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Abstract
A key result of distributed computing in asynchronous systems is

a characterization for the wait-free solvability of colorless tasks by
the existence of a continuous map from the task’s input complex

(representing the valid input configurations) to its output com-

plex (representing the valid output configurations) which respects

that task’s specification. This natural characterization led to many

proofs, mainly of impossibility: showing that a colorless task is

not wait-free solvable, can be done by proving that there is no

continuous map (respecting the task’s specification) between two

simplicial complexes, which can be done using classical topological

machinery.

The seminal work of Herlihy and Shavit (JACM ’99) charac-

terized the solvability of general (not necessarily colorless) tasks.

However, this characterization is much more involved than the col-

orless one, as it uses the new notions of chromatic subdivisions and

color-preserving maps. The characterization asks whether there

exists a chromatic subdivision of the input complex and a color-

preservingmap from the resulting subdivided complex to the output

complex. This characterization is much harder to check as there are

no ready-made topological tools for it, and in fact, finding such a

subdivision and map is related to finding an algorithm for the task.

This work presents a new and simpler characterization for the

solvability of general tasks with three processes. In our characteri-

zation, the output complex undergoes a bounded number of simple

combinatorial transformations. Then, we check if there is a contin-

uous map from the input complex to the resulting output complex;

we show that this suffices for determining whether the original task

is solvable. Our approach provides a new and more direct way for

deciding the solvability of a task, and also for proving impossibility

and possibility of wait-free solutions for general tasks.
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• Theory of computation → Concurrent algorithms; Dis-
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1 Introduction
For more than thirty years, distributed computing has been studied

through the lens of topology, developing a deep understanding of

the solvability of tasks. In this approach, a simplex represents a

configuration as a set of vertices, each representing the state of

one process. In general, each vertex has an associated process id,
sometimes referred to as its color. Tasks are triples (I,O,Δ), where
I and O are simplicial complexes modelling the inputs and outputs

of the task, and Δ is a relation specifying the possible valid outputs,

Δ(𝜎), for each input simplex 𝜎 ∈ I. For any initial configuration 𝜎

of I, each process starts with an input vertex of 𝜎 colored by its

id, and must decide on an output vertex with its color, respecting

Δ, that is, such that the vertices decided by the processes form a

simplex 𝜏 of Δ(𝜎).
Tasks are colorless [9, 19], if they can be defined only in terms

of input and output values, regardless of the number of processes

involved, and regardless of which process has a particular input

or output value; accordingly, the simplices of I and O consist of

sets of values, without process ids. Well-known examples are the

consensus task [12] and its generalization to set consensus [10].

In general, not all tasks can be stated as colorless; such tasks are

called chromatic or colored. Several such tasks have been studied,

notably renaming [3]. A simple example is the majority consensus
task (see Figure 1): three processes start with binary input values,

and each must decide on a value that appeared as an input; addition-

ally, if all three processes participate then they must either decide

on the same value, or more processes must decide 0 than 1.

A major contribution of the topological approach is a set of novel

impossibility results and algorithms for specific tasks, through fun-

damental characterizations of solvable tasks in various distributed

computing models. Beyond telling us what is solvable and what is

not, characterization results tell us what makes tasks solvable or not,
indicating the obstructions to solvability, and sometimes indicating

how these obstructions can be avoided.

https://doi.org/10.1145/3732772.3733548
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Figure 1: The majority consensus task. Gray levels represent
process ids, and their inputs and outputs are written inside
the vertices.

1.1 The challenge: Wait-free solvability of
chromatic tasks

The focus of this work is on wait-free protocols for solving a task
in a read/write shared memory system.

A cornerstone result for this model is the asynchronous com-
putability theorem (ACT) of Herlihy and Shavit [22] (see also [18,

Theorem 11.2.1]). The key insight of the ACT theorem is that a

protocol solving a task in this model closely corresponds to a color-

preserving mapping from a chromatic subdivision of the input com-

plex into allowable outputs in the output complex. This requires

checking, for an arbitrarily large 𝑟 , whether there is amapping from
the complex that results from 𝑟 repeated chromatic subdivisions of
the input complex to the output complex that is color-preserving and

respects Δ. Thus, the ACT does not provide us with easy-to-use

techniques that work solely by relating the topology of the input

and the output complexes.

The usefulness of such results is demonstrated by the characteri-

zation known for colorless tasks, which are much simpler to analyze.

There is an elegant solvability characterization for colorless tasks

only in terms of their input and output complexes [18, 21]: a color-
less task is wait-free solvable if and only if there is a continuous map
from |I | to |O| respecting Δ (where |𝐾 | is the geometric realization

of a simplicial complex).

Researchers have tried to find a solvability characterization of

chromatic tasks in terms of continuous maps, analogous to the

colorless characterization. The value of such a characterization

would not only be due to its direct nature from the input complex

to the output complex, but also due to the direct connection to

topology: continuous maps between spaces.

The quest for such a characterization has failed, because it is
not true that a chromatic task is solvable if and only if there is a

continuous map from the input to the output complex. This has

been demonstrated with the hourglass task, depicted in Figure 2.

This task has a single input configuration. Each process running

solo decides on value 0. If process 𝑃0 (black) runs concurrently with

either 𝑃1 or 𝑃2, they can also (in addition to their solo values) decide

on their respective vertices, with output 1. While 𝑃1 and 𝑃2 running

concurrently can additionally decide their respective vertices with

value 2. When all three run concurrently, any triangle is a valid

output simplex. As discussed in [18, Section 11.1], despite there

being a continuous map from the input to the output complex for

the hourglass task, the hourglass task is nevertheless unsolvable.

The same holds for the majority consensus task.

1.2 Our results and techniques
This paper proves a necessary and sufficient condition for the solv-

ability of a three-process task, (I,O,Δ). Rather then relating the

input complex I to the output complex O, which is impossible (as

demonstrated by the hourglass task), our condition relates the input

complex to an output complex O′, effectively derived from O. The
condition applies to all tasks, but its main novelty is in showing

the critical role of a new type of obstructions for chromatic tasks.

(See Section 5.)

Our condition goes through identifying a notion of a local artic-
ulation point in the output complex: a vertex whose neighborhood,

its link in the topological parlance, is disconnected. The right-hand

side of Figure 2 depicts the link of a vertex in the hourglass task,

which is a graph consisting of two connected components: the

output edges compatible with the vertex of 𝑃1 deciding 1.

We show a novel method for dealing with each local articulation

point by splitting the output complex around it, eventually creating

a link-connected output complex O′. See the center-right side of
Figure 2, for splitting the hourglass task.

To deal with multiple input configurations, we ensure that all

tasks are in a canonical form; this means that each output vertex is

the image, by Δ, of a unique input vertex. To this end, we require

each process to output its input in addition to the output it decides

on (see Section 3.) This is essential since the splitting of an output

vertex crucially depends on its unique pre-image under Δ.
Consecutive splitting operations yield a task 𝑇 ′, with the same

input complex I as the original task and an adjusted relation Δ′

between I and O′. We show (Section 4) that the solvability of the

original general task is equivalent to the solvability of 𝑇 ′. This
results in showing 𝑇 is wait-free solvable if and only if there is a

continuous map from the geometric realization of I to that of O′,
which respects Δ′.

As already mentioned, continuous maps of these kind are known

to imply protocols for colorless tasks, but we have to adapt them to

deal with chromatic tasks. Specifically, we first employ a colorless

protocol as a color-agnostic solution to the chromatic task: a proto-

col that handles vertices with colors (id), but is not color-preserving,
namely, a process might decide on a vertex with a non-matching color.
We then present a concrete algorithm that allows three processes

to turn such a solution into a properly colored one, where each

process decides on an output vertex with its id, all on the same

output simplex. Similar protocols have appeared in earlier work

(e.g., [13, 22, 27]), but they were, at least partially, topological in na-

ture (see Section 5.2). This yields implicit algorithms that are harder

to understand, while our algorithm relies on standard synchroniza-

tion techniques. Section 6 discusses several examples, including

majority consensus and the hourglass task.

