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Abstract
A history-independent data structure does not reveal the history
of operations applied to it, only its current logical state, even if its

internal state is examined. This paper studies history-independent

concurrent dictionaries, in particular, hash tables, and establishes

inherent bounds on their space requirements.

This paper shows that there is a lock-free history-independent

concurrent hash table, in which each memory cell stores two el-

ements and two bits, based on Robin Hood hashing. Our imple-

mentation is linearizable, and uses the shared memory primitive

LL/SC. The expected amortized step complexity of the hash table

is 𝑂 (𝑐), where 𝑐 is an upper bound on the number of concurrent

operations that access the same element, assuming the hash table is

not overpopulated. We complement this positive result by showing

that even if we have only two concurrent processes, no history-

independent concurrent dictionary that supports sets of any size,

with wait-free membership queries and obstruction-free insertions
and deletions, can store only two elements of the set and a constant

number of bits in each memory cell. This holds even if the step

complexity of operations on the dictionary is unbounded.

CCS Concepts
• Theory of computation → Concurrent algorithms; Data
structures design and analysis; • Computing methodologies
→ Concurrent algorithms.
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1 Introduction
A data structure is said to be history independent (HI) [42, 46] if
its representation (in memory or on disk) depends only on the

current logical state of the data structure and does not reveal the

history of operations that led to this state. History independence is

a privacy property: for example, a history-independent file system

does not reveal that a file previously existed in the system but was

then deleted, or that one file was created before another. The no-

tion of history independence was introduced by Micciancio [42],

and Naor and Teague [46] then formalized two now-classical no-

tions of history independence: a data structure is weakly history
independent (WHI) if it leaks no information to an observer who

sees the representation a single time; it is strongly history inde-
pendent (SHI) if it leaks no information even to an observer who

sees the representation at multiple points in the execution. His-

tory independence has been extensively studied in sequential data

structures [1, 14, 17, 18, 24, 25, 28, 29, 42, 45, 46] (see Section 6), and

the foundational algorithmic work on history independence has

found its way into secure storage systems and voting machines [9–

12, 16, 20, 26, 48, 53]. Surprisingly, despite the success of history

independence in the sequential setting, there are very few results

on history independence in concurrent data structures [7, 55]. In
this work we initiate the study of history-independent concurrent
hash tables. A hash table implements a dictionary, an abstract data

type that supports insertions, deletions and lookups of items in

a set. Hash tables make for an interesting test case for history-

independent concurrent data structures: on the one hand, they

naturally disperse contention between threads and allow for true

parallelism [21, 30, 31, 43, 51, 54]. On the other hand, many tech-

niques that are useful in concurrent data structures are by nature

not history independent: for example, timestamps and process iden-
tifiers are often encoded into the data structure to help manage

contention between threads, but they reveal information about the

order of operations invoked in the past and which process invoked

them; and tombstones are sometimes used to mark an element as

deleted without physically removing it, decreasing contention, but

they disclose information about deleted elements that are no longer

in the dictionary. In addition to not being history independent,

these standard tools of the trade require large memory cells, of-
ten impractically so, whereas hash tables are meant to serve as a

space-efficient, lightweight dictionary. Ideally, if the universe size

is |U| = 𝑢, then each memory cell should be of width 𝑂 (log𝑢),
storing a single element in the set and not much more.
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Our goal. It is tricky to define history independence in a con-

current setting [7]. The bare minimum that one could ask for is

correctness (i.e., linearizability [32]) in concurrent executions, and

history independence when restricted to sequential executions. To

date there has been no hash table satisfying even this minimal no-

tion. A slightly stronger definition was proposed in [7]: that the

data structure be linearizable in concurrent executions, and be his-

tory independent when no state-changing operation is in progress.

This is called state-quiescent history independence (SQHI). The open
problem that we consider is:

Is there a linearizable lock-free SQHI hash table that

uses 𝑂 (𝑚) memory cells, of width 𝑂 (log𝑢) each, to
represent a set of𝑚 elements from a domain of size 𝑢,

independent of the number of concurrent operations?

Our results. Our main result is a positive one:

Theorem 1. There is a lock-free1 SQHI concurrent hash table
using the shared memory primitive LL/SC,2 where each memory cell
stores two elements and two bits (i.e., 2⌈log𝑢⌉ + 2 bits). The expected
amortized step complexity of the hash table is 𝑂 (𝑐), where 𝑐 is an
upper bound on the number of concurrent operations that access the
same element, assuming that the load3 on the hash table is bounded
away from 1.

Our construction shows that issues of concurrency that are often

handled by heavyweight mechanisms such as global sequence num-

bers, maintaining a list of all ongoing operations, and so on, can

be resolved by maintaining in each memory cell a lookahead that

stores the element in the next cell, and two bits indicating whether

an insertion (resp. deletion) is ongoing in this cell.

Our implementation is based on Robin Hood hashing [19], a

linear-probing hashing scheme where keys that compete for the

same location 𝑖 in the hash table are sorted by the distance of 𝑖 from

their hash value (see Section 3).We call the distance of cell 𝑖 from the

key’s hash value the priority of the key in cell 𝑖 . Priority-based linear-
probing hash tables have been used for history independence in a

sequential [17, 46] or partially-concurrent [55] setting,
4
but these

constructions are insensitive to the choice of priority mechanism.

We show that among all linear probing hash tables based on priority

mechanisms with a lookahead, only the priority mechanism used

in Robin Hood hashing has the property that we can conclude that

an element is not in the table by reading just a single cell—a key

property that our algorithm relies on.

As we said above, our hash table stores two keys and two extra

bits in each cell. We complement our construction with a negative

result showing that it is necessary to store extra information in the

cells of the table beyond just a single key, in order to have both

SQHI and wait freedom:

Theorem 2. [Informal] There is no concurrent SQHI hash table
representing sets of up to𝑚 < 𝑢 elements using m memory cells, each

1Lock-freedom requires that at any point in time, if wewait long enough, some operation
will complete.

