read operation

4: (𝑠𝑛, 𝑣𝑎𝑙, _) ← 𝑅.fetch&xor(2𝑗 )
⊲ fetch current value and insert 𝑗 in reader set

5: 𝑆𝑁 .compare&swap(𝑠𝑛 − 1, 𝑠𝑛) ⊲ help complete 𝑠𝑛thwrite

6: 𝑝𝑟𝑒𝑣_𝑠𝑛 ← 𝑠𝑛; 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 ← 𝑣𝑎𝑙 ; return 𝑣𝑎𝑙

7: function write(𝑣) ⊲ code for writer 𝑝𝑖 , 𝑖 ∉ {0, . . . ,𝑚 − 1}
8: 𝑠𝑛 ← SN .read() + 1
9: repeat
10: (𝑙𝑠𝑛, 𝑙𝑣𝑎𝑙, 𝑏𝑖𝑡𝑠) ← 𝑅.read()
11: if 𝑙𝑠𝑛 ≥ 𝑠𝑛 then break
12: 𝑉 [𝑙𝑠𝑛] .write(𝑙𝑣𝑎𝑙);
13: for each 𝑗 : 𝑏𝑖𝑡𝑠 [ 𝑗] ≠ rand𝑙𝑠𝑛 [ 𝑗] do

𝐵 [𝑙𝑠𝑛] [ 𝑗] .write(𝑡𝑟𝑢𝑒)
14: until 𝑅.compare&swap((𝑙𝑠𝑛, lval, 𝑏𝑖𝑡𝑠), (𝑠𝑛, 𝑣, rand𝑠𝑛))
15: 𝑆𝑁 .compare&swap(𝑠𝑛 − 1, 𝑠𝑛); return
16: function audit( )

17: (𝑟𝑠𝑛, 𝑟𝑣𝑎𝑙, 𝑟𝑏𝑖𝑡𝑠) ← 𝑅.read()
18: for 𝑠 = 𝑙𝑠𝑎, 𝑙𝑠𝑎 + 1, . . . , 𝑟𝑠𝑛 − 1 do
19: 𝑣𝑎𝑙 ← 𝑉 [𝑠] .read();
20: 𝐴← 𝐴 ∪ {( 𝑗, 𝑣𝑎𝑙) : 0 ≤ 𝑗 < 𝑚, 𝐵 [𝑠] [ 𝑗] .read() = true}
21: 𝐴← 𝐴 ∪ {( 𝑗, 𝑟𝑣𝑎𝑙) : 0 ≤ 𝑗 < 𝑚,𝑏𝑖𝑡𝑠 [ 𝑗] ≠ rand𝑟𝑠𝑛 [ 𝑗]}
22: 𝑙𝑠𝑎 ← 𝑟𝑠𝑛; 𝑆𝑁 .compare&swap(𝑟𝑠𝑛 − 1, 𝑟𝑠𝑛); return 𝐴

Termination. It is clear that audit and read operations are wait-

free. We prove thatwrite operations are also wait-free, by showing

that the repeat loop (lines 9-14) terminates after at most 𝑚 + 1

iterations. This holds since each reader may change 𝑅 at most once

(by applying a 𝑅.fetch&xor, line 4) while 𝑅.𝑠𝑒𝑞 remains the same.

Lemma 2. Every operation terminates within a finite number of its

own steps.

Proof sketch. The lemma clearly holds for read and audit

operations. Let 𝑤𝑜𝑝 be a write operation, and assume, towards
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a contradiction, that it does not terminate. Let 𝑠𝑛 = 𝑥 + 1 be the
sequence number obtained at the beginning of𝑤𝑜𝑝 at line 8, where

𝑥 is the value read from 𝑆𝑁 . We denote by (𝑠𝑟, 𝑣𝑟, 𝑏𝑟 ) the triple read
from 𝑅 in the first iteration of the repeat loop. It can be shown that

𝑥 ≤ 𝑠𝑟 . As 𝑠𝑟 < 𝑠𝑛 = 𝑥 + 1 (otherwise the loop breaks in the first

iteration at line 11, and the operation terminates), we have 𝑠𝑟 = 𝑥 .

As 𝑤𝑜𝑝 does not terminate, in particular the compare&swap
applied to 𝑅 at the end of the first iteration fails. Let (𝑠𝑟 ′, 𝑣𝑟 ′, 𝑏𝑟 ′) be
the value of 𝑅 immediately before this step is applied. This can be

used to show that if 𝑠𝑟 ′ ≠ 𝑠𝑟 or 𝑣𝑟 ′ ≠ 𝑣𝑟 , then 𝑠𝑟 ′ > 𝑠𝑟 . Therefore,

𝑤𝑜𝑝 terminates in the next iteration as the sequence number read

from 𝑅 in that iteration is greater than or equal to 𝑠𝑛 (line 11). It

thus follows that 𝑠𝑟 = 𝑠𝑟 ′, 𝑣𝑟 = 𝑣𝑟 ′, and 𝑏𝑟 ≠ 𝑏𝑟 ′: at least one reader
applies a fetch&xor to 𝑅 during the first iteration of repeat loop.

The same reasoning applies to the next iterations of the repeat

loop. In each of them, the sequence number and the value stored in𝑅

are the same, 𝑠𝑟 and 𝑣𝑟 respectively (otherwise the loop would break

at line 11), and thus a reader applies a fetch&xor to 𝑅 before the

compare&swap of line 14 (otherwise the compare&swap succeeds

and𝑤𝑜𝑝 terminates). But it can be shown that each reader applies at

most one fetch&xor to 𝑅 while it holds the same sequence number,

which is a contradiction. □

Linearizability. Let 𝛼 be a finite execution, and 𝐻 be the his-

tory of the read, write, and audit operations in 𝛼 . We classify

and associate a sequence number with some of read and write

operations in 𝐻 as explained next. Some operations that did not

terminate are not classified, and they will later be discarded.

• A read operation 𝑜𝑝 is silent if it reads 𝑥 = 𝑝𝑟𝑒𝑣_𝑠𝑛 at line 2.

The sequence number 𝑠𝑛(𝑜𝑝) associated with a silent read

operation 𝑜𝑝 is the value 𝑥 returned by the read from SN .