1.3 Additional related work
Link connectivity has showed up in all previous papers about chro-

matic tasks, since the work of Herlihy and Shavit [22]. However,

our paper is the first to identify the precise role of link connectivity

in a necessary and sufficient characterization of solvable chromatic

tasks, for three processes.
The case of three processes has played an important role in past

research, because it is the smallest dimension where topological
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Figure 2: The hourglass task: input complex (left), output complex (center left), output complex after splitting (center right)
and link (right).

properties beyond graph connectivity appear. In this case, two types

of obstructions—local articulation points and contractibility—are

neatly identifiable. In smaller dimensions, e.g., for two-process tasks,

if the output complex has a local articulation point then it is also

not connected (in the graph-theoretic sense), and hence, it is not

solvable. On the other hand, in dimensions higher than 2, i.e., with

four or more processes, a disconnected link may be connected (in

the graph-theoretic sense).

Note that undecidability results [13, 20] are essentially proved

in the three-process case, using loop agreement task [19, 20, 25]. A

loop agreement task is defined by a given two-dimensional output

complex O, together with a loop in it. Roughly, each process starts

on one of three distinguished vertices of the loop; if they start on the
same vertex, they decide on this vertex; if they start on two distinct

distinguished vertices, then they decide on vertices belonging to the

same edge along the path linking their starting vertices; finally, if

they start on all three distinguished vertices, then they can decide on

vertices belonging to any simplex of O. While a loop agreement task

can be solved for any number of processes, because it is colorless,

its essential behavior is captured by considering only three processes,
each starting on one of the distinguished vertices. In fact, some

results for loop agreement are known to have no generalization for

more than three processes [19, Theorem 5.4] .

Our approach is different from the one used in [13], where the

undecidability of three-process tasks was proved by a reduction

from the contractibility problem to the task-solvability problem. The

contractibility problem asks whether a given loop of a simplicial

complex can be continuously transformed into a point, a problem

which is known to be undecidable even for 2-dimensional simpli-

cial complexes (see, e.g., [28]). Gafni and Koutsoupias prove the

reduction by showing that contractibility is undecidable for the

special case of chromatic complexes and loops of length 3. To do

so, they first show that the contractibility problem is undecidable

for link-connected two-dimensional complexes. We instead trans-

form the output complex to be link-connected, and can then argue

directly about colorless tasks.

There are two previous approximations to continuous characteri-

zation. First, when assuming link connectivity, there are sufficiency

results for general tasks ([27], [14], and [18, Section 11.5]), without

a matching necessary condition. Another related notion is that of a

continuous task [16], which has an input/output specification that

is a continuous function between the geometric realizations of the

input and output complex. The characterization is that a task is

solvable if and only if there exists a chromatic function (a notion

introduced in [16]) from the input complex I to the output com-

plex O respecting the task specification. Our characterization is in

contrast more explicit about the obstructions (since it exposes the

role of local articulation points), and establishes a direct connec-

tion with colorless solvability: after removing articulation points,

chromatic and colorless solvability are the same.

Our splitting deformation draws upon work on modeling of real-

world objects, used in computer-aided design (CAD) [23]. There

is a long line of papers studying splitting deformations mostly of

two and three-dimensional simplicial complexes, because these are

the dimensions of most graphics applications (and for technical

reasons, as discussed in, e.g. [7]), although there is also work on

higher dimensional complexes. The same splitting we do has been

used (e.g. [11, Fig.1]), but not to fix a disconnected link; instead, the

interest has been in doing additional splittings, even of edges, be-

cause the goal in this research line is to decompose a non-manifold

complex into an assembly of manifolds, or at least into compo-

nents that belong to simpler, well-understood class of complexes

for which efficient data structures are known.

2 Preliminaries
We consider the standard read-write shared memory model of dis-

tributed computing [5], and adopt a standard framework for mod-

eling distributed computation through algebraic topology [18].

2.1 Read-write asynchronous shared-memory
model

We consider distributed systems with 𝑛 ≥ 2 processes, labeled by

distinct integers from 0 to 𝑛 − 1. Every process 𝑖 initially knows

its identity 𝑖 , called identifier (id), as well as the total number 𝑛 of

processes in the system.

A process is a deterministic (infinite) state machine. Processes

exchange information through a shared memory. The system is

asynchronous, and all interleavings of the atomic operations of

processes are possible. We do not limit the computational power of

the processes, the size of their private memories or the size of the

registers in the shared memory.

The shared memory has 𝑛 distinct atomic single-writer multiple-

reader registers 𝑅 [0], . . . , 𝑅 [𝑛 − 1]. Each process 𝑖 can store data
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in the shared memory by writing in its register 𝑅 [𝑖], and no other

processes can write in 𝑅 [𝑖]. On the other hand, for every 𝑖 ∈ [𝑛],
𝑅 [𝑖] can be read by any process 𝑗 .

A collect by process 𝑖 results in this process reading all regis-

ters 𝑅 [ 𝑗], 𝑗 = 0, . . . , 𝑛 − 1, in arbitrary sequential order. While

read and write operations are atomic, a collect operation is not. A

stronger variant is a scan operation [1], which is an atomic collect,

in which all registers are read simultaneously at once, in an atomic

manner. An even stronger variant is an immediate snapshot [8], in
which the write-snapshot sequence of operations is itself atomic,

that is, not only all registers are read simultaneously at once, but

the scan occurs “immediately” after the write operation.

In parts of this work, we assume processes communicate by im-

mediate snapshots on a single array of read/write registers, without

loss of generality (see, e.g. [15]). The reason is that the executions of

an algorithm solving a task are represented by a simplicial complex

that is a chromatic subdivision, as discussed next.

2.2 Elements of algebraic topology
A (simplicial) complex is a collection K of non-empty sets, closed

under inclusion, i.e., if 𝜎 ∈ K then, for every non-empty set 𝜎 ′ ⊆ 𝜎 ,
𝜎 ′ ∈ K . Every set in K is called a simplex. A subset of a simplex

is called a face, and a facet of K is a face that is maximal under

inclusion in K . The dimension of a simplex 𝜎 is |𝜎 | − 1, where |𝜎 |
denotes the cardinality of 𝜎 . The dimension of a complex is the

maximal dimension of its facets. A complex in which all facets are of

the same dimension is called pure. The vertices ofK are all simplices

with a single element (i.e., of dimension 0). The set of vertices of

a complex K are denoted by 𝑉 (K). As is common in literature,

we do not always distinguish a vertex 𝑣 from the singleton set {𝑣}
containing it.

Recall that |𝐾 | denotes the geometric realization of a simplicial

complex 𝐾 . Definitions and discussion about the geometrical and

topological view of simplicial complexes appear in [18, Sections

3.2.2 and 3.2.3].

In a chromatic complex, every vertex is a pair 𝑣 = (𝑖, 𝑥) where
𝑖 ∈ [𝑛] = {1, . . . , 𝑛} for some 𝑛 ≥ 1 is the color of 𝑣 (used to denote a
process id), and 𝑥 is some value (e.g., an input value, an output value,

or a value representing the data acquired after some computation).

Moreover, in a chromatic complex, a “color” 𝑖 appears at most once

in every simplex, that is, a simplex is of the form 𝜎 = {(𝑖, 𝑣𝑖 ) : 𝑖 ∈ 𝐼 }
for some non-empty set 𝐼 ⊆ [𝑛]. For such simplex 𝜎 , id(𝜎) is the
set of colors in 𝜎 , i.e., id(𝜎) = 𝐼 .

A simplicial map from a complex K to a complex K ′ is a map

𝑓 : 𝑉 (K) → 𝑉 (K ′) preserving simplices, i.e., for every simplex 𝜎 ,

the set 𝑓 (𝜎) = {𝑓 (𝑣) : 𝑣 ∈ 𝜎} is a simplex of K ′. A chromatic
simplicial map preserves the colors of the vertices, i.e., for every

(𝑖, 𝑥) ∈ 𝑉 (K), 𝑓 (𝑖, 𝑥) = (𝑖, 𝑦) ∈ 𝑉 (K ′); note that id(𝑓 (𝜎)) = id(𝜎).
A carrier map from a complex K to a complex K ′ is a map

Δ : K → 2
K′

that maps every simplex 𝜎 ∈ K to a pure sub-

complex of K ′ with the same dimension; moreover, it must be

monotonic, that is, for every 𝜎 ′ ⊆ 𝜎 , Δ(𝜎 ′) ⊆ Δ(𝜎), i.e., Δ(𝜎 ′) is a
subcomplex of Δ(𝜎). When the complexes are chromatic, we only

consider chromatic carrier maps, i.e., for every 𝜎 ∈ K , Δ(𝜎) has
the same colors as 𝜎 . Specifically, for a single vertex (𝑖, 𝑥) ∈ K , all
vertices in Δ(𝑖, 𝑥) have color 𝑖 .