2
See Section 2 for the definition of LL/SC.

3
The load is the ratio of the number of elements stored in the hash table to the number

of memory cells.

4
The hash table constructed in [55] is phase-concurrent: it can handle concurrent

operations of the same type (insert, delete or lookup), but not concurrent operations

of different types (e.g., inserts and lookups).

of which stores either a key that is in the set or ⊥, and supporting
wait-free lookups and obstruction-free insertions and deletions.5 Fur-
thermore, if 𝑢 is sufficiently large and𝑚 <

√
𝑢, then the impossibility

result holds even if each cell also includes ⌈log𝑢⌉ +𝑂 (1) bits.

This result separates sequential hash tables from concurrent

ones: sequential hash tables can be made history independent while

storing one element per cell [17, 46]. Moreover, the impossibility

result makes no assumptions about the step complexity of the hash

table, so it applies even to highly inefficient implementations (e.g.,

implementations where individual operations are allowed to read

or modify the entire hash table). The assumption that the dictionary

can store up to𝑚 elements using𝑚 cells holds for our construction

from Theorem 1, and it is necessary in Theorem 2 to avoid empty

cells that are used only for synchronization, not for storing values

from the set. We also prove that Theorem 1 is tight in the sense that

we cannot achieve a wait-free history-independent implementation

using a one-cell lookahead plus 𝑂 (1) bits of metadata (only lock-

freedom is possible).

In the remainder of the paper we provide an overview of our

main results. Additional details and proofs are available in the full

version of this paper [8].

2 Preliminaries
The asynchronous shared-memory model. We use the standard

model, in which a finite number of concurrent processes com-

municate through shared memory consisting of𝑚 memory cells.
The shared memory is accessed by executing primitive operations.
Our implementation uses the primitive load-link/store-conditional

(LL/SC), which supports the following operations: LL(𝑥) returns
the value stored in memory cell 𝑥 , and SC(𝑥, new) writes the value
new to 𝑥 , if it was not written to since the last time the process

performed an LL(𝑥) operation (otherwise, 𝑥 is not modified). SC
returns true if it writes successfully, and false otherwise. We also

use the validate instruction, VL(𝑥), which checks whether 𝑥 has

been written to since the last time the process performed LL(𝑥).
An implementation of an abstract data type (ADT) specifies a

program for each process and operation of the ADT; when receiv-

ing an invocation of an operation, the process takes steps according
to this program. The process may change its local state or the value

of a memory cell after a step, and it may return a response to the

operation of the ADT. We focus on implementations of a dictionary,
representing an unordered set of elements.

6
It supports the oper-

ations insert(𝑣), delete(𝑣) and lookup(𝑣), each operation takes an

input element 𝑣 and returns true or false, indicating whether the

element is present in the set based on the specific operation.

The memory representation is a vector specifying the state of

each memory cell; this does not include local private variables held

by each process, only the shared memory. A sequence of steps,

starting from an initial configuration that specifies the state of

every process and the memory representation, defines an execution.
The system may have several initial configurations. We say that an

5Wait-freedom requires that every operation must terminate in a finite number of steps

by the executing thread, regardless of concurrency and contention from other threads.

Obstruction-freedom only requires an operation to terminate if the process executing

it runs by itself for sufficiently long.

6
For simplicity, we focus on storing the keys and ignore the values that are sometimes

associated with the keys.

1284



History-Independent Concurrent Hash Tables STOC ’25, June 23–27, 2025, Prague, Czechia

operation completes in execution 𝛼 if 𝛼 includes both the invocation

and response of the operation. If 𝛼 includes the invocation of an

operation, but no matching response, then the operation is pending.
We say that op

1
precedes op

2
in execution𝛼 , if op

1
response precedes

op
2
invocation in 𝛼 .

The standard correctness condition for concurrent implementa-

tions is linearizability [32]: intuitively, it requires that each opera-

tion appears to take place instantaneously at some point between

its invocation and its return. Formally, an execution 𝛼 is linearizable
if there is a sequential permutation 𝜋 of the completed, and possibly

some uncompleted, operations in 𝛼 , that matches the sequential

specification of the ADT, with uncompleted operations assigned

some output value. Additionally, if op
1
precedes op

2
in 𝛼 , then op

1

also precedes op
2
in 𝜋 ; namely, the permutation 𝜋 respects the

real-time order of non-overlapping operations in 𝛼 . We call this

permutation a linearization of 𝛼 . An implementation is linearizable

if all of its executions are linearizable.

An implementation is lock-free if whenever there is a pending
operation, some operation returns in a finite number of steps of all

processes.

History independence. In this paper we consider implementations

where the randomness is fixed up-front; after initialization, the im-

plementation is deterministic. An example of such an initialization

is choosing a hash function. It is known that in this setting, strong

history independence is equivalent to requiring, for an object with

state space𝑄 , that every logical state 𝑞 ∈ 𝑄 corresponds to a unique

canonical memory representation, fixed at initialization [28, 29].

Several notions of history independence for concurrent imple-

mentations were explored in [7]. In this paper we adopt the notion

of state-quiescent history independence (SQHI), which requires that

the memory representation be in its canonical representation at

any point in the execution where no state-changing operation (in

our case, insert or delete) is pending. The logical state of the object
is determined using a linearization of the execution up to the point

in which the observer inspects the memory representation.

3 Overview of the Hash Table Construction
In this section we describe our main result, the construction of a

concurrent history-independent lock-free hash table where each

memory cell stores two elements plus two bits. We give a high-level

overview, glossing over many subtle details in the implementation.