Otherwise, if 𝑜𝑝 applies a fetch&xor to 𝑅, it is said to be

direct. Its sequence number 𝑠𝑛(𝑜𝑝) is the one fetched from 𝑅

(line 4).

• A write operation 𝑜𝑝 is visible if it applies a successful

compare&swap to 𝑅 (line 14). Otherwise, if 𝑜𝑝 terminates

without applying a successful compare&swap on 𝑅 (by exit-

ing the repeat loop from the break statement, line 11), it is

said to be silent. For both cases, the sequence number 𝑠𝑛(𝑜𝑝)
associated with 𝑜𝑝 is 𝑥 + 1, where 𝑥 is the value read from

𝑆𝑁 at the beginning of 𝑜𝑝 (line 8).

Note that all terminated read or write operations are classified as

silent, direct, or visible. An audit operation 𝑜𝑝 is associated with

the sequence number read from 𝑅 at line 17.

We define a complete history 𝐻 ′ by removing or completing

the operations that do not terminate in 𝛼 , as follows: Among the

operations that do not terminate, we remove every audit and

every unclassified read or write. For a silent read that does not

terminate in 𝛼 , we add a response immediately after SN is read at

line 2. The value returned is 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 , that is the value returned

by the previous read by the same process. For each direct read

operation 𝑜𝑝 that does not terminate in 𝛼 , we add a response with

value 𝑣 defined as follows. Since 𝑜𝑝 is direct, it applies a fetch&xor
on 𝑅 that returns a triple (𝑠𝑟, 𝑣𝑟, 𝑏𝑟 ); 𝑣 is the value 𝑣𝑟 in that triple.

In 𝐻 ′, we place the response of non-terminating direct read and

visible write after every response and every remaining invocation

of 𝐻 , in an arbitrary order.

Finally, to simplify the proof, we add at the beginning of 𝐻 ′ an
invocation immediately followed by a response of a write opera-

tion with input 𝑣0 (the initial value of the auditable register.). This

fictitious operation has sequence number 0 and is visible.

Essentially, in the implemented register updating to a new value

𝑣 is done in two phases. 𝑅 is first modified to store 𝑣 and a fresh

sequence number 𝑥 + 1, and then the new sequence number is

announced in 𝑆𝑁 . Visiblewrite, direct read, and audit operations

may be linearized with respect to the compare&swap, fetch&xor
or read they apply to 𝑅. Special care should be taken for silent read

and write operations. Indeed, a silent read that reads 𝑥 from 𝑆𝑁 ,

may return the previous value 𝑢 stored in the implemented register

or 𝑣 , depending on the sequence number of the last preceding direct

read by the same process. Similarly, a silent write(𝑣 ′) may not

access 𝑅 at all, or apply a compare&swap after 𝑅.𝑠𝑒𝑞 has already

been changed to 𝑥 + 1. However, write(𝑣 ′) has to be linearized

before write(𝑣), in such a way that 𝑣 ′ is immediately overwritten.

Hence, direct read, visible write, and audit are linearized first,

according to the order in which they apply a primitive to 𝑅. We

then place the remaining operations with respect to this partial lin-

earization. 𝐿(𝛼) is the total order on the operations in 𝐻 ′ obtained
by the following rules:

R1 For direct read, visible write, audit and some silent read

operations we defined an associated step 𝑙𝑠 applied by the

operation. These operations are then ordered according to

the order in which their associated step takes place in 𝛼 .

For a direct read, visible write, or audit operation 𝑜𝑝 , its

associated step 𝑙𝑠 (𝑜𝑝) is respectively the fetch&xor at line 4,
the successful compare&swap at line 14, and the read at

line 17 applied to 𝑅. For a silent read operation 𝑜𝑝 with

sequence number 𝑠𝑛(𝑜𝑝) = 𝑥 , if 𝑆𝑁 .read (line 2) is applied

in 𝑜𝑝 during 𝐸𝑥 (that is, 𝑅.𝑠𝑒𝑞 = 𝑥 when this read occurs),

𝑙𝑠 (𝑜𝑝) is this read step. The other silent read operations do

not have a linearization step, and are not ordered by this

rule. They are instead linearized by Rule R2.

Recall that 𝜌𝑥+1 is the successful compare&swap applied to 𝑅 that

changes 𝑅.𝑠𝑒𝑞 from 𝑥 to 𝑥 + 1 (Lemma 1). By rule R1, the visible

write with sequence number 𝑥 + 1 is linearized at 𝜌𝑥+1.

R2 For every 𝑥 ≥ 0, every remaining silent read 𝑜𝑝 with se-

quence number 𝑠𝑛(𝑜𝑝) = 𝑥 is placed immediately before the

unique visiblewrite operation with sequence number 𝑥 + 1.
Their relative order follows the order in which their read
step of 𝑆𝑁 (line 2) is applied in 𝛼 .

R3 Finally, we place for each 𝑥 ≥ 0 every silentwrite operation

𝑜𝑝 with sequence number 𝑠𝑛(𝑜𝑝) = 𝑥 + 1. They are placed

after the silent read operations with sequence number 𝑥

ordered according to rule R2, and before the unique visible

write operation with sequence number 𝑥+1. As above, their
respective order is determined by the order in which their

read step of 𝑆𝑁 (line 8) is applied in 𝛼 .

Rules R2 and R3 are well-defined, in [3] we prove the existence

and uniqueness of a visiblewritewith sequence number 𝑥 , if there

is an operation 𝑜𝑝 with 𝑠𝑛(𝑜𝑝) = 𝑥 .

We can show that the linearization 𝐿(𝛼) extends the real-time

order between operations, and that the read and write operations

satisfy the sequential specification of a register.
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Audit Properties. For the rest of the proof, fix a finite execution 𝛼 .

The next lemma helps to show that effective operations are audited;

it demonstrates how indistinguishability is used in our proofs.

Lemma 3. A read operation 𝑟𝑜𝑝 that is invoked in 𝛼 is in 𝐿(𝛼) if
and only if 𝑟𝑜𝑝 is effective in 𝛼 .