For a vertex 𝑣 ∈ 𝑉 (K), the link of 𝑣 in K , denoted lkK (𝑣), is a
simplicial complex defined as

lkK (𝑣) = {𝜎 ⊆ 𝑉 (K) \ {𝑣} : (𝜎 ∪ {𝑣}) ∈ K} .
We focus on 2-dimensional complexes, in which case, lkK (𝑣) is a
1-dimensional complex, i.e., a graph. We say thatK is link connected
if lkK (𝑣) is a connected graph, for every vertex 𝑣 ∈ 𝑉 (𝑘).

2.3 Tasks
A task for 𝑛 processes is a triple (I,O,Δ) where I and O are

(𝑛−1)-dimensional complexes, respectively called input and output
complexes, and Δ : I → 2

O
is an input-output specification. Every

simplex 𝜎 = {(𝑖, 𝑥𝑖 ) : 𝑖 ∈ 𝐼 } of I defines a legal input state corre-

sponding to the scenario in which, for every 𝑖 ∈ 𝐼 , process 𝑖 starts
with input value 𝑥𝑖 . Similarly, every simplex 𝜏 = {(𝑖, 𝑦𝑖 ) : 𝑖 ∈ 𝐼 }
of O defines a legal output state corresponding to the scenario in

which, for every 𝑖 ∈ 𝐼 , process 𝑖 outputs the value 𝑦𝑖 . The map Δ
is an input-output relation specifying, for every input state 𝜎 ∈ I,
the set of output states 𝜏 ∈ O with id(𝜏) = id(𝜎) that are legal

with respect to 𝜎 . That is, assuming that only the processes in id(𝜎)
participate in the computation (the set of participating processes is

not known a priori to the processes in 𝜎), the processes are allowed

to output any simplex 𝜏 ∈ Δ(𝜎). Δ(𝜎) can be viewed as a collection

of simplices, each with the same set of ids as 𝜎 , or, alternatively, as

the complex induced by this set of simplices and containing also all

their faces. Recall that we assume that the carrier map Δ is mono-
tonic, that is, for every 𝜎, 𝜎 ′ ∈ I, if 𝜎 ′ ⊆ 𝜎 then Δ(𝜎 ′) ⊆ Δ(𝜎) as
subcomplexes. If Δ was not monotonic, then some output vertices

would have never been decided by an algorithm; such values can

be omitted from Δ. Fig. 3 present a simple task, which is used as a

running example below.

2.4 Task Solvability
Given a simplex 𝜎 = {(𝑖, 𝑥𝑖 ) : 𝑖 ∈ 𝐼 } ∈ I for some 𝐼 = id(𝜎) ⊆ [𝑛],
we can consider what happens after some interleaving of a write

and a collect operation by processes in 𝐼 . Such a simplex is of the

form 𝜏 = {(𝑖,𝑉𝑖 ) : 𝑖 ∈ 𝐼 }, where 𝑉𝑖 = {( 𝑗, 𝑥 𝑗 ) : 𝑗 ∈ 𝐽𝑖 } is the view of

process 𝑖 . These simplices induce a complex P (1) (𝜎). In the case of

immediate snapshots assumed in this paper, P (1) (𝜎) is a chromatic

subdivision of 𝜎 [22].

In general, it is known that a full-information protocol, where

processes communicate by immediate snapshots, remembering all

the past and repeatedly writing it in each immediate snapshot,

a finite number of times, the views at the end form a chromatic

subdivision of the input complex, denoted P, the protocol complex.
Furthermore, there is a structure of a monotonic carrier map from

I to P, which identifies the subcomplexes of executions starting

with each input simplex 𝜎 of I. Overloading notation, we use P
also as a carrier map, denoting by P(𝜎) the subcomplex of P of

all executions starting with 𝜎 . It is also well-known that P(𝜎) is a
chromatic subdivision of 𝜎 .

Finally, a task Π = (I,O,Δ) is solvable if and only if there exists

a simplicial chromatic map 𝑓 : P → O from the protocol complex

to the output complex that is carried by Δ, i.e., for every 𝜎 ∈ I,
𝑓 (P(𝜎)) ⊆ Δ(𝜎), informally called respecting Δ. The mapping 𝑓 is

defined by the vertices, i.e., for 𝜎 = {(𝑖,𝑉𝑖 ) : 𝑖 ∈ 𝐼 }, and corresponds
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Figure 3: A simple task with its relation Δ specified for some input simplices. Vertices’ colors represent their ids, and their
shape represent their Δ. The green facet in O is in Δ(𝜎) and in Δ(𝜎 ′); its black vertex is similarly in Δ of both black vertices of I.

Figure 4: Canonical task corresponding to the task of Fig. 3.

to the decisions of output values taken by the processes individually,

based on their views at the end of an execution. But the map 𝑓

extends from vertices to simplices, being a simplicial map, and we

have 𝑓 (𝜎) = {𝑓 (𝑖,𝑉𝑖 ) : 𝑖 ∈ 𝐼 } is a simplex of O.

3 Canonical tasks
As a first step, we show how to transform a task 𝑇 = (I,O,Δ) to a

task 𝑇 ∗ = (I,O∗,Δ∗), in a way that facilitates analyzing it as if it

was inputless, that is, as if its input complex contains a single facet,

following [17]. Intuitively, facets of the input complex of 𝑇 ∗ can be

considered independently of each other, because Δ∗ is “one-to-one”,
that is, for two facets 𝜎1, 𝜎2, no facet is in Δ∗ (𝜎1) ∩ Δ∗ (𝜎2). The
intersection Δ∗ (𝜎1) ∩ Δ∗ (𝜎2) may be non-empty if 𝜎1 ∩ 𝜎2 is non-
empty, in which case it would contain simplices of size |𝜎1 ∩ 𝜎2 |.
This result holds for a task𝑇 defined for any number 𝑛 of processes.

At a high level, 𝑇 ∗ is the task that results from 𝑇 by requiring

each process to output its input in addition to the output it produces

for 𝑇 . We define 𝑂∗ formally as a product of simplicial complexes,

as follows (see Fig. 4):

Given two pure chromatic simplicial complexes 𝐶 and 𝑇 of

dimension 𝑛 − 1, with vertices V(𝐶),V(𝑇 ) colored with 𝑛 col-

ors by 𝜒 (each facet is colored with 𝑛 distinct ids in our appli-

cations), the product 𝐶 × 𝑇 is the following pure chromatic sim-

plicial complex of dimension 𝑛 − 1. Its vertices are of the form

(𝑢, 𝑣) with 𝑢 ∈ V(𝐶) and 𝑣 ∈ V(𝑇 ) such that 𝜒 (𝑢) = 𝜒 (𝑣); the
color of (𝑢, 𝑣) is 𝜒 ((𝑢, 𝑣)) = 𝜒 (𝑢) = 𝜒 (𝑣). Its simplices are of the

form 𝑋 × 𝑌 = {(𝑢0, 𝑣0), . . . , (𝑢𝑘 , 𝑣𝑘 )} where 𝑋 = {𝑢0, . . . , 𝑢𝑘 } ∈ 𝐶 ,
𝑌 = {𝑣0, . . . , 𝑣𝑘 } ∈ 𝑇 and 𝜒 (𝑢𝑖 ) = 𝜒 (𝑣𝑖 ).

For a task𝑇 = (I,O,Δ) whose complexes I,O are colored with

process ids, let O∗ be the sub-complex of the Cartesian product

I ×O induced by all 𝑋 ×𝑌 such that 𝑌 ∈ Δ(𝑋 ). The task𝑇 ∗ is then
(I,O∗,Δ∗), where Δ∗ (𝑋 ) contains all the simplices 𝑌 ∗ = 𝑋 ×𝑌 , for
𝑌 ∈ Δ(𝑋 ). Intuitively, an output simplex 𝑌 ∈ Δ(𝑋 ) is replaced by a

pair 𝑋 × 𝑌 , i.e., each process 𝑦 ∈ 𝑌 also outputs its input value in

𝑋 ; this is done both in Δ and in O.

Theorem 3.1. A task 𝑇 = (I,O,Δ) is solvable iff its canonical
form 𝑇 ∗ = (I,O∗,Δ∗) is solvable.