Our hash table is based on Robin Hood hashing [19], a type of

linear-probing hash table. In Robin Hood hashing, each element 𝑥

is inserted as close to its hash location ℎ(𝑥) as possible, subject to
the following priority mechanism: for any cell 𝑖 and elements 𝑥 ≠ 𝑦,

element 𝑥 has higher priority in cell 𝑖 than𝑦, denoted 𝑥 >𝑝𝑖 𝑦, if cell 𝑖

is farther from 𝑥 ’s hash location than it is from𝑦’s: 𝑖−ℎ(𝑥) > 𝑖−ℎ(𝑦)
(or, to break ties, if 𝑖 − ℎ(𝑥) = 𝑖 − ℎ(𝑦) and 𝑥 > 𝑦).7

Robin Hood hash tables maintain the following invariant:
8

Invariant 1 (Ordering Invariant [55]). If an element 𝑣 is stored in
cell 𝑖 , then for any cell 𝑗 between ℎ(𝑣) and 𝑖 , the element 𝑣 ′ stored in
cell 𝑗 has higher than or equal to priority than 𝑣 (that is, 𝑣 ′ ≥𝑝 𝑗

𝑣).

7
Here and throughout, we assume modular arithmetic that wraps around the𝑚-th

cell.

8
We assume that in all cells, ⊥, indicating an empty cell, has lower priority than all

other elements.

Note that we use ‘higher than or equal to’ instead of ‘higher

than’, even though all elements are distinct. This is because we later

use this invariant in a table that includes duplicates of the same

element (see Section 4). The invariant is achieved as follows.

Let 𝐴[0, . . . ,𝑚 − 1] be the hash table. To insert an element 𝑣 , we

first try to insert it at its hash location, ℎ(𝑣). If 𝐴[ℎ(𝑣)] is occupied
by an element 𝑣 ′, then whichever element has lower priority in cell

ℎ(𝑣) is displaced, that is, pushed into the next cell. If the next cell is

not empty, then the displaced element either displaces the element

stored there or is displaced again,creating a chain of displacements

that ends when we reach the end of the run: the first empty cell

encountered in the probe sequence. (A run is a maximal consecutive

sequence of occupied cells.) We place the last displaced element

in the empty cell, and return. We refer to the process of shifting

elements forward as propagating the insertion.
Deletions are also handled in a way that preserves the invariant:

after deleting an element 𝑣 from cell 𝑖 of the hash table, we check

whether the element 𝑣 ′ in cell 𝑖 + 1 “prefers” to shift backwards,

that is, whether cell 𝑖 is closer to ℎ(𝑣 ′) than cell 𝑖 + 1. If so, we
shift 𝑣 ′ backwards into cell 𝑖 and examine the next element. We

continue shifting elements backwards until we reach either the end

of the run (an empty cell), or an element that is already at its hash

location. This is referred to as propagating the deletion.
Finally, to perform a lookup(𝑣) operation, we scan the hash table

starting at locationℎ(𝑣), until we either find 𝑣 and return true, reach
the end of the run and return false, or find an element with lower

priority than 𝑣 (that is, reach a cell 𝑗 such that 𝐴[ 𝑗] <𝑝 𝑗
𝑣). In the

latter case, the invariant allows us to conclude that 𝑣 is not in the

hash table, and we return false.
The crucial property of Robin Hood hashing that makes it suit-

able for our concurrent implementation is that following an inser-

tion or deletion, no element in the hash table moves by more than one
cell. In Section 3.1, we discuss why, among all priority mechanisms,

only Robin Hood hashing is suitable for our implementation.

As we mentioned in Section 1, several traditional mechanisms

for ensuring progress in the face of contention are unavailable to

us, because they compromise history independence or increase the

cell size too much (or both). We begin by outlining the challenges

involved in constructing a concurrent history-independent Robin

Hood hash table, and then describe our implementation and how it

overcomes them.

Handling displaced elements. In Robin Hood hashing, insertions

may result in a chain of displacements, withmultiple higher-priority

elements “bumping” (displacing) lower-priority elements to make

room for a newly-inserted element. In a sequential implementation,

if we wish to “bump” a lower-priority element𝑦 in favor of a higher-

priority element 𝑥 , we simply store 𝑦 in local memory, overwrite

the cell containing 𝑦 in the hash table to place 𝑥 there instead, and

then proceed to find a place for 𝑦 in the hash table. While a new

place for 𝑦 is sought, it exists only in the local memory of the oper-

ation performing the insertion. In a concurrent implementation this

approach is dangerous: if a displaced element 𝑦 does not physically

exist in the hash table, then a concurrent lookup(𝑦) operation may
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mistakenly report that 𝑦 is not in the hash table. This is not allowed

in a linearizable implementation.
9

Avoiding moves that happen behind a lookup’s back. In sequential

Robin Hood hashing, if a lookup(𝑥) operation is invoked when 𝑥

is not in the set, the operation traverses the table starting from

location ℎ(𝑥), until it reaches an empty cell or a cell 𝑖 with a value

𝑦 <𝑝𝑖 𝑥 and returns false. However, in a concurrent implementation

this is risky: a lookup(𝑥) operation might scan from location ℎ(𝑥)
until it reaches a cell 𝑖 with a value 𝑦 <𝑝𝑖 𝑥 , never seeing element

𝑥 , even though 𝑥 is in the set the entire time. This can happen if

𝑥 is initially ahead of the location currently being examined by

the lookup(𝑥) operation, but then, between steps of the lookup(𝑥)
operation, multiple elements stored between 𝑥 and location ℎ(𝑥)
are deleted, pulling 𝑥 backwards to a location that the lookup(𝑥)
operation has already passed.

Synchronization without timestamps, process IDs, and operation
announcements. In our implementation we wish to store as little

information as possible in each cell, both for the sake of memory-

efficiency and also to facilitate history independence (extraneous

information must be eventually wiped clear, and this can be chal-

lenging). To ensure progress, operations must be able to “clear the

way” for themselves if another operation is blocking the way, with-

out explicitly knowing what operation is blocking them, or which

process invoked that operation, as we do not wish to store that

information in the hash table.