Proof. If 𝑟𝑜𝑝 completes in 𝛼 , then it is effective and it is in 𝐿(𝛼).
Otherwise, 𝑟𝑜𝑝 is pending after 𝛼 . Let 𝑝 𝑗 be the process that invokes

𝑟𝑜𝑝 . We can show:

Claim 4. 𝑟𝑜𝑝 is effective after 𝛼 if and only if either

(1) 𝑝 𝑗 has read 𝑥 from SN and 𝑥 = 𝑝𝑟𝑒𝑣_𝑠𝑛 (line 2) or

(2) 𝑝 𝑗 has applied fetch&xor to 𝑅 (line 4).

Proof. First, let 𝛼 ′ be an arbitrary extension of 𝛼 in which 𝑟𝑜𝑝

returns some value 𝑎, 𝛽 a finite execution indistinguishable from

𝛼 to 𝑝 𝑗 , and 𝛽 ′ one of its extensions in which 𝑟𝑜𝑝 returns some

value 𝑏. We show that if 𝛼 satisfies (1) or (2), then 𝑎 = 𝑏. (1) If in

𝛼 after invoking 𝑟𝑜𝑝 , 𝑝 𝑗 reads 𝑥 = 𝑝𝑟𝑒𝑣_𝑠𝑛 from SN at line 2, then

𝑟𝑜𝑝 returns 𝑎 = 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 in 𝛼 ′. Since 𝛼
𝑝 𝑗∼ 𝛽 , 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 = 𝑎 and

𝑝𝑟𝑒𝑣_𝑠𝑛 = 𝑥 when 𝑟𝑜𝑝 starts in 𝛽 , and 𝑝 𝑗 reads also 𝑥 from 𝑆𝑁 .

Therefore, 𝑟𝑜𝑝 returns 𝑏 = 𝑎 in 𝛽 ′. (2) If 𝑝 𝑗 applies a fetch&xor to 𝑅
(line 4) while performing 𝑟𝑜𝑝 in 𝛼 , then 𝑟𝑜𝑝 returns 𝑎 = 𝑣 (line 6),

where 𝑣 is the value fetched from 𝑅.𝑣𝑎𝑙 in 𝛼 ′. Since 𝛼
𝑝 𝑗∼ 𝛽 , 𝑝 𝑗 also

applies a fetch&xor to 𝑅 while performing 𝑟𝑜𝑝 in 𝛽 , and fetches 𝑣

from 𝑅.𝑣𝑎𝑙 . Therefore 𝑟𝑜𝑝 also returns 𝑣 in 𝛽 ′.
Conversely, suppose that neither (1) nor (2) hold for 𝛼 . That is,

𝑝 𝑗 has not applied a fetch&xor to 𝑅 and, if 𝑥 has been read from

SN , 𝑥 ≠ 𝑝𝑟𝑒𝑣_𝑠𝑛. We construct two extensions 𝛼 ′ and 𝛼 ′′ in which

𝑟𝑜𝑝 returns 𝑣 ′ ≠ 𝑣 ′′, respectively. Let 𝑋 be the value of 𝑆𝑁 at the

end of 𝛼 , and 𝑝𝑖 be a writer. In 𝛼 ′, 𝑝𝑖 first completes its pending

write if it has one, before repeatedly writing the same value 𝑣 ′ until
performing a visible write(𝑣 ′). Finally, 𝑝 𝑗 completes 𝑟𝑜𝑝 . Since 𝑝𝑖
is the only writer that takes steps in 𝛼 , it eventually has a visible

write(𝑣 ′), that is in which 𝑅.𝑣𝑎𝑙 is changed to 𝑣 ′. Note also that

when this happens, SN > 𝑋 . The extension 𝛼 ′′ is similar, except

that 𝑣 ′ is replaced by 𝑣 ′′.
Since conditions (1) and (2) do not hold, 𝑝𝑖 ’s next step in 𝑟𝑜𝑝 is

reading 𝑆𝑁 or issuing 𝑅.fetch&xor. If 𝑝 𝑗 reads 𝑆𝑁 after resuming

𝑟𝑜𝑝 , it gets a value 𝑥 > 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 . Thus, in both cases, 𝑝 𝑗 accesses 𝑅

in which it reads 𝑅.𝑣𝑎𝑙 = 𝑣 ′ (or 𝑅.𝑣𝑎𝑙 = 𝑣 ′′). Therefore, 𝑟𝑜𝑝 returns

𝑣 ′ in 𝛼 ′ and 𝑣 ′′ in 𝛼 ′′. □

Now, if (1) holds (𝑝 𝑗 reads 𝑥 = 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 from 𝑆𝑁 at line 2), then

𝑟𝑜𝑝 is classified as a silent read, and it appears in 𝐿(𝛼), by rule 𝑅1

if 𝑅.𝑠𝑒𝑞 = 𝑥 when 𝑆𝑁 is read or rule 𝑅2, otherwise. If (2) holds (𝑝 𝑗

applies a fetch&xor to 𝑅), then 𝑜𝑝 is a direct read, and linearized

in 𝐿(𝛼) by rule 𝑅1.

If neither (1) nor (2) hold, then 𝑝 𝑗 has either not read 𝑆𝑁 , or read

a value ≠ 𝑝𝑟𝑒𝑣_𝑣𝑎𝑙 from 𝑆𝑁 but without yet accessing 𝑅. In both

cases, 𝑜𝑝 is unclassified and hence not linearized. □

We can prove that an audit 𝑎𝑜𝑝 includes a pair ( 𝑗, 𝑣) in its re-

sponse set if and only if a read operation by process 𝑝 𝑗 with output

𝑣 is linearized before it. Since a read is linearized if and only it is

effective (Lemma 3), any audit operation that is linearized after

the read is effective, must report it. This implies:

Lemma 5. If an audit operation 𝑎𝑜𝑝 is invoked and returns in an

extension 𝛼 ′ of 𝛼 , and 𝛼 contains a 𝑣-effective read operation by

process 𝑝 𝑗 , then ( 𝑗, 𝑣) is contained in the response set of 𝑎𝑜𝑝 .

Lemma 6 shows that writes are uncompromised by readers,

namely, a read cannot learn of a value written, unless it has an

effective read that returned this value. Lemma 7 shows that reads

are uncompromised by other readers, namely, they do not learn of

each other.