Proof. If 𝑇 is solvable, then there is a simplicial map 𝛿 from

a protocol complex P starting in I to O. Each process can add

its input value to its decision, thus defining a simplicial map 𝛿∗

from I to O∗. This indeed defines a simplicial map that solves 𝑇 :

consider an input simplex 𝑋 ∈ I and a simplex 𝜏 ∈ P(𝑋 ). We have

that 𝛿 (𝜏) ∈ O is a simplex satisfying 𝛿 (𝜏) ∈ Δ(𝑋 ) since 𝛿 solves 𝑇 .
Hence, 𝛿∗ (𝜏) ∈ O∗ and also 𝛿∗ (𝜏) ∈ Δ∗ (𝑋 ), by the mare definitions

of 𝛿∗,O∗ and Δ∗.
Conversely, if𝑇 ∗ is solvable by a simplicial map 𝛿∗, then project-

ing out the input values gives a simplicial map 𝛿 solving 𝑇 . □

4 Resolution of Local Articulation Points
For an input facet 𝜎 ∈ I, a vertex 𝑦 ∈ Δ(𝜎) is called a local articu-
lation point w.r.t. 𝜎 (LAP) if its link lkΔ(𝜎 ) (𝑦) has at least two con-

nected components. Here, lkΔ(𝜎 ) (𝑦) is the link of 𝑦 in the complex

Δ(𝜎) ⊆ O. Fig. 5 depicts a disconnected link of a vertex 𝑦 ∈ Δ(𝜎).
This section presents our first technical contribution, a topolog-

ical deformation that removes local articulation points from the

output complex of a task. The deformation splits each such point

and re-defines the input-output relation, which results in a new

task with the same solvability as the original task.

To address the challenge of dealing with multiple input facets,

we henceforth assume that all the tasks are canonical. We further

assume that Δ is a carrier map, and that all of O is reachable, i.e. O =

∪𝜎∈IΔ(𝜎) (other simplices can clearly be omitted from O).

4.1 The Splitting Deformation
Let 𝑇 = (I,O,Δ) be a canonical task. Consider a facet 𝜎 ∈ I and a

vertex 𝑦 ∈ Δ(𝜎), such that 𝑦 is a local articulation point w.r.t. 𝜎 , i.e.,

lkΔ(𝜎 ) (𝑦) is a graph with 𝑟 ≥ 2 connected components 𝐶1, . . . ,𝐶𝑟 .

We define the splitting deformation of O w.r.t.𝑦 and 𝜎 by replacing O
with a new output complex O𝜎,𝑦 , and simultaneously redefine the

carrier map Δ into a new carrier map Δ𝜎,𝑦 : I → 2
O𝜎,𝑦

. For brevity,

we henceforth omit 𝜎 from the subscript, and denote the newly

defined task by 𝑇𝑦 = (I,O𝑦,Δ𝑦); we now detail the construction

of O𝑦 and Δ𝑦 (see Fig. 5).

For the vertices, omit 𝑦 from O and replace it by 𝑟 vertices

𝑦1, . . . , 𝑦𝑟 in O𝑦 , where id(𝑦𝑖 ) = id(𝑦) for all 𝑖 . For each 𝜏 ∈ I,
the vertices of the complex Δ𝑦 (𝜏) will be implicitly defined in the

following, by including in𝑉 (Δ𝑦 (𝜏)) every vertex which belongs to

some face of Δ𝑦 (𝜏). For each simplex 𝜏 ∈ I, of any dimension, if

𝜌 ∈ Δ(𝜏) satisfies 𝑦 ∉ 𝜌 then we add 𝜌 to Δ𝑦 (𝜏).
Note that Δ is a carrier map, so any face in O must be contained

in some facet in the image of Δ. Thus, we henceforth define Δ𝑦 by

considering facets in the image of Δ.
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Figure 5: A link lkΔ(𝜎 ) (𝑦) with two connected components, and after splitting w.r.t. 𝑦 and 𝜎

For a facet {𝑧, 𝑧′, 𝑦} ∈ Δ(𝜎), we must have that 𝑧, 𝑧′ ∈ 𝐶𝑖 for

some 𝑖 . Add the facet {𝑧, 𝑧′, 𝑦𝑖 } and all its faces to O𝑦 and to Δ𝑦 (𝜎).
We extend this to the faces of 𝜎 in a natural way, as follows. For

each edge 𝑒 ⊆ 𝜎 , if {𝑧,𝑦} ∈ Δ(𝑒) then add {𝑧,𝑦𝑖 } and all its faces to
Δ𝑦 (𝜎); act analogously if {𝑧′, 𝑦} ∈ Δ(𝑒). For each vertex 𝑥 ∈ 𝜎 , if
{𝑦} ∈ Δ(𝑥) then add {𝑦𝑖 } to Δ𝑦 (𝑥). Note that the above guarantees
that Δ𝑦 is a carrier map, at least for 𝜎 and its faces.

Consider a facet {𝑧, 𝑧′, 𝑦} ∈ Δ(𝜎 ′) in the image Δ(𝜎 ′) of another
facet 𝜎 ′ ∈ I, 𝜎 ′ ≠ 𝜎 . As the task is canonical, we have {𝑧, 𝑧′, 𝑦} ∉
Δ(𝜎). Add all the facets {𝑧, 𝑧′, 𝑦𝑖 } to Δ𝑦 (𝜎 ′), for all 𝑖 , as well as
all their faces. For each edge 𝑒 ⊆ 𝜎 ′, if {𝑧,𝑦} ∈ Δ(𝑒) then add all

the edges {𝑧,𝑦𝑖 } and all their faces to Δ𝑦 (𝜎 ′); act analogously if

{𝑧′, 𝑦} ∈ Δ(𝑒). For each vertex 𝑥 ∈ 𝜎 ′, if {𝑦} ∈ Δ(𝑥) then add all

of {𝑦𝑖 } to Δ𝑦 (𝑥). The above guarantees, again, that Δ𝑦 is a carrier

map, at least as far as 𝜎 ′ and its faces are concerned.

Claim 1. If 𝑇 is a canonical task then so is 𝑇𝑦 .

Proof. Let 𝑥 ∈ I be the unique input vertex s.t. (𝑥,𝑦) ∈ Δ. The
input-output relation Δ on any input vertex other than 𝑥 does not

change in Δ𝑦 . For 𝑥 , we have (𝑥,𝑦𝑖 ) ∈ Δ𝑦 for some set of indices 𝑖 ,

but no other vertex 𝑥 ′ ∈ I satisfies (𝑥 ′, 𝑦𝑖 ) ∈ Δ𝑦 , for any 𝑖 . □

Lemma 4.1. The number of local articulation points in O𝑦 w.r.t. 𝜎
is strictly smaller than in O.
Moreover, if O contains no articulation point w.r.t. some facet 𝜎 ′ ∈ I,
then O𝑦 also contains no articulation point w.r.t. 𝜎 ′.

Proof. Focus first on 𝜎 . The LAP 𝑦 is omitted from Δ(𝜎), while
for each 𝑦𝑖 its link lkΔ(𝜎 ) (𝑦𝑖 ) = 𝐶𝑖 is connected in Δ(𝜎). We now

show that if a vertex 𝑧 ∈ Δ(𝜎) is not no a LAP w.r.t. 𝜎 , it does

not become such. For a vertex 𝑧 ∈ Δ(𝜎) such that 𝑧 ∉ lkΔ(𝜎 ) (𝑦),
we have that 𝑦 ∉ lkΔ(𝜎 ) (𝑧), hence lkΔ(𝜎 ) (𝑧) in O is the same as

lkΔ𝑦 (𝜎 ) (𝑧) in O𝑦 .
Consider a vertex 𝑧 ∈ lkΔ(𝜎 ) (𝑦) which is not a LAP w.r.t. 𝜎 ; we

show it does not became a LAP by the transformation. Note that

the edge {𝑧,𝑦} in Δ(𝜎) is replaced by a single edge {𝑧,𝑦𝑖 } in Δ𝑦 (𝜎),
so only a single copy 𝑦𝑖 of 𝑦 is adjacent to 𝑧 in Δ𝑦 (𝜎). We have

that lkΔ(𝜎 ) (𝑧) is a connected graph 𝐻 , and lkΔ𝑦 (𝜎 ) (𝑧) is a graph

isomorphic to 𝐻 where 𝑦 is replaced by some node 𝑦𝑖 , and hence, it

is also connected.

No new LAP is created by the deformation, while 𝑦 is removed,

and the first claim follows.