3.1 Robin Hood Hashing with 1-Lookahead and
Lightweight Helping

To overcome the challenges described above we introduce a looka-
head mechanism. Each cell 𝑖 has the form𝐴[𝑖] = ⟨value, lookahead,
mark⟩, consisting of three slots: the value slot stores the element

currently occupying cell 𝑖 , or ⊥ for an empty cell; the lookahead
slot is intended to store the element occupying cell 𝑖 + 1, when no

operation is in progress; and themark slot indicates the status of the
cell, and can take on three values,mark ∈ {S, I ,D}, with S standing
for “stable”, indicating that no operation is working on this cell, and

I ,D indicating that an insertion or deletion (resp.) are working on

this cell. If the cell is stable (S), then its lookahead is consistent with

the next cell: if 𝐴[𝑖] = ⟨𝑎, 𝑏, S⟩ and 𝐴[𝑖 + 1] = ⟨𝑐, 𝑑,𝑀⟩, then 𝑏 = 𝑐 .

If a cell is marked with I or D, its lookahead might be inconsistent.

The role of the lookahead. Adding a lookahead serves two pur-

poses. First, it allows lookups to safely conclude that an element

is not in the hash table by reading a single cell: if we are looking

for element 𝑥 , and we reach a cell 𝐴[𝑖] = ⟨𝑣, 𝑣 ′, ∗⟩ such that either

𝑖 = ℎ(𝑥) and 𝑥 >𝑝𝑖 𝑣 , or 𝑣 >𝑝𝑖 𝑥 >𝑝𝑖+1 𝑣 ′, then 𝑥 can safely be

declared to not be in the hash table. This resolves the concern that

an element may be moved “back and forth” behind a lookup’s back,

so that the lookup can never safely decide that the element is not in

the hash table. Second, the lookahead serves as temporary storage

for elements undergoing displacement due to an insertion: instead

of completely erasing a lower-priority element 𝑦 and writing a

higher-priority element 𝑥 in its place, we temporarily shift 𝑦 from

9
Unless 𝑦 itself is concurrently being inserted or deleted; however, Robin Hood hash-

ing displaces elements upon insertion or deletion of other elements, so we are not

guaranteed this.

the value slot to the lookahead slot of the cell, and store 𝑥 in the

value slot. Later on, we move 𝑦 into the value slot of the next cell,
possibly displacing a different element by shifting it into the looka-
head slot, and so on. At any time, all elements that are in the table

are physically stored in shared memory, either in the value slot or
the lookahead slot of some cell — ideally, in the value slot of some

cell and also in the lookahead slot of the preceding cell.

The choice of Robin Hood hashing. Any priority-based linear-

probing hash table satisfies the ordering invariant (Invariant 1).

However, Robin Hood hashing also satisfies the following additional

invariant: If an element 𝑣 ′ stored in cell 𝑖 has higher priority than

𝑣 , then for any cell 𝑗 between ℎ(𝑣) and 𝑖 , the element 𝑣 ′′ stored in

cell 𝑗 also has higher priority than 𝑣 . This invariant allows us to

determine the following by reading only two consecutive cells, cell 𝑖

which stores element 𝑣 ′ and cell 𝑖+1which stores element 𝑣 ′′: (1) 𝑣 is
in the table (𝑣 = 𝑣 ′ or 𝑣 = 𝑣 ′′), (2) 𝑣 is not in the table and should be

inserted to cell 𝑖+1 (𝑖+1 = ℎ(𝑣) and 𝑣 >𝑝𝑖+1 𝑣
′′
, or 𝑣 ′ >𝑝𝑖 𝑣 >𝑝𝑖+1 𝑣

′′
),

(3) if 𝑣 is in the table, it can only be in a cell before cell 𝑖 (𝑣 ′ <𝑝𝑖 𝑣), or

(4) if 𝑣 is in the table, it can only be in a cell after cell 𝑖+1 (𝑣 ′′ >𝑝𝑖+1 𝑣).

This allows the algorithm to make decisions based on a single cell

with a lookahead, without depending on the entire sequence of

values read starting from the initial hash location, which may have

changed since they were last read. We show that it is not possible

to determine that element 𝑣 is not in the hash table using any other

priority mechanism by reading only two consecutive cells. We do

so by showing that every two consecutive cells in the canonical

memory representation of a set that does not include 𝑣 is equal to

the same cells in a different canonical memory representation of a

set that does include 𝑣 , where the priority mechanism determines

the canonical memory representations. (See the full version [8].)

The role of the mark. The mark slot can be viewed as a lock,
except that cells are locked by operations, not by processes; to

release the lock, a process must help the operation that placed the

mark, completing whatever steps are necessary to propagate the

operation one step forward, from the “locked” cell into the next

cell (which is then “locked” by the operation). Operations move

forward in a manner that resembles hand-over-hand locking [13];

we explain this in detail below.

Life cycle of an operation. Each operation — lookup(𝑥), insert(𝑥)
or delete(𝑥) — goes through some or all of the following stages:

(1) Finding the “correct position” for element 𝑥 : starting from

position ℎ(𝑥) − 1,10 we scan each cell, until we either find

element 𝑥 in the hash table, or we find the cell where element

𝑥 should have been if it were in the hash table, and conclude

that 𝑥 is not in the hash table. As discussed above, the choice

of Robin Hood hashing guarantees that if element 𝑥 is not in

the table (and there are no ongoing operations), we can find

such a cell. At this point, lookup(𝑥) returns the appropriate
answer, and insert(𝑥), delete(𝑥) may also return, if 𝑥 is al-

ready in the hash table (for insert(𝑥)) or is not in the hash

table (for delete(𝑥)). Note that if 𝑥 is found in a lookahead
slot of a cell with a delete operation in progress, we may

10
To detect concurrent operations on element 𝑥 , we need to start the scan in location

ℎ (𝑥 ) − 1, not ℎ (𝑥 ) ; this will become clear below.
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not determine that 𝑣 is in the table. This is to ensure the

implementation is linearizable.