Lemma 6. Assume 𝑝 𝑗 only performs read operations. Then for every

value 𝑣 either there is a read operation by 𝑝 𝑗 in 𝛼 that is 𝑣-effective,

or there is 𝛼 ′, 𝛼 ′
𝑝 𝑗∼ 𝛼 in which no write has input 𝑣 .

Proof. If 𝑣 is not an input of some write operation in 𝛼 , the

lemma follows by taking 𝛼 ′ = 𝛼 . If there is no visible write(𝑣)

operation in 𝛼 , then, since a silent write(𝑣) does not change 𝑅.𝑣𝑎𝑙

to 𝑣 , the lemma follows by changing its input to some value 𝑣 ′ ≠ 𝑣

to obtain an execution 𝛼 ′
𝑝 𝑗∼ 𝛼

Let𝑤𝑜𝑝 be a visible write(𝑣) operation in 𝛼 . Since it is visible,

𝑤𝑜𝑝 applies a compare&swap to 𝑅 that changes (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) to
(𝑥, 𝑣) where 𝑥 is some sequence number. If 𝑝 𝑗 applies a fetch&xor
to 𝑅 while 𝑅.𝑣𝑎𝑙 = 𝑣 , then the corresponding read operation 𝑟𝑜𝑝 it

is performing is direct and 𝑣-effective. Otherwise, 𝑝 𝑗 never applies

a fetch&xor to 𝑅 while 𝑅.𝑣𝑎𝑙 = 𝑣 . 𝑅 is the only shared variable in

which inputs of write are written and that is read by 𝑝 𝑗 . Hence, the

input of𝑤𝑜𝑝 can be replaced by another value 𝑣 ′ ≠ 𝑣 , creating an

indistinguishable execution 𝛼 ′ without a write with input 𝑣 . □

Lemma 7. Assume 𝑝 𝑗 only performs read operations, then for any

reader 𝑝𝑘 , 𝑘 ≠ 𝑗 , there is an execution 𝛼 ′
𝑝 𝑗∼ 𝛼 in which no read by

𝑝𝑘 is 𝑣-effective, for any value 𝑣 .

Proof. The lemma clearly holdes if there is no 𝑣-effective read

by process 𝑝𝑘 . So, assume there is a 𝑣-effective read operation 𝑟𝑜𝑝

by 𝑝𝑘 . Let 𝛼
′
be the execution in which we remove all 𝑣-effective

read operations performed by 𝑝𝑘 that are silent. Such operations

do not change any shared variables, and therefore, 𝛼 ′
𝑝 𝑗∼ 𝛼 .

So, let 𝑟𝑜𝑝 be a direct, 𝑣-effective read by 𝑝𝑘 . When performing

𝑟𝑜𝑝 , 𝑝𝑘 applies fetch&xor to 𝑅 (line 4), when (𝑅.𝑠𝑒𝑞, 𝑅.𝑣𝑎𝑙) = (𝑥, 𝑣),
for some sequence number 𝑥 . This step only changes the 𝑘th track-

ing bit of 𝑅 unchanged to, say, 𝑏. Recall that 𝑅 is accessed (by

applying a fetch&xor) at most once by 𝑝 𝑗 while 𝑅.𝑠𝑒𝑞 = 𝑥 . If no

fetch&xor by 𝑝 𝑗 is applied to 𝑅 while 𝑅.𝑠𝑒𝑞 = 𝑥 , or one is applied be-

fore 𝑝𝑘 ’s, 𝑟𝑜𝑝 can be removed without being noticed by 𝑝 𝑗 . Suppose

that both 𝑝𝑘 and 𝑝 𝑗 apply a fetch&xor to 𝑅 while 𝑅.𝑠𝑒𝑞 = 𝑥 , and

that 𝑝 𝑗 ’s fetch&xor is after 𝑝𝑘 ’s. Let 𝛼 ′𝑥,𝑏 be the execution identical

to 𝛼 ′, except that (1) the 𝑘th bit of 𝑟𝑎𝑛𝑑𝑥 is 𝑏 and, (2) 𝑟𝑜𝑝 is removed.

Therefore, 𝛼 ′
𝑥,𝑏

𝑝 𝑗∼ 𝛼 ′, and since 𝛼 ′
𝑝 𝑗∼ 𝛼 , we have that 𝛼 ′

𝑥,𝑏

𝑝 𝑗∼ 𝛼 . □

Theorem 8. Alg. 1 is a linearizable and wait-free implementation

of an auditable multi-writer, multi-reader register. Moreover,

• An audit reports ( 𝑗, 𝑣) if and only if 𝑝 𝑗 has an 𝑣-effective read

operation in 𝛼 .

• a write is uncompromised by a reader 𝑝 𝑗 , unless 𝑝 𝑗 has a

𝑣-effective read.

• a read by 𝑝𝑘 is uncompromised by a reader 𝑝 𝑗 ≠ 𝑝𝑘 .
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4 An Auditable Max Register
This section shows how to extend the register implementation

of the previous section into an implementation of a max register

with the same properties. A max register provides two operations:

writeMax(𝑣) which writes a value 𝑣 and read which returns a

value. Its sequential specification is that a read returns the largest

value previously written. An auditable max register also provides

an audit operation, which returns a set of pairs ( 𝑗, 𝑣). As in the pre-

vious section, reads are audited if and only if they are effective, and

readers cannot compromise other writeMax operations, unless

they read them, or other read operations.

Alg. 2 uses essentially the same read and audit as in Alg. 1.

The writeMax operation is also quite similar, with the following

differences (lines in blue in the pseudo-code). In Alg. 1, a write(𝑤 )

obtains a new sequence number 𝑠 + 1 and then attempts to change

𝑅 to (𝑠 + 1,𝑤, 𝑟𝑎𝑛𝑑𝑠+1). The operation terminates after it succeeds

in doing so, or if it sees in 𝑅 a sequence number 𝑠′ ≥ 𝑠 + 1. In the

latter case, a concurrent write(𝑤 ′) has succeeded and may be seen

as overwriting 𝑤 , so write(𝑤 ) can terminate, even if 𝑤 is never

written to 𝑅. The implementation of writeMax uses a similar idea,

except that (1) we make sure that the successive values in 𝑅 are

non-decreasing and (2) awriteMax(𝑤 ) with sequence number 𝑠+1
is no longer abandoned when a sequence number 𝑠′ ≥ 𝑠 + 1 is read
from 𝑅, but instead when 𝑅 stores a value𝑤 ′ ≥ 𝑤 .