For the second claim, consider a facet 𝜎 ′ ∈ I such that O con-

tains no articulation point w.r.t. 𝜎 ′. For every vertex 𝑧 ∈ Δ(𝜎 ′), if
𝑦 ∉ lkΔ(𝜎 ′ ) (𝑧) then lkΔ(𝜎 ′ ) (𝑧) = lkΔ𝑦 (𝜎 ′ ) (𝑧) and we are done.

Consider next a vertex 𝑧 ∈ Δ(𝜎 ′) such that 𝑦 ∈ lkΔ(𝜎 ′ ) (𝑧). The
edge {𝑦, 𝑧} exists in Δ(𝜎 ′), and since Δ is a carrier map, there is

a facet {𝑦, 𝑧, 𝑧′} in Δ(𝜎 ′). By assumption, lkΔ(𝜎 ′ ) (𝑧) is connected,
so lkΔ(𝜎 ′ ) (𝑧) contains a path from every node 𝑤 to either 𝑦 or 𝑧′

that does not go through the edge {𝑦, 𝑧′}. Consider such a path.

If it reaches 𝑧′, it remains intact in the deformation and exists in

lkΔ𝑦 (𝜎 ′ ) (𝑧). If it reaches 𝑦, its last edge is of the form {𝑤 ′, 𝑦} for
some𝑤 ′. If𝑤 ′ ∈ Δ(𝜎) then𝑤 ′ ∈ 𝐶𝑖 for some connected component

𝐶𝑖 of Δ(𝜎), and the edge {𝑤 ′, 𝑦𝑖 } exists in lkΔ𝑦 (𝜎 ′ ) (𝑧) while the

other path edges remain intact. If 𝑤 ′ ∉ Δ(𝜎) then all the edges

of the form {𝑤 ′, 𝑦𝑖 } (for all 𝑖) exist in lkΔ𝑦 (𝜎 ′ ) (𝑧) while the other
path edges remain intact. Finally, we note that all the edges of the

form {𝑧′, 𝑦𝑖 } exist in lkΔ𝑦 (𝜎 ′ ) (𝑧). Hence, in lkΔ𝑦 (𝜎 ′ ) (𝑧) each vertex

𝑤 has a path to either 𝑧′ or to some 𝑦𝑖 , and all the vertices 𝑦𝑖 are

connected to 𝑧′, which proves the connectivity of lkΔ𝑦 (𝜎 ′ ) (𝑧).
Finally, we consider 𝑦 itself, and the case where 𝑦 ∈ Δ(𝜎 ′) is not

an articulation point w.r.t. 𝜎 ′. In this case lkΔ(𝜎 ′ ) (𝑦) = lkΔ𝑦 (𝜎 ′ ) (𝑦𝑖 )
for all 𝑦𝑖 , hence no 𝑦𝑖 is an articulation point in Δ𝑦 w.r.t. 𝜎 ′. □

4.2 Splitting Maintains Solvability
A core property of the splitting deformation is that it maintains the

solvability or insolvability of the original task, as stated next.

Lemma 4.2. Let 𝑇 = (I,O,Δ) be a task in a canonical form, and
let𝑦 be a LAP w.r.t. 𝜎 for some 𝜎 ∈ I. Then, the task𝑇𝑦 = (I,O𝑦,Δ𝑦)
derived from 𝑇 by eliminating 𝑦 is solvable iff 𝑇 is solvable.

Proof. First, an algorithm𝐴𝑦 for𝑇𝑦 implies an algorithm𝐴 for𝑇 :

execute 𝐴𝑦 , then let each process with output 𝑦𝑖 ∈ O𝑦 output 𝑦

in 𝐴; each other process keeps its output.

We show that 𝐴 indeed solves 𝑇 . Fix 𝜏 ∈ I (of any dimension)

and consider an execution of 𝐴 with input 𝜏 , and the resulting

set 𝜌 ⊆ 𝑉 (O) of outputs (technically, a set of id-value pairs). Let
𝜌𝑦 ∈ O𝑦 be the output of the execution of 𝐴𝑦 within the execution

of 𝐴, and note that 𝜌𝑦 ∈ Δ𝑦 (𝜏). If none of the vertices of 𝜌𝑦 was

created by the splitting deformation then 𝜌 = 𝜌𝑦 , and we have

𝜌 ∈ Δ(𝜏) and 𝜌 ∈ O as desired. Otherwise, there is some 𝑖 such that

𝑦𝑖 ∈ 𝜌𝑦 . We may have 𝜌𝑦 = {𝑦𝑖 }, 𝜌𝑦 = {𝑦𝑖 , 𝑧} or 𝜌𝑦 = {𝑦𝑖 , 𝑧, 𝑧′}. In
all the cases, 𝜌𝑦 is created by taking a simplex 𝜌 ∈ Δ(𝜏) with 𝑦 ∈ 𝜌 ,
replacing 𝑦 by 𝑦𝑖 and adding the resulting simplex 𝜌𝑦 to Δ𝑦 (𝜏) and
to O𝑦 . Hence, the original simplex 𝜌 satisfies 𝜌 ∈ Δ(𝜏) and 𝜌 ∈ O
and we are done.

For the opposite direction, we have to use the link lk(𝑦), and since
this is a topological structure the argument will be topological as

well. Assume that𝑇 is solvable, then there is a protocol for𝑇 which

induces a protocol complex P, and a simplicial map 𝛿 : P → O
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carried by Δ. Let P(𝜎) be the sub-complex of P resulting from

subdividing 𝜎 . We stress that our solvability characterization does

not use P and it only appears here for the correctness proof.

We prove that 𝑇𝑦 is solvable by presenting a mapping 𝛿𝑦 : P →
O𝑦 carried by Δ𝑦 ; note that P remains unchanged. For every vertex

𝑤 ∈ P, if 𝛿 (𝑤) ≠ 𝑦 then define 𝛿𝑦 (𝑤) = 𝛿 (𝑤). On the other

hand, if 𝛿 (𝑤) = 𝑦, consider two cases. If 𝑤 ∈ P(𝜎) then choose a

neighbor𝑤 ′ of𝑤 in P(𝜎), check to which connected component𝐶𝑖

of lkΔ(𝜎 ) (𝑦) this neighbor𝑤 ′ is mapped by 𝛿 , and define 𝛿𝑦 (𝑤) = 𝑦𝑖 .
Otherwise, define 𝛿𝑦 (𝑤) = 𝑦1.

We show that the above 𝛿𝑦 is well defined in the case of 𝑤 ∈
P(𝜎). First, P(𝜎) is connected (see, e.g., [18, Theorem 10.2.11.])

and contains more than a single vertex, so a neighbor 𝑤 ′ exists.
Second, P(𝜎) is link connected (see, e.g., [26, Theorem 5]) and 𝛿

preserves the connectivity of each link (see, e.g., [26, Lemma 4]),

hence all neighbors𝑤 ′ of𝑤 are mapped by 𝛿 to the same connected

component of lkΔ(𝜎 ) (𝑦), so the choice of𝑤 ′ is insignificant.
Finally, we show that 𝛿𝑦 is simplicial and that it is carried by

Δ𝑦 . We consider a simplex 𝜏 ∈ I (of any dimension) and show that

𝛿𝑦 (P(𝜏)) ⊆ Δ𝑦 (𝜏); since any simplex in Δ𝑦 was also added to O𝑦 ,
this suffices. Consider a simplex 𝜉 ∈ P(𝜏).

We start with the simple case, when 𝑦 ∉ 𝛿 (𝜉). We assume 𝐴 is

correct so 𝛿 (𝜉) ∈ Δ(𝜏); since Δ𝑦 is the same as Δ on simplices that

do not contain 𝑦, we also have 𝛿 (𝜉) ∈ Δ𝑦 (𝜏). Finally, the definition
of 𝐴𝑦 gives 𝛿 (𝜉) = 𝛿𝑦 (𝜉), so 𝛿𝑦 (𝜉) ∈ Δ𝑦 (𝜏) and we are done.

Consider now 𝜉 ∈ P(𝜏) such that some𝑤 ∈ 𝜉 satisfies 𝛿 (𝑤) = 𝑦.
Since 𝑦 ∈ Δ(𝜎) and the task is canonical, we have 𝜏 ∩ 𝜎 ≠ ∅. We

consider two sub-cases, as depicted in Fig. 6.