Along the way, operations help advance any other operation

that they encounter: if an operation encounters a non-stable

cell, it performs whatever steps are necessary to make the

cell stable, and only then is allowed to proceed.

(2) Let 𝑖 − 1 be the cell reached, where cell 𝑖 is the “correct

position” for element 𝑥 . The lookahead of cell 𝑖 − 1 should
reflect the absence (for insert) or presence (for delete) of
element 𝑥 .11 Then the operation makes its initial write into

the table:

• insert(𝑥) writes 𝑥 into the lookahead slot of cell 𝑖 − 1:

if 𝐴[𝑖 − 1] = ⟨𝑣, 𝑣 ′, S⟩, then the insert writes 𝐴[𝑖 − 1] =
⟨𝑣, 𝑥, I⟩, “locking” the cell. At this point, the newly-inserted
element 𝑥 is considered to be displaced, as it is stored only

in the lookahead slot of cell 𝑖 − 1, immediately preceding

its correct location (cell 𝑖).

• delete(𝑥) logically erases 𝑥 from the lookahead slot of cell

𝑖−1: if𝐴[𝑖−1] = ⟨𝑣, 𝑥, S⟩, then the deletewrites𝐴[𝑖−1] =
⟨𝑣, 𝑥,D⟩, “locking” the cell. The cell now contains a logical

“hole” (the lookahead slot containing the value 𝑣), which

may need to be filled by moving backwards elements from

cells 𝐴[𝑖 + 1], 𝐴[𝑖 + 2], . . . until we reach either the end of

the run or an element that is already in its hash position.

(3) Following the initial write, operations continue moving for-

ward until the end of the run, propagating any operations

that they encounter, to resolve the chain of displacements

that may occur. In some sense, processes “lose their identity”

in this stage: because we do not use process IDs, timestamps

or sequence numbers, processes can no longer keep track of

their own operation and distinguish it from other operations,

and must instead help propagate all operations equally. By

proceeding all the way to the end of the run and helping all

operations along the way, a process ensures that by the time

it returns, its own operation has been completed, either by

itself or some other process, or a different process becomes

responsible for ensuring the operation completes (see more

details below).

3.2 Propagating an Operation
Consider consecutive cells 𝐴[𝑖] = ⟨𝑎, 𝑏,𝑀⟩, 𝐴[𝑖 + 1] = ⟨𝑐, 𝑑,𝑀′⟩,
with the mark𝑀 ∈ {I ,D} in cell 𝐴[𝑖] indicating that an operation

is in progress. Operations are not allowed to overtake one another,

so if cell𝐴[𝑖 + 1] is not stable (𝑀′ ≠ S), we help whatever operation
is in progress there by propagating it forward one step, clearing

the way for the current operation. Note that helping an operation

in cell 𝐴[𝑖 + 1] may require us to first clear the way by helping an

operation in cell 𝐴[𝑖 + 2], which may in turn require helping an

operation in cell 𝐴[𝑖 + 3], and so on.

Now suppose that cell𝐴[𝑖+1] is stable. Propagating the operation
that is currently in cell 𝐴[𝑖] one step forward into cell 𝐴[𝑖 + 1]
involves modifying both 𝐴[𝑖] and 𝐴[𝑖 + 1]; however, we cannot
modify both cells in one atomic step, as we are using single-word

11
This is the reason that scans for element 𝑥 begin in location ℎ (𝑥 ) − 1: it is possible

that 𝑥 is currently being inserted or deleted, but the change is reflected only in location

ℎ (𝑥 ) − 1 at this point.

memory primitives. Thus, the propagation is done by a careful

interleaving of LL,VL and SC steps, in a manner that is similar to

hand-over-hand locking [13], except that the “locks”, represented

by themark slot, are owned by operations rather than processes: this
allows any process to take over the propagation of an operation

that stands in its way, even if it did not invoke that operation. To

modify cells𝐴[𝑖] and𝐴[𝑖 + 1] when cell𝐴[𝑖] is already “locked”, an
operation first “locks” cell 𝐴[𝑖 + 1], setting its mark appropriately

(and also changing its contents, that is, the value and lookahead
slots); then it releases the “lock” on cell 𝐴[𝑖], setting the mark to S
(and possibly also changing its contents).

In the sequel, we make distinguish between operations and pro-
cesses. An operation that is in mid-propagation (i.e., at any point

following the initial write and before the operation is complete) and

is currently located in cell 𝐴[𝑖] can be propagated by any process
that reaches 𝐴[𝑖]. As noted above, following their initial write (and
also before it, on their way to their target location), processes are in

some sense nameless workers that simply propagate all the opera-

tions they encounter, until they reach the end of the run. However,

prior to the initial write of an operation, only the process that in-

voked the operation knows of it, so at this point the operation is

synonymous with the process that invoked it.