There is however, a subtlety that must be taken care of. A reader

may obtain a value 𝑣 with sequence number 𝑠 , and later read a value

𝑣 + 2 with sequence number 𝑠′ > 𝑠 + 1. This leaks to the reader that
some writeMax operations occur in between its read operations,

and in particular, that a writeMax(𝑣 + 1) occurred, without ever
effectively reading 𝑣 + 1.

To deal with this problem, we append a random nonce 𝑁 to

the argument of a writeMax operation, where 𝑁 is a random

number. The pair (𝑤, 𝑁 ) is used as the value written 𝑣 was used

in Alg. 1. The pairs (𝑤, 𝑁 ) are ordered lexicographically, that is,

first by their value𝑤 and then by their nonce 𝑁 . Thus, the reader

cannot guess intermediate values. The code for read and audit

is slightly adjusted in Alg. 2 versus Alg. 1, to ignore the random

nonce 𝑁 from the pairs when values are returned.

In the algorithm, a (non-auditable) max-register 𝑀 is shared

among the writers. A writeMax(𝑤 ) by 𝑝 starts by writing the

pair 𝑣 = (𝑤, 𝑁 ) of the value 𝑤 and the nonce 𝑁 to 𝑀 , before

entering a repeat loop. Each iteration is an attempt to store in 𝑅

the current value𝑚𝑣𝑎𝑙 of𝑀 , and the loop terminates as soon as 𝑅

holds a value equal to or larger than𝑚𝑣𝑎𝑙 . Like in Alg. 1, 𝑅 holds

a triplet (𝑠, 𝑣𝑎𝑙, 𝑏𝑖𝑡𝑠) where 𝑠 is 𝑣𝑎𝑙 ’s sequence number, 𝑣𝑎𝑙 is the

current value, and 𝑏𝑖𝑡𝑠 is the encrypted set of readers of 𝑣𝑎𝑙 . Before

attempting to change 𝑅, 𝑣𝑎𝑙 and the set of readers, once deciphered,

are stored in the registers 𝑉 [𝑠] and 𝐵 [𝑠], from which they can be

retrieved with audit.

In each iteration of the repeat loop, the access pattern of write

in Alg. 1 to the shared register SN and 𝑅 is preserved. After ob-

taining a new sequence number 𝑠 + 1, where 𝑠 is the current value
of 𝑆𝑁 (line 24 for the first iteration, line 30 otherwise), a triple

(𝑙𝑠𝑛, 𝑙𝑣𝑎𝑙, 𝑏𝑖𝑡𝑠) is read from 𝑅. If 𝑙𝑣𝑎𝑙 ≥ 𝑣 , the loop breaks as a value

that is equal to or larger than 𝑣 has already been written. As in

Algorithm 2 Auditable Max Register

shared registers
𝑅, SN ,𝑉 [0.. +∞], 𝐵 [0.. +∞][0..𝑚 − 1] as in Alg. 1

𝑀 : a (non-auditable) max register, initially 𝑣0 = (𝑤0, 𝑁0)
local variables: writer, reader, auditor, as in Alg. 1

21: function read( ), audit( ): same as in Alg 1

22: function writeMax(𝑤 )

23: 𝑣 ← (𝑤, 𝑁 ), where 𝑁 is a fresh random nonce

24: 𝑀.writeMax(𝑣); 𝑠𝑛 ← SN .read() + 1;
25: repeat
26: (𝑙𝑠𝑛, 𝑙𝑣𝑎𝑙, 𝑏𝑖𝑡𝑠) ← 𝑅.read()
27: if 𝑙𝑣𝑎𝑙 ≥ 𝑣 then 𝑠𝑛 ← 𝑙𝑠𝑛; break
28: if 𝑙𝑠𝑛 ≥ 𝑠𝑛 then
29: SN .compare&swap(𝑠𝑛 − 1, 𝑠𝑛);
30: 𝑠𝑛 ← SN .read() + 1; continue
31: 𝑚𝑣𝑎𝑙 ← 𝑀.read()
32: 𝑉 [𝑙𝑠𝑛] .write(𝑙𝑣𝑎𝑙 .𝑣𝑎𝑙𝑢𝑒);
33: 𝐵 [𝑙𝑠𝑛] [ 𝑗] .write(true) ∀𝑗 , s.t. 𝑏𝑖𝑡𝑠 [ 𝑗] ≠ 𝑟𝑎𝑛𝑑𝑙𝑠𝑛 [ 𝑗]
34: until𝑅.compare&swap((𝑙𝑠𝑛, 𝑙𝑣𝑎𝑙, 𝑏𝑖𝑡𝑠), (𝑠𝑛,𝑚𝑣𝑎𝑙, 𝑟𝑎𝑛𝑑𝑠𝑛))
35: SN .compare&swap(𝑠𝑛 − 1, 𝑠𝑛); return

Alg. 1, before returning we make sure that the sequence number in

𝑆𝑁 is at least as large as 𝑙𝑠𝑛, the sequence number in 𝑅.

5 Auditable Snapshot Objects and Versioned
Types

We show how an auditable max register (Section 4) can be used to

make other object types auditable.

5.1 Making Snapshots Auditable
We start by showing how to implement an auditable 𝑛-component

snapshot object, relying on an auditable max register. Each com-

ponent has a state, initially ⊥, and a different designated writer

process. A view is an 𝑛-component array, each cell holding a value

written by a process in its component. A atomic object [1] provides

two operations: update(𝑣) that changes the process’s component

to 𝑣 , and scan that returns a view. It is required that in any sequen-

tial execution, in the view returned by a scan, each component

contains the value of the latest update to this component (or ⊥ if

there is no previous update). As for the auditable register, an audit

operation returns a set of pairs ( 𝑗, 𝑣𝑖𝑒𝑤). In a sequential execution,

there is such a pair if and only if the operation is preceded by a

scan by process 𝑝 𝑗 that returns 𝑣𝑖𝑒𝑤 . Here, we want that audits

report exactly those scans that have made enough progress to infer

the current 𝑣𝑖𝑒𝑤 of the object.