(1) 𝜏 ⊆ 𝜎 . Here, 𝜉 ∈ P(𝜏) ⊆ P(𝜎). Since 𝐴 is correct, 𝛿 (𝜉) ⊆
{𝑦, 𝑧, 𝑧′} for some facet {𝑦, 𝑧, 𝑧′} ∈ Δ(𝜎), and {𝑧, 𝑧′} ∈ 𝐶𝑖 for some

connected component𝐶𝑖 of lkΔ(𝜎 ) (𝑦). In this case, Δ𝑦 (𝜏) is defined
to contain the same simplices as Δ(𝜏) but with 𝑦𝑖 instead of 𝑦. Since
𝐴 is correct 𝛿 (𝜉) ∈ Δ(𝜏), so the simplex resulting from 𝛿 (𝜉) by
replacing 𝑦 by 𝑦𝑖 is in Δ𝑦 (𝜏). Finally, 𝛿𝑦 (𝜉) contains all the vertices
of 𝛿 (𝜉), except for 𝑦 which is replaced by 𝛿𝑦 (𝑤) = 𝑦𝑖 , and this

simplex is in Δ𝑦 (𝜏) by the above.

(2) 𝜏 ∩ 𝜎 ≠ ∅ while 𝜏 ⊈ 𝜎 . In this case, there is a facet 𝜎 ′ ∈ I,
𝜎 ′ ≠ 𝜎 , such that 𝜏 ⊆ 𝜎 ′. For each simplex 𝜌 ∈ Δ(𝜏) with 𝑦 ∈ 𝜌 , the
carrier map Δ𝑦 is defined so that Δ𝑦 (𝜏) contains all the simplices

resulting from 𝜌 by replacing 𝑦 by 𝑦𝑖 , for all 𝑖 . Since 𝐴 is correct

𝛿 (𝜉) ∈ Δ(𝜏) is a simplex, thus all the simplices resulting from 𝛿 (𝜉)
by replacing 𝑦 (if 𝑦 ∈ 𝛿 (𝜉)) by some 𝑦𝑖 are in Δ𝑦 (𝜏). If 𝑤 ∈ P(𝜎)
then 𝛿𝑦 (𝑤) = 𝑦𝑖 for some 𝑖 , and otherwise 𝛿𝑦 (𝑤) = 𝑦1. However,
a crucial point is that in both cases 𝛿𝑦 (𝜉) is the outcome of taking

𝛿 (𝜉) and replacing𝑦 by some𝑦𝑖 . Hence, we have 𝛿𝑦 (𝜉) ∈ Δ𝑦 (𝜏). □

4.3 Creating a Link-Connected Task
By repeatedly eliminating LAPs, we can take a canonical task𝑇 and

create a new task 𝑇 ′ without LAPs while maintaining solvability:

Theorem 4.3. Given a canonical task𝑇 = (I,O,Δ), we can apply
a finite sequence of LAP elimination steps to obtain a link-connected
task 𝑇 ′ = (I,O′,Δ′), which is solvable iff 𝑇 is solvable.

Proof. We start from 𝑇 and go over all the facets 𝜎 ∈ I. For
each 𝜎 , we repeat the above process for all the articulation points

𝑦1, 𝑦2, . . .w.r.t.𝜎 , one at a time, to create a sequenceO,O𝑦1 , (O𝑦1 )𝑦2 , . . .

of complexes and a sequence Δ,Δ𝑦1 , (Δ𝑦1 )𝑦2 , . . . of carrier maps,

with a decreasing number of LAPs w.r.t. 𝜎 . This can be done since

all the intermediate tasks are canonical by Claim 1. After no LAPs

w.r.t. 𝜎 are left, we move to the next facet, and so on. Lemma 4.1

guarantees that no further LAPs w.r.t. 𝜎 are created after they are

eliminated, and the same will hold for any later facet in the se-

quence. This guarantees that the process terminates with an output

complex O′ and a carrier map Δ′ such that there is no LAP w.r.t. any
facet, or equivalently, a task 𝑇 ′ that is link-connected. Lemma 4.2

guarantees that the solvability is preserved throughout the process,

so 𝑇 ′ is solvable iff 𝑇 is solvable, as claimed. □

5 Solvability Characterization
Once we have shown Theorem 4.3, stating that articulation points

can be eliminated without changing solvability, we can derive

the main characterization result. We continue to denote 𝑇 ′ =

(I,O′,Δ′) the task after splitting a general task 𝑇 = (I,O,Δ)
(which was first transformed into a canonical form if necessary).

Note that by construction, 𝑇 ′ is link connected, meaning that for

each facet 𝜎 ∈ I, Δ′ (𝜎) is link connected. Recall that |𝐾 | denotes
the geometric realization of a simplical complex 𝐾 .

Theorem 5.1. A task 𝑇 = (I,O,Δ) is solvable iff there is a con-
tinuous map from |I | to |O′ | carried by Δ′.

The theorem follows from Lemma 5.2 (⇒) and Lemma 5.3 (⇐).

5.1 From Solvability to a Continuous Map
Lemma 5.2. If a task 𝑇 = (I,O,Δ) is solvable then there is a

continuous map from |I | to |O′ | carried by Δ′.

Proof. Assume that 𝑇 is solvable, then so is 𝑇 ′ = (I,O′,Δ′)
by Theorem 3.1 and Theorem 4.3. Since we consider the wait-free

model and a finite input complex, the solvability of 𝑇 implies, by

the Asynchronous Computability Theorem (ACT) [22], that there is

a chromatic subdivision Ch(𝑟 ) (I) of I and a chromatic simplicial

map 𝛿 : Ch(𝑟 ) (I) → O′ carried by Δ′.
The simplicial map 𝛿 and the chromatic subdivisionCh(𝑟 ) induce

a continuousmap |𝛿◦Ch(𝑟 ) | : |I | → |O′ | (see equation (3.2.2) in [18,
Section 3.2.3]), which is carried by Δ′. □

5.2 From a Color-Agnostic Protocol to
Chromatic Solvability

To prove the converse direction, note that by Theorem 4.3 the task

𝑇 ′ is link-connected. Informally, if there is a continuous map 𝑓 :

|I | → |O′ | carried by Δ′, then by the colorless ACT [18, Theorem

5.2.7], the task (I,O′,Δ′) when viewed as a colorless task, is solvable.
This gives a color-agnostic algorithm by which processes starting

with input values in some 𝜎 ∈ I decide on output values in the

same simplex 𝜏 of Δ′ (𝜎), but not necessarily each process on a vertex
of its own color (id). However, if processes start in a face 𝜏 ∈ I then

they decide on a face of Δ(𝜏).
Lemma 5.3 shows that, since 𝑇 ′ is link-connected, the processes

can find vertices of their own colors, forming a simplex still in Δ′ (𝜎).
The lemma describes an explicit algorithm specialized for three

processes. The existence of such an algorithm was suggested in

the past ([22, Lemma 4.21], [13, Lemma 3]). An algorithm with
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Figure 6: Proof of Lemma 4.2: case 1 (top) and case 2 (bottom).

some more explicit steps was presented in [27], but a key part of it,

solving link-based non-chromatic simplex agreement, also eventually
applies the non-constructive simplicial approximation theorem [24].

Lemma 5.3. If the task 𝑇 = (I,O,Δ) is link-connected and there
is a color-agnostic algorithm A𝐶 solving its colorless variant, then
the algorithm in Fig. 7 is a chromatic algorithm for solving 𝑇 .

The processes first run the color-agnostic algorithm A𝐶 , which

produces chromatic vertices in the same output simplex, but does

not assure that a process ends with a vertex of its own color. So,

assume process 𝑝𝑖 ends with vertex 𝑣𝑖 ∈ V(O). As all the decided
vertices belong to the same simplex in the output complex, although

several processes may decide on the same vertex, different decided

vertices have different colors.