Propagating an insertion (see Fig. 1). Suppose that 𝐴[𝑖] = ⟨𝑎, 𝑏, I⟩
and 𝐴[𝑖 + 1] = ⟨𝑐, 𝑑, S⟩, with cell 𝐴[𝑖] “locked” by a propagating

insertion. Element 𝑏 has been displaced by the insertion: it is tem-

porarily stored in the lookahead slot of𝐴[𝑖], and we need to move it

forward into the value slot of 𝐴[𝑖 + 1], displacing element 𝑐 instead

(unless 𝑐 = ⊥, in which case𝐴[𝑖 +1] is an empty cell, and no further

elements need to be displaced). The target state following the prop-

agation step is 𝐴[𝑖] = ⟨𝑎, 𝑏, S⟩, 𝐴[𝑖 + 1] = ⟨𝑏, 𝑐, I⟩, if 𝑐 ≠ ⊥ (element

𝑐 is now displaced), and 𝐴[𝑖] = ⟨𝑎, 𝑏, S⟩, 𝐴[𝑖 + 1] = ⟨𝑏, 𝑑, S⟩ if 𝑐 = ⊥
(no element is displaced, and the insertion is done propagating). We

describe here the case where 𝑐 ≠ ⊥ (the other case is very similar).

We move from the current state, 𝐴[𝑖] = ⟨𝑎, 𝑏, I⟩, 𝐴[𝑖 + 1] =

⟨𝑐, 𝑑, S⟩, to the target state, 𝐴[𝑖] = ⟨𝑎, 𝑏, S⟩, 𝐴[𝑖 + 1] = ⟨𝑏, 𝑐, I⟩, in
several steps: we begin by performing an LL on cell 𝐴[𝑖], an LL on

cell 𝐴[𝑖 + 1], and then a VL on cell 𝐴[𝑖], to ensure that it has not

been altered while we were reading𝐴[𝑖+1]. Then we “lock”𝐴[𝑖+1]
and at the same time modify its contents, by performing an SC to

set 𝐴[𝑖 + 1] ← ⟨𝑏, 𝑐, I⟩. This SC may fail, but since 𝐴[𝑖] is already
“locked” (it is marked with I ), no other operation can overtake the

current insertion without helping it move forward. Thus, there are

only two possible reasons for a failed SC on 𝐴[𝑖 + 1]: either some

other process already performed the same SC, in which case we can

proceed to the next step; or a new operation performed its initial

write into 𝐴[𝑖 + 1], thereby “locking” it for itself. In this case we

must first help propagate the new operation to clear the way, and

then we can resume trying to propagate the current insertion.

Suppose the SC on 𝐴[𝑖 + 1] succeeds (either the current process
succeeded, or some other process did). At this point we have𝐴[𝑖] =
⟨𝑎, 𝑏, I⟩, 𝐴[𝑖 + 1] = ⟨𝑏, 𝑐, I⟩, with both cells “locked” by the insertion.

We now “release the lock” on 𝐴[𝑖] by performing an SC to set

𝐴[𝑖] ← ⟨𝑎, 𝑏, S⟩. This SC may also fail, but in this case, since cell

𝐴[𝑖] itself is “locked” prior to the SC, the only possible reason is

that some other process performed the same SC successfully. Thus,
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mark . . . S S S S . . .

lookahead . . . 𝑐 𝑑 ⊥ 𝑒 . . .

value . . . 𝑎 𝑐 𝑑 ⊥ . . .

LL
SC
▼

mark . . . I S S S . . .

lookahead . . . 𝒃 𝑑 ⊥ 𝑒 . . .

value . . . 𝑎 𝑐 𝑑 ⊥ . . .

LL
LL

VL
SC
▼

mark . . . I I S S . . .

lookahead . . . 𝑏 𝒄 ⊥ 𝑒 . . .

value . . . 𝑎 𝒃 𝑑 ⊥ . . .

SC
▼

mark . . . S I S S . . .

lookahead . . . 𝑏 𝑐 ⊥ 𝑒 . . .

value . . . 𝑎 𝑏 𝑑 ⊥ . . .

(a) The initial write of insert(𝑏 ) into a cell 𝐴[𝑖 ], followed by its
first propagation step. The sequence of LL,VL and SC operations is
depicted from top to bottom.

mark . . . S I I S . . .

lookahead . . . 𝑏 𝑐 𝒅 𝑒 . . .

value . . . 𝑎 𝑏 𝒄 ⊥ . . .

mark . . . S S I S . . .

lookahead . . . 𝑏 𝑐 𝑑 𝑒 . . .

value . . . 𝑎 𝑏 𝑐 ⊥ . . .

mark . . . S S I S . . .

lookahead . . . 𝑏 𝑐 𝑑 𝑒 . . .

value . . . 𝑎 𝑏 𝑐 𝒅 . . .

mark . . . S S S S . . .

lookahead . . . 𝑏 𝑐 𝑑 𝑒 . . .

value . . . 𝑎 𝑏 𝑐 𝑑 . . .

(b) The rest of the propagation steps, omitting the LL,VL and SC
operations.

Figure 1: Depiction of the insertion process of element 𝑏,
initiated by operation insert(𝑏), where 𝑏 is inserted into a
cell 𝐴[𝑖] = ⟨𝑎, 𝑐, S⟩ such that 𝑎 >𝑝𝑖 𝑏 >𝑝𝑖+1 𝑐.

there is no need to even check if the SC succeeded; we simply move

on to the next cell.

Propagating a deletion (see Fig. 2). Recall that the initial write of
a delete(𝑥) operation targets the cell preceding the location of 𝑥 ,

“locking” it by marking it with D. Deletions maintain the following

invariant as they propagate: if cell 𝐴[𝑖] = ⟨𝑎, 𝑏,D⟩ is “locked” by

a deletion (i.e., marked with D), and the subsequent cell is stable,

𝐴[𝑖 + 1] = ⟨𝑐, 𝑑, S⟩, then the value slot of 𝐴[𝑖 + 1] (i.e., the value 𝑐)
is either ⊥ or redundant: in the latter case, it is either the target of

the deletion (immediately following the initial write), or we have

already copied it into cell 𝐴[𝑖], so that 𝑎 = 𝑐 (following subsequent

propagation steps). Since cell𝐴[𝑖+1] is stable, its lookahead matches

the value slot of the next cell, 𝐴[𝑖 + 2] = ⟨𝑑, 𝑒, ∗⟩. Now there are

three cases:

• If 𝑑 = ⊥, then we have reached the end of the run, and we

need to set 𝐴[𝑖] = ⟨𝑎,⊥, S⟩, 𝐴[𝑖 + 1] = ⟨⊥,⊥, S⟩. The delete
operation is then done propagating.