Denysuk and Woeffel [12] show that a strongly-linearizable max

register can be used to transform a linearizable snapshot into its

strongly linearizable counterpart. As we explain next, with the

same technique, non-auditable snapshot objects can be made au-

ditable. Algorithm 3 adds an audit operation to their algorithm.

Their implementation is lock-free, as they rely on a lock-free im-

plementation of a max register. Algorithm 3 is wait-free since we

use the wait-free max-register implementation of Section 4.

Let 𝑆 be a linearizable, but non-auditable snapshot object. The

algorithm works as follows: each new state (that is, whenever one
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Algorithm 3 𝑛-component auditable snapshot objects.

shared registers
M: auditable max register, initially (0, [⊥, . . . ,⊥])
S: (non-auditable) snapshot object,

initially [(0,⊥), . . . , (0,⊥)]
local variable: writer 𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝑛

𝑠𝑛𝑖 local sequence number, initially 0

1: function update(𝑣) ⊲ code for writer 𝑝𝑖 , 𝑖 ∈ {1, . . . , 𝑛}
2: 𝑠𝑛𝑖 ← 𝑠𝑛𝑖 + 1; 𝑆.update𝑖 ((𝑠𝑛𝑖 , 𝑣))
3: 𝑠𝑣𝑖𝑒𝑤 ← 𝑆.scan(); 𝑣𝑛 ← ∑

1≤ 𝑗≤𝑛 𝑠𝑣𝑖𝑒𝑤 [ 𝑗] .𝑠𝑛
4: 𝑣𝑖𝑒𝑤 ← the 𝑛-component array of the values in 𝑠𝑣𝑖𝑒𝑤

5: 𝑀.writeMax((𝑣𝑛, 𝑣𝑖𝑒𝑤)); return
6: function scan( )

7: (_, 𝑣𝑖𝑒𝑤) ← 𝑀.read(); return 𝑣𝑖𝑒𝑤

8: function audit( )

9: MA← 𝑀.audit();
10: return {( 𝑗, 𝑣𝑖𝑒𝑤) : ∃ an element ( 𝑗, (∗, 𝑣𝑖𝑒𝑤)) ∈ MA}

component is updated) is associated with a unique and increas-

ing version number. The version number is obtained by storing a

sequence number 𝑠𝑛𝑖 in each component 𝑖 of 𝑆 , in addition to its

current value. Sequence number 𝑠𝑛𝑖 is incremented each time the

𝑖th component is updated (line 2). Summing the sequence numbers

of the components yields a unique and increasing version number

(𝑣𝑛) for the current view.

The pairs (𝑣𝑛, 𝑣𝑖𝑒𝑤), where 𝑣𝑛 is a version number and 𝑣𝑖𝑒𝑤 a

state of the auditable snapshot, are written to an auditable max

register𝑀 . The pairs are ordered according to the version number,

which is a total order since version numbers are unique. Therefore,

the latest state can be retrieved by reading𝑀 , and the set of past

scan operations can be obtained by auditing𝑀 (line 10). The current

view of the auditable snapshot is stored in 𝑆 .

In an update(𝑣), process 𝑝𝑖 starts by updating the 𝑖th component

of 𝑆 with 𝑣 and incrementing the sequence number field 𝑠𝑛𝑖 . It then

scans 𝑆 , thus obtaining a new view of 𝑆 that includes its update.

The view 𝑣𝑖𝑒𝑤 of the implemented auditable snapshot is obtained

by removing the sequence number in each component (line 4). The

version number 𝑣𝑛 associated with this view is the sum of the

sequence numbers. It then writes (𝑣𝑛, 𝑣𝑖𝑒𝑤 ) to the max-register

𝑀 (line 5). A scan operation reads a pair (𝑣𝑛, 𝑣𝑖𝑒𝑤) from 𝑀 and

returns the corresponding 𝑣𝑖𝑒𝑤 (line 7). Since𝑀 is auditable, the

views returned by the processes that have previously performed a

scan can thus be inferred by auditing𝑀 (line 10).

The audit and scan operations interact with the implementa-

tion by applying a single operation (audit and read, respectively)

to the auditable max register𝑀 . The algorithm therefore lifts the

properties of the implementation of𝑀 to the auditable snapshot ob-

ject. In particular, when the implementation presented in Section 4

is used, effective scan operations are auditable, scan operations

are uncompromised by other scanners, and update operations are

uncompromised by scanners.

5.2 Proof of Correctness
Let 𝛼 be a finite execution of Algorithm 3. To simplify the proof,

we assume the inputs of update by the same process are unique.

We assume that the implementation of 𝑀 is wait-free and lin-

earizable. In addition, it guarantees effective linearizability and that

read operations are uncompromised by other readers. We also

assume that the implementation of 𝑆 is linearizable and wait-free

(e.g.,[1]). Inspection of the code shows that update, scan and audit

operations are wait-free.

Since 𝑆 and𝑀 are linearizable and linearizability is composable,

𝛼 can be seen as a sequence of steps applied to 𝑆 or𝑀 . In particular,

we associate with each high-level operation 𝑜𝑝 a step 𝜎 (𝑜𝑝) applied
by 𝑜𝑝 either to 𝑆 or to𝑀 . The linearization 𝐿(𝛼) of 𝛼 is the sequence

formed by ordering the operations according to the order their

associated step occurs in 𝛼 .

For a scan and an audit operation 𝑜𝑝 , 𝜎 (𝑜𝑝) is, respectively, the
read and the audit steps applied to𝑀 . If 𝑜𝑝 is an updatewith input

𝑥 by process 𝑝𝑖 , then let 𝑣𝑛𝑥 be the sum of the sequence numbers

𝑠𝑛 in each component of 𝑆 after update(𝑥) has been applied to 𝑆 by

𝑝𝑖 . 𝜎 (𝑜𝑝) is the first write to 𝑀 of a pair (𝑣𝑛, 𝑣𝑖𝑒𝑤) with 𝑣𝑛 ≥ 𝑣𝑛𝑥
and 𝑣𝑖𝑒𝑤 [𝑖] = 𝑥 . If there is no such write, 𝑜𝑝 is discarded.