Process 𝑝𝑖 then updates 𝑣𝑖 in a snapshot object and scans it to

obtain a set 𝑉𝑖 of vertices (a view). The process then updates 𝑉𝑖
in another snapshot object, and scans this object to get a set of

views𝑉0,𝑉1,𝑉2, some of which may be empty. Since the non-empty

views among 𝑉0,𝑉1,𝑉2 are results of scanning the same snapshot

object, the non-empty views among 𝑉0,𝑉1,𝑉2 are comparable, i.e.,

contained in one another. Furthermore, not all the views are empty,

since 𝑝𝑖 ’s scan includes 𝑝𝑖 ’s own view 𝑉𝑖 , and {𝑣𝑖 } ⊆ 𝑉𝑖 .
In the next step, 𝑝𝑖 picks 𝑉

∗
to be the smallest nonempty set

among 𝑉0,𝑉1,𝑉2 (this is its initial core). Note that by comparability,

𝑉 ∗ is contained in all the nonempty sets among 𝑉0,𝑉1,𝑉2. In fact,

𝑉 ∗ can be seen as the intersection of the non-empty views among

𝑉0,𝑉1,𝑉2 (as done in [27]). If𝑉
∗
includes a vertex 𝑣 such that id(𝑣) =

𝑖 , then 𝑝𝑖 decides on 𝑣 and terminates. (Such processes are called

pivots in the proof.) Otherwise, the color 𝑖 of 𝑝𝑖 does not appear in

𝑉 ∗, thus 𝑉 ∗ contains only one or two vertices.

If 𝑉 ∗ contains two vertices (necessarily with different colors),

i.e., 𝑉 ∗ = {𝑣∗,𝑤∗}, then 𝑝𝑖 picks a vertex 𝑣 ′ such that (a) id(𝑣 ′) = 𝑖
and (b) {𝑣 ′, 𝑣∗,𝑤∗} is a facet. Then, 𝑝𝑖 writes (𝑣 ′,𝑉 ∗) in yet another

snapshot object, and scans this object. If 𝑝𝑖 does not find a smaller

view in this object, then 𝑝𝑖 decides on 𝑣 ′ and terminates. Otherwise, it
finds a new minimal view of size 1, which is a subset of𝑉 ∗, say {𝑣∗},
and proceeds as if its core had a single vertex (see next paragraph).

If 𝑉 ∗ contains a single vertex 𝑣∗, i.e., 𝑉 ∗ = {𝑣∗}, then note that

the process whose color is id(𝑣∗) will observe 𝑣∗ in its core and will

decide on 𝑣∗. (The minimal view in 𝐴 may only decrease, and it

cannot get smaller than {𝑣∗}, so all processes observe 𝑣∗ in their

core, including 𝑝id(𝑣∗ ) itself.) Thus, 𝑝𝑖 is going to decide on some

vertex in the link of 𝑣∗, possibly after negotiating with 𝑝 𝑗 , the

third process other than 𝑝𝑖 and 𝑝id(𝑣∗ ) . This negotiation is done by

“jumping” towards the other process on a predetermined path in

lk(𝑣∗). It ends when the two processes are on an edge of the link,

which means that the three processes are in the same facet.

A more detailed pseudocode appears in Figure 7. Assume that

the processes start on a chromatic input simplex 𝜎 = (𝑥0, 𝑥1, 𝑥2),
such that id(𝑥𝑖 ) = 𝑖 , i.e., the input of process 𝑝𝑖 is 𝑥𝑖 . Recall that Δ
is a carrier map, hence every vertex or edge in Δ(𝜏), for any 𝜏 ⊆ 𝜎 ,
belongs to a facet. The concrete algorithm is slightly more complex

than described above, since if the processes start in a face 𝜏 ∈ I
then they must decide on a face of Δ(𝜏) and cannot decide on any

face of O as described above. This is a crucial point, which was

overlooked in prior work. We remark that some of the updates and

scans could be replaced with more efficient writes and collects, but

we avoid such optimizations for simplicity.

Proof of Lemma 5.3. The algorithm’s code guarantees that if a

process returns, then it returns a vertex with its own color.

To argue that the algorithm is correct, we need to prove that

(a) when processes start in 𝜏 ∈ I, all output vertices belong to the

same simplex in Δ(𝜏), and (b) each process eventually returns. In

fact, each process returns in time which is at most proportional to

the length of the longest link in the output complex.

The set𝑉 ∗, first set by 𝑝𝑖 in (5), is called its core; its value in (5) is

called the initial core. Processes that decide in (6) are called pivots,
and all other processes are non-pivots.

Claim 2. At least one process is a pivot, and all pivots return
vertices in the same simplex.

Proof. The views written in𝑀snap are comparable (by contain-

ment), and in particular, the minimal view picked by a process

(in (5) or (7e)) must include at least one common vertex, say 𝑣∗. The
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(1) Update𝑀in [𝑖] ← 𝑥𝑖
(2) Run a color-agnostic algorithm A𝐶 for 𝑇 with input 𝑥𝑖 , pro-

ducing output 𝑦𝑖 // id(𝑦𝑖 ) is not necessarily 𝑖
(3) Update𝑀cless [𝑖] ← 𝑦𝑖 and scan𝑀cless to obtain a view 𝑉𝑖
(4) Update𝑀snap [𝑖] ← 𝑉𝑖 and scan𝑀snap to obtain (𝑉0,𝑉1,𝑉2)
(5) Let 𝑉 ∗ be the minimal non-empty set among 𝑉0,𝑉1,𝑉2
(6) If 𝑉 ∗ contains a vertex 𝑣 such that id(𝑣) = 𝑖 , decide on 𝑣 and

terminate

(7) If 𝑉 ∗ = {𝑢∗,𝑤∗} for some 𝑢 ≠ 𝑤 , then

(a) Scan 𝑀in into 𝜏 // Here |𝜏 | = 3: 𝑢∗ and 𝑤∗ have different
colors that are both different from 𝑖 . Since A𝐶 respects Δ, it
must have been executed by processes with these three colors

(b) Pick a vertex 𝑣𝑖 such that id(𝑣𝑖 ) = 𝑖 and {𝑣𝑖 , 𝑢∗,𝑤∗} ∈ Δ(𝜏)
// Note that 𝑣𝑖 is in the links of both 𝑢∗ and𝑤∗

(c) Update𝑀decisions [𝑖] ← (𝑣𝑖 , 𝑣𝑖 ,𝑉 ∗) and scan𝑀decisions

(d) If no other value is in𝑀decisions, decide on 𝑣𝑖 and terminate

(e) Otherwise, 𝑀decisions contains a pair (_, _,𝑊 ∗), with

|𝑊 ∗ | = 1 // Another process does not write in𝑀decisions if it
also has 𝑉 ∗ as core
Set 𝑉 ∗ ←𝑊 ∗

(8) Let 𝑣∗ be the single vertex such that 𝑉 ∗ = {𝑣∗}
(9) Scan𝑀in into 𝜏 . // Here |𝜏 | ≥ 2 since at least 𝑝𝑖 and a process

with color id(𝑣∗) participate
(10) If 𝑣𝑖 ≠ ⊥, then pick a vertex 𝑣𝑖 such that id(𝑣𝑖 ) = 𝑖 and

{𝑣𝑖 , 𝑣∗} ∈ Δ(𝜏) // (7) was not executed
(11) Update𝑀decisions [𝑖] ← (𝑣𝑖 , 𝑣𝑖 ,𝑉 ∗) and scan𝑀decisions

(12) If𝑀decisions does not contain any other process, decide on 𝑣𝑖
and terminate

(13) Let 𝑗 ≠ 𝑖 and 𝑣 𝑗 , 𝑣 and 𝑉𝑗 such that𝑀decisions [ 𝑗] = (𝑣 𝑗 , 𝑣,𝑉𝑗 )
Let Π be the lexicographically-smallest shortest (𝑣𝑖 , 𝑣 𝑗 )-path
in lkΔ(𝜏 ) (𝑣∗) //We assign a unique number to each vertex in the
output complex, and identify each path with the (unordered)
set of unique numbers of the vertices in the path
𝑣 ′ ← 𝑣𝑖

(14) While (𝑣 ′, 𝑣) is not an edge in lkΔ(𝜏 ) (𝑣∗) do
(a) 𝑣 ′ ← the vertex adjacent to 𝑣 on Π // id(𝑣 ′) = 𝑖 must hold
(b) Update𝑀decisions [𝑖] ← (𝑣𝑖 , 𝑣 ′,𝑉 ∗) and scan𝑀decisions

(c) Update 𝑣 such that𝑀decisions [ 𝑗] = (𝑣 𝑗 , 𝑣,𝑉𝑗 )
(15) Decide on 𝑣 ′ and terminate

Figure 7: Algorithm for Process 𝑝𝑖 with Input 𝑥𝑖

process whose color is id(𝑣∗) terminates in (6). Thus, at least one

process is a pivot. All pivots (who terminate in (6)) return vertices

in the same simplex, due to the correctness of A𝐶 . □

The claim implies that at most two processes are non-pivots and

proceed beyond (6). Moreover, the cores of non-pivots contain the

minimal core, and thus, the include the vertices decided by pivots.