• If𝑑 ≠ ⊥ andℎ(𝑑) = 𝑖+2, then element 𝑑 is already in its hash

location,𝐴[𝑖 + 2], and does not need to be shifted backwards.
In this case we need to set𝐴[𝑖] = ⟨𝑎,⊥, S⟩, 𝐴[𝑖+1] = ⟨⊥, 𝑑, S⟩,
“puncturing” the run and completing the propagation of the

delete operation. However, the process that punctured the

run is not allowed to return immediately, for reasons that

we explain below.

• Finally, if 𝑑 ≠ ⊥ and ℎ(𝑑) ≠ 𝑖 + 2, then element 𝑑 should

be shifted one step back (closer to ℎ(𝑑)), from 𝐴[𝑖 + 2] to
𝐴[𝑖 +1]. In this case we need to set𝐴[𝑖] = ⟨𝑎, 𝑑, S⟩, 𝐴[𝑖 +1] =
⟨𝑑, 𝑑,D⟩, duplicating element 𝑑 . Notice that the invariant

is maintained: following the update, the value slot of cell
𝐴[𝑖 + 2] = ⟨𝑑, 𝑒, ∗⟩, which remains untouched,

12
is redun-

dant, because we copied 𝑑 backwards into cell 𝐴[𝑖 + 1]. We

duplicate element 𝑑 instead of deleting it from the looka-
head slot to preserve the next invariant: The element in the

lookahead slot is either consistent with the next cell, or it

directly precedes the element in the value slot of the next
cell in a table constructed according to Robin Hood hashing,

containing all the elements in 𝐴.

In this final case the deletion is not done propagating: we

still need to delete 𝑑 from cell𝐴[𝑖 +2], and we may also need

to shift subsequent elements one step back, closer to their

hash locations.

The changes to cells 𝐴[𝑖] and 𝐴[𝑖 + 1] are done in a manner

similar to the way insertions are propagated, by interleaving LL, VL
and SC operations so that we first “lock” cell 𝐴[𝑖 + 1] and update

its contents at the same time, then “release” cell 𝐴[𝑖] and update

its contents at the same time.

Puncturing a run. One delicate point is that if a process 𝑝 punc-

tures a run 𝑅 by splitting it into two runs 𝑅1, 𝑅2 with an empty

cell between them, and then 𝑝 returns (upon “reaching the end of

the run” 𝑅1), then some operations may become stranded in the

second part, 𝑅2, with no process working to propagate them. This

can happen, for example, if prior to the puncture a lookup operation
helped another operation 𝑜 and pushed it into 𝑅2, but then found

its target and returned prior to completing operation 𝑜 . The process

𝑞 that originally invoked 𝑜 may lag behind, so that it reaches the

end of 𝑅1 only after the run is punctured. In this case, if 𝑞 returns,

operation 𝑜 will be stranded with no process working in 𝑅2.

To avoid this scenario, it suffices to have any process 𝑝 that

punctures a run continue into the second part and propagate all

operations it finds there. However, this is also problematic, because

12
By the current operation. Other operations may make their initial write into cell

𝑖 + 2, but if they do, they update the lookahead slot, not the value slot.
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mark . . . S S S S . . .

lookahead . . . 𝑏 𝑐 𝑑 𝑒 . . .

value . . . 𝑎 𝑏 𝑐 𝑑 . . .

LL
SC
▼

mark . . . D S S S . . .

lookahead . . . 𝑏 𝑐 𝑑 𝑒 . . .

value . . . 𝑎 𝑏 𝑐 𝑑 . . .

LL
LL

VL
SC
▼

mark . . . D D S S . . .

lookahead . . . 𝑏 𝑐 𝑑 𝑒 . . .

value . . . 𝑎 𝒄 𝑐 𝑑 . . .

SC
▼

mark . . . S D S S . . .

lookahead . . . 𝒄 𝑐 𝑑 𝑒 . . .

value . . . 𝑎 𝑐 𝑐 𝑑 . . .

(a) The initial write of delete(𝑏 ) into a cell 𝐴[𝑖 ] = ⟨𝑎,𝑏, S⟩, followed
by one propagation step. The sequence of LL,VL and SC operations
is depicted from top to bottom.

mark . . . S D D S . . .

lookahead . . . 𝑐 𝑐 𝑑 𝑒 . . .

value . . . 𝑎 𝑐 𝒅 𝑑 . . .

mark . . . S S D S . . .

lookahead . . . 𝑐 𝒅 𝑑 𝑒 . . .

value . . . 𝑎 𝑐 𝑑 𝑑 . . .

mark . . . S S D S . . .

lookahead . . . 𝑐 𝑑 𝑑 𝑒 . . .

value . . . 𝑎 𝑐 𝑑 ⊥ . . .

mark . . . S S S S . . .

lookahead . . . 𝑐 𝑑 ⊥ 𝑒 . . .

value . . . 𝑎 𝑐 𝑑 ⊥ . . .

(b) The rest of the propagation steps, omitting the LL,VL and SC
operations. The propagation of the delete operation completes upon
encountering element 𝑒 where ℎ (𝑒 ) = 𝑖 + 4, that is, element 𝑒 is
already in its hash location.

Figure 2: Depiction of the deletion process of element 𝑏, ini-
tiated by operation delete(𝑏).

we cannot allow a situation where some operations are incomplete,

and a process 𝑝 that invoked a lookup operation is the only process

propagating them: this violates SQHI. Therefore we distinguish

between two cases: if a process 𝑞 whose original operation is an

insert or delete punctures a run, it continues into the second part.