We first show that the linearization 𝐿(𝛼) respects the real-time

order between operations.

Lemma 9. If an operation 𝑜𝑝 completes before an operation 𝑜𝑝′ is
invoked in 𝛼 , then 𝑜𝑝 precedes 𝑜𝑝′ in 𝐿(𝛼).

Proof. We show that that the linearization point of any opera-

tion 𝑜𝑝 is inside its execution interval; the claim is trivial for scan

or audit operations.

Suppose that 𝑜𝑝 is an update by a process 𝑝𝑖 with input 𝑥 . The

sum of the sequence numbers in the components of 𝑆 increases

each time an update is applied to it. Hence, any pair (𝑣𝑛, 𝑣𝑖𝑒𝑤)
written to𝑀 before 𝑝𝑖 has updated its component of 𝑆 to 𝑥 is such

that 𝑣𝑛 < 𝑣𝑛𝑥 . Therefore 𝜎 (𝑜𝑝), if it exists, is after 𝑜𝑝 starts. If 𝑜𝑝

terminates, then it scans 𝑆 after updating the 𝑖th component of 𝑆

to 𝑥 . The 𝑣𝑖𝑒𝑤 it obtains and its associated version number satisfy

𝑣𝑖𝑒𝑤 [𝑖] = 𝑥 and 𝑣𝑛 ≥ 𝑣𝑛𝑥 . This pair is written to𝑀 . If 𝜎 (𝑜𝑝) is not
this step, then 𝜎 (𝑜𝑝) occurs before 𝑜𝑝 terminates. If 𝑜𝑝 does not

terminate and 𝜎 (𝑜𝑝) does exist, it occurs after 𝑜𝑝 starts and thus

within 𝑜𝑝’s execution interval. □

Lemma 10. Each component 𝑖 of the view returned by a scan is the

input of the last update by 𝑝𝑖 linearized before the scan in 𝐿(𝛼).

Proof. Consider a scan operation 𝑠𝑜𝑝 that returns 𝑣𝑖𝑒𝑤 , with

𝑣𝑖𝑒𝑤 [𝑖] = 𝑥 . This view is read from the max register 𝑀 and has

version number 𝑣𝑛. Let 𝑜𝑝 be the last update by 𝑝𝑖 linearized before

𝑠𝑜𝑝 in 𝐿(𝛼), let 𝑦 be its input and 𝑣𝑛𝑦 the version number (that is

the sum of the sequence number stored in each component) of 𝑆

immediately after 𝑆.update(𝑦) is applied by 𝑝𝑖 .

We denote by 𝜎𝑢 this low level update. Since the version number

increases with each update, every pair (𝑣𝑛′, 𝑣𝑖𝑒𝑤 ′) written into

𝑀 before 𝜎𝑢 is such that 𝑣𝑛′ < 𝑣𝑛𝑦 . Also, every pair (𝑣𝑛′, 𝑣𝑖𝑒𝑤 ′)
written to 𝑀 after 𝜎𝑢 and before 𝑠𝑜𝑝 is linearized satisfies 𝑣𝑛′ ≥
𝑣𝑛𝑦 =⇒ 𝑣𝑖𝑒𝑤 ′ [𝑖] = 𝑦. Indeed, if 𝑣𝑛′ ≥ 𝑣𝑛𝑦 , 𝑣𝑖𝑒𝑤

′
is obtained

by a scan of 𝑆 applied after the 𝑖-th component is set to 𝑦. Hence,

𝑣𝑖𝑒𝑤 ′ [𝑖] = 𝑦 because we assume that 𝑜𝑝 is the last update by 𝑝𝑖
linearized before 𝑠𝑜𝑝 in 𝐿(𝛼).

Finally, step 𝜎 (𝑜𝑝) is a write of pair (𝑣𝑛′, 𝑣𝑖𝑒𝑤 ′) to𝑀 with 𝑣𝑛′ ≥
𝑣𝑛𝑦 and 𝑣𝑖𝑒𝑤 ′ [𝑖] = 𝑦. 𝜎 (𝑜𝑝) occurs after 𝜎𝑢 and before the max
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register 𝑀 is read by 𝑠𝑜𝑝 . It thus follows that the pair (𝑣𝑛, 𝑣𝑖𝑒𝑤)
read from 𝑀 in 𝑠𝑜𝑝 satisfies 𝑣𝑛 ≥ 𝑣𝑛𝑦 and has been written after

𝜎𝑦 . Hence, 𝑣𝑖𝑒𝑤 [𝑖] = 𝑦 = 𝑥 . We conclude that each component 𝑖 of

the view returned by a scan is the input of the last update by 𝑝𝑖
linearized before the scan in 𝐿(𝛼). □

Lemma 11. An audit reports ( 𝑗, 𝑣𝑖𝑒𝑤) if and only if 𝑝 𝑗 has a 𝑣𝑖𝑒𝑤-

effective
2
scan in 𝛼 . Each update(𝑣) is uncompromised by a scanner

𝑝 𝑗 unless it has a 𝑣𝑖𝑒𝑤-effective scan with one component of 𝑣𝑖𝑒𝑤

equal to 𝑣 . Each scan by 𝑝𝑘 is uncompromised by a scanner 𝑝 𝑗 ≠ 𝑝𝑘 .

Proof. A scan applies a single operation on shared objects,

namely a read on𝑀 . It is linearized with this step, which determines

the view it returns. Therefore, a scan is linearized if and only if it

is effective. Hence ( 𝑗, 𝑣𝑖𝑒𝑤 ) is reported by an audit if and only if

𝑝 𝑗 has a 𝑣𝑖𝑒𝑤-effective scan.

Let 𝑣 be the input of an update operation by some process 𝑝𝑖 . If

there is no 𝑣𝑖𝑒𝑤 with 𝑣𝑖𝑒𝑤 [𝑖] = 𝑣 written to𝑀 (line 5), update(𝑣)

can be replaced by update(𝑣 ′), 𝑣 ′ ≠ 𝑣 in an execution 𝛼 ′, 𝛼
𝑝 𝑗∼ 𝛼 ′.