For non-pivots, we need to prove that the algorithm is well-

defined, namely, they can pick vertices satisfying the relevant con-

straints. The vertex picked in (7b) must exist since the results ofA𝐶

belong to a facet in the chromatic output complex. For the same rea-

sons, it is in Δ(𝜏). The vertex picked in (10) exists since it depends

only on the single vertex in the core.

When executing the loop in (14), the non-pivot processes use the

same path Π. This is because the first components of their entries

in𝑀decisions are set only once, and they determine the path Π.
Finally, each iteration of the loop in (14) reduces the distance

between the two proposed vertices, written in𝑀decisions. First, note

that if a non-pivot process 𝑝𝑖 performs two consecutive updates

to𝑀decisions, without an interleaved update by the other non-pivot

process, then the process decides. (This also covers the case where

one non-pivot process runs solo.) Otherwise, the vertex it picks is

inside the sub-path of Π between their prior vertices. □

5.3 Corollaries of Theorem 5.1
For two processes, a task is solvable if and only if there is a con-

tinuous map from |I | to |O| carried by Δ, and note that for two

processes this is not restricted to colorless tasks. This is a conse-

quence of [18, Theorem 2.5.2]; it is also analogous to the seminal

result for message-passing models with a single process failure [6].

This 1-dimensional statement can be used to prove that tasks are

unsolvable after splitting.

Proposition 5.4. A two-process task (I,O,Δ) is solvable if and
only if there is a continuous map from |I | to |O| carried by Δ.

The following two corollaries are useful for showing that a task

is unsolvable due to local articulation points; they are used in the

next section. In the following, we say a path crosses through a LAP
𝑦 if it has three consecutive vertices𝑤1, 𝑦,𝑤2 such that𝑤1 and𝑤2

belong to two different connected components of the link of 𝑦.

Corollary 5.5. A task (I,O,Δ) is not solvable if there is an
input simplex 𝜎 = (𝑥, 𝑥 ′, 𝑥 ′′) ∈ I such that for every pair of vertices
𝑦 ∈ Δ(𝑥) and 𝑦′ ∈ Δ(𝑥 ′) any path from 𝑦 to 𝑦′ in Δ(𝑥, 𝑥 ′) crosses
through a LAP w.r.t. 𝜎 .

Majority consensus (defined in Section 1) satisfies the conditions

of the colorless ACT, but it is not wait-free solvable. After splitting

the articulation points, the output complex O′ consists of two dis-

connected components, with the solo output vertex of 𝑃0 in one

component, where it decides 0. The other connected component

contains the edge where the other two processes start with input 1,

which makes the task wait-free unsolvable, by Corollary 5.5.

Recall that Skel𝑛I denotes the subcomplex of I of all simplices

of dimension at most𝑛. WhenI is a triangle, Skel1I is the boundary
of the triangle, the cycle consisting of the three input edges.

Corollary 5.6. A task (I,O,Δ) where I is a single triangle is
not solvable if every cycle in Δ(Skel1I) goes through a LAP.

6 Examples
Here we describe two tasks that demonstrate two types of obstruc-

tions, which can be used to show them unsolvable: a decidable one,

due to articulation points, and another one, due to contractibility

(in general, undecidable). Both examples take a task and remove

some of the triangles of the output complex but no edges or vertices.

Thus, as long as only one or two processes participate, the task

remains unchanged. When considered as a colorless task, where a

process can output any one of three (not necessarily distinct) values

𝑣0, 𝑣1, 𝑣2, and the task is often solvable. However, when considered

as chromatic tasks, some of these decisions are disallowed, making

the tasks harder to solve.
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Figure 8: The pinwheel task

The first example (the hourglass task) is solvable as a colorless

task, since there is continuous map from its input complex to its

output complex, while the second example (the pinwheel task) has

no such continuous map. For both examples, however, articulation

points can be used to prove that the tasks are not wait-free solvable.

6.1 The hourglass task
The hourglass task, mentioned in the introduction (see Figure 2), was

presented in [18]. The three processes 𝑃0, 𝑃1, and 𝑃2 are denoted by

black, white, and gray, respectively. This task has input complex I
with a single simplex (facet), and an output complexO. Each process
running solo decides value 0. Process 𝑃0 running concurrently with

either 𝑃1 or 𝑃2 can additionally (to their solo values) decide on

their respective vertices, with output 1. While 𝑃1 and 𝑃2 running

concurrently can additionally decide their respective vertices with

value 2. When all three processes run concurrently, any triangle is

a valid output simplex. Thus, informally, this task is constructed

by taking the standard chromatic subdivision and “pinching it at

the waist” to identify 𝑃0’s vertices on the edges representing its

two-process executions. This gluing creates an articulation point,

the vertex of 𝑃0 with output 1.

The Hourglass task satisfies the conditions of the colorless ACT,

but it is not wait-free solvable. This is proved by reduction from 2-

set agreement [18]. We show another way to prove the impossibility

of the hourglass task. As shown in Figure 2, after splitting the

articulation point, the “dimension” of the impossibility proof is

reduced: the new task is unsolvable by reduction from consensus,

using Corollary 5.5, instead of by reduction from 2-set agreement.

6.2 The pinwheel task
Another example is the pinwheel task in Figure 8. Recall that the

three processes 𝑃0, 𝑃1, and 𝑃2 are denoted by black, white, and gray,

respectively. This task is obtained from (inputless) 2-set agreement

by removing some output triangles. But it leaves intact the outputs

for the edges, i.e., for executions where two processes participate.

For example, notice that when 𝑃0 starts with 1 and 𝑃1 starts with 2,

the four output edges of combinations of 1 and 2 are possible.

Being a subtask of 2-set agreement, the pinwheel task is as hard

as 2-set agreement (but not as hard as consensus), and hence, un-

solvable. However, the impossibility can be derived from our theo-

rem, by splitting articulation points, to obtain three disconnected

components, identified by three different colors in the figure.

Notice that now the splitting affects the relation Δ in all three

dimensions, vertices, edges and triangles. Each input vertex now

is allowed to decide on two different output vertices, one copy per

connected component of O′. For instance, when 𝑃0 starts with input
value 1, it can decide the copy in the yellow component or the copy

in the red component.

At the edge level, in 2-set agreement, a cycle of four edges can be

decided for each input edge, and this cycle remains in the pinwheel

task, except that it is broken in the split version O′. However,
to prove the impossibility we cannot directly use Corollary 5.5,

because there is still a path between vertices in Δ(𝑥) and Δ(𝑥 ′) for
each input edge 𝑥, 𝑥 ′.

We use Corollary 5.6 to see why the split version of the pinwheel

task is unsolvable. Suppose 𝑃0 decides in a solo execution the copy

of output 1 in the yellow component. Then 𝑃1 must decide a copy

of 2 in the same component, because there is an edge joining their

respective inputs in I, and due to Theorem 5.1. By the same reason,

𝑃2 should also decide a vertex on the same component, but neither

of the copies of output vertex 3 is in the yellow component.

7 Discussion
This paper provides a new characterization for wait-free solvability

of general three-process tasks. We present a new topological defor-

mation on the output complex of a task 𝑇 , which eliminates local
articulation points by splitting them. We prove that the task 𝑇 is

wait-free solvable if and only if there is a continuous map from the

geometric realization of the input complex of 𝑇 to the geometric

realization of the deformed output complex, which respects the

deformed task mapping.

We consider the restriction to three processes as a critical stepping-

stone for future investigation of solvable chromatic tasks, for an

arbitrary number of processes. While some of our techniques apply

to any number of processes, others are specific to three processes,

most notably, the splitting deformation described in Section 4.

Our results expose two types of obstructions to solvability: The

first, which exists only in chromatic tasks, are local articulation

points; these obstructions can be effectively detected (and removed).

The second is the one present in colorless tasks, namely, the non-

existence of a continuous map from the geometric realization of I
to that of O′ carried by Δ′. The locality of the former obstruc-

tion makes it an ideal target for extension-based impossibility

proofs [2, 4]. The latter obstruction is not in general decidable, as

it is related to the topological notion of loop contractibility [13, 19].

The hourglass task impossibility can be obtained by either of these

two obstructions, by contractibility, as is shown in [18, Section

11.1], or by articulation points, as shown in Section 6.1.
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