Otherwise, note that each 𝑠𝑣𝑖𝑒𝑤 for which 𝑝 𝑗 has a 𝑠𝑣𝑖𝑒𝑤-effective

scan, we have 𝑠𝑣𝑖𝑒𝑤 [𝑖] ≠ 𝑣 . Suppose that 𝑣𝑖𝑒𝑤 , with 𝑣𝑖𝑒𝑤 [𝑖] = 𝑣

is written to𝑀 in 𝛼 . Then we can replace 𝑣𝑖𝑒𝑤 with an array 𝑣𝑖𝑒𝑤 ′,

identical to 𝑣𝑖𝑒𝑤 except that 𝑣𝑖𝑒𝑤 ′ [𝑖] = 𝑣 ′ ≠ 𝑣 an execution 𝛼 ′
𝑝 𝑗∼ 𝛼 .

This is because the write of 𝑣𝑖𝑒𝑤 is not compromised by 𝑝 𝑗 in 𝑀 .

By repeating this procedure until all writes to 𝑀 of 𝑣𝑖𝑒𝑤s with

𝑣𝑖𝑒𝑤 [𝑖] = 𝑣 have been eliminated leads to an execution 𝛽, 𝛽
𝑝 𝑗∼ 𝛼 in

which there is no update(𝑣). □

Theorem 12. Alg. 3 is a wait-free linearizable implementation of

an auditable snapshot object which audits effective scan operations,

in which scan and update are uncompromised by scanners.

5.3 Versioned Objects
Snapshot objects are an example of a versioned type [12], whose

successive states are associated with unique and increasing ver-

sion numbers. Furthermore, the version number can be obtained

from the object itself, without resorting to external synchronization

primitives. Essentially the same construction can be applied to any

versioned object.

An object 𝑡 ∈ T is specified by a tuple (𝑄,𝑞0, 𝐼 ,𝑂, 𝑓 , 𝑔), where𝑄
is the state space, 𝐼 and𝑂 are respectively the input and output sets

of update and read operations. 𝑞0 is the initial state and functions

𝑓 : 𝑄 → 𝑂 and 𝑔 : 𝐼 × 𝑄 → 𝑄 describes the sequential behavior

of read and update. A read() operation leaves the current state 𝑞

unmodified and returns 𝑓 (𝑞). An update(𝑣), where 𝑣 ∈ 𝐼 changes
the state 𝑞 to 𝑔(𝑣, 𝑞) and does not return anything.

A linearizable versioned implementation of a type 𝑡 ∈ T can

be transformed into a strongly-linearizable one [12], as follows.

Let 𝑡 = (𝑄,𝑞0, 𝐼 ,𝑂, 𝑓 , 𝑔) be some type in T . Its versioned variant

𝑡 ′ = (𝑄 ′, 𝑞′
0
, 𝐼 ′,𝑂 ′, 𝑓 ′, 𝑔′) has 𝑄 ′ = 𝑄 × N, 𝑞′

0
= (𝑞0, 0), 𝐼 ′ = 𝐼 ,

𝑂 ′ =𝑂 ×N, 𝑓 ′ : 𝑄 ′ → 𝑂 ×N and 𝑔′ : 𝐼 ×𝑄 ′ → 𝑄 ′. That is, the state
of 𝑡 ′ is augmented with a version number, which increases with

each update and is returned by each read: 𝑓 ′ ((𝑞, 𝑣𝑛)) = (𝑓 (𝑞), 𝑣𝑛)
and 𝑔′ ((𝑞, 𝑣𝑛)) = (𝑔(𝑞), 𝑣𝑛′) with 𝑣𝑛 < 𝑣𝑛′.

2
Namely, 𝑝𝑖 has a scan operation that returns 𝑣𝑖𝑒𝑤 in all indistinguishable executions.

A versioned implementation of a type 𝑡 ∈ T can be transformed

into an auditable implementation of the same type using an au-

ditable register. The construction is essentially the same as pre-

sented in Algorithm 3. In the auditable variant 𝑇𝑎 of 𝑇 , to perform

an update(𝑣), a process 𝑝 first update the versioned implementation

𝑇 before reading it. 𝑝 hence obtains a pair (𝑜, 𝑣𝑛) that it writes to
the auditable max register𝑀 . For a read, a process returns what it

reads from 𝑀 . As read amounts to read 𝑀 , to perform an audit

a process simply audit the max-register 𝑀 . As we have seen for

snapshots, 𝑇𝑎 is linearizable and wait-free. Moreover, 𝑇𝑎 inherits

the advanced properties of the underlying max-register: If 𝑀 is

implemented with Algorithm 2, then it correctly audits effective

read, and read and update are uncompromised.

Theorem 13 (versioned types are auditable). Let 𝑡 ∈ T ,
and let 𝑇 be a versioned implementation of 𝑡 that is linearizable

and wait-free. There exists a wait-free, linearizable and auditable

implementation of 𝑡 from 𝑇 and auditable max-registers in which

read and update are uncompromised by readers and audit reports

only effective read operations.

6 Discussion
This paper introduces novel notions of auditability that deal with

curious readers. We implement a wait-free linearizable auditable

register that tracks effective reads while preventing unauthorized

audits by readers. This implementation is extended into an auditable

max register, which is then used to implement auditable atomic

snapshots and versioned types.

Many open questions remain for future research. An immedi-

ate question is how to implement an auditable register in which

only auditors can audit, i.e., reads are uncompromised by writers.

A second open question is how to extend auditing to additional

objects. These can include, for example, partial snapshots [5] in

which a reader can obtain an “instantaneous” view of a subset of

the components. Another interesting object is a clickable atomic

snapshot [17], in particular, variants that allow arbitrary operations

on the components and not just simple updates (writes).

The property of uncompromising other accesses can be seen as

an internal analog of history independence, recently investigated

for concurrent objects [4]. A history-independent object does not

allow an external observer, having access to the complete system

state, to learn anything about operations applied to the object, but

only its current state. Our definition, on the other hand, does not

allow an internal observer, e.g., a reader that only reads shared base

objects, to learn about other read and write operations applied in

the past. An interesting intermediate concept would allow several

readers collude and to combine the information they obtain in order

to learn more than what they are allowed to.
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