On the other hand, if a process 𝑞 whose original operation is a

lookup encounters a location where it needs to puncture a run in

order to help propagate a delete operation, it does not do so. This

can cause the indication that an element is not in the table to be

“split” across two cells, rather than just one, by an ongoing insert
operation that cannot overtake an ongoing delete operation that

needs to puncture a run to complete. To address this, we design

a mechanism that allows lookup operations to identify that an

element is not in the table based on the values of two cells instead

of just one (Lines 50–53).

Restarting an operation. There are two scenarios that cause an

operation 𝑜 (𝑥) to restart, and both occur prior to a successful initial

write into the table. The first is if 𝑜 is an insertion or deletion that

has found the “correct” location for element 𝑥 , but the initial write

into the table, which is done using SC, fails. This indicates that the
operation may need to re-position itself, as the “correct” location

for element 𝑥 may have changed, and we do this by restarting the

operation. The second scenario occurs during the lookup stage,

when the process searches for element 𝑥 : if the process reads a cell

𝐴[𝑖] = ⟨𝑎, 𝑏, ∗⟩ such that 𝑏 >𝑝𝑖 𝑥 , but the next cell is 𝐴[𝑖 + 1] =
⟨𝑐, 𝑑, ∗⟩ such that 𝑐 <𝑝𝑖+1 𝑥 , then there is a chance that element 𝑥

was ahead of location 𝑖 when 𝐴[𝑖] was read, but due to concurrent

deletions, it was moved behind cell 𝑖 by the time 𝐴[𝑖 + 1] was
read. To avoid false negatives, the process restarts its lookup from

position ℎ(𝑥) − 1.
We note that restarting from scratch is only for simplicity; in-

stead, we can move backwards cell-by-cell until reaching a cell

𝐴[ 𝑗] = ⟨𝑎, 𝑏, ∗⟩ such that either 𝑗 = ℎ(𝑥) − 1 or 𝑎 >𝑝 𝑗
𝑥 , and then

resume forward movement. Each step back can be blamed on a

concurrent deletion that moved element 𝑥 one step backwards, so

this is more efficient in workloads with low contention of deletes.

4 Code and Proof Outline for the
History-Independent Hash Table

The pseudocode for the insert, delete and lookup operations is pre-

sented in Algorithm 1, Algorithm 2, and Algorithm 3, respectively.

Procedure help_op, presented in Algorithm 4, describes the code

for helping propagate an operation to the next cell by some process.

Procedure propagate, presented in Algorithm 5, describes the code

for ensuring that an operation completes its propagation.

The hash table𝐴 is of size𝑚, and is initialized to𝐴[𝑖] = ⟨⊥,⊥, S⟩,
for every 0 ≤ 𝑖 < 𝑚. An operation may abort if the table is full and

there is no vacant cell to insert a new element. This can happen

when a process initiating an insert operation does not find a vacant

cell for the new element (Line 16), or when an insert operation

cannot be propagated to the next cell without violating the ordering

invariant, indicating there is no vacant cell for the displaced element

(Line 72).

Next, we sketch the proof that the hash table linearizable, SQHI

and lock-free; see details in the full version [8]. We prove correct-

ness assuming there is always an empty stable cell available to

insert a new element. This guarantees that no operation aborts and

that some operation can always propagate to the next cell.

The proof relies on the following key invariant that extends

the ordering invariant to also account for the lookahead slot and

element repetition. For a cell 𝐴[𝑖], 0 ≤ 𝑖 < 𝑚, that contains the

value ⟨𝑎, 𝑏,𝑀⟩, let 𝐴[𝑖] .val = 𝑎, 𝐴[𝑖] .next = 𝑏 and 𝐴[𝑖] .mark = 𝑀 .
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Algorithm 1 Pseudocode for insert

insert(𝑣) :
1: 𝑖 ← ℎ (𝑣) − 1

2: ⟨𝑎,𝑏,𝑀 ⟩ ← LL(𝐴[𝑖 ] )
3: first← true
4: repeat
5: if 𝑎 = 𝑣 or (𝑏 = 𝑣 and (𝑀 ≠ D or ℎ (𝑏 ) ≠ 𝑖 + 1)) then
6: return false ⊲ 𝑣 is already in the table

7: if 𝑀 ≠ S then ⊲ 𝐴[𝑖 ] is unstable
8: help_op(𝑖 )
9: goto Line 18

10: if 𝑏 = ⊥ or 𝑣 >𝑝𝑖+1 𝑏 then ⊲ Insert position found

11: if SC(𝐴[𝑖 ], ⟨𝑎, 𝑣, I ⟩) then
12: propagate(ℎ (𝑣), 𝑖, {I })
13: return true
14: goto Line 1

15: 𝑖 ← 𝑖 + 1
16: if ¬first and 𝑖 = ℎ (𝑣) then abort() ⊲ No empty cell to insert 𝑣

17: first← false
18: ⟨𝑎,𝑏,𝑀 ⟩ ← LL(𝐴[𝑖 ] )
19: until 𝑣 >𝑝𝑖 𝑎

20: goto Line 1

Algorithm 2 Pseudocode for delete

delete(𝑣) :
21: 𝑖 ← ℎ (𝑣) − 1

22: ⟨𝑎,𝑏,𝑀 ⟩ ← LL(𝐴[𝑖 ] )
23: first← true
24: repeat
25: if (𝑖 = ℎ (𝑣) and 𝑣 >𝑝𝑖 𝑎) or (𝑎 >𝑝𝑖 𝑣 >𝑝𝑖+1 𝑏

and (𝑀 = S or ℎ (𝑏 ) ≠ 𝑖 + 1)) then return false
⊲ 𝑣 is not in the table

26: if 𝑀 ≠ S then ⊲ 𝐴[𝑖 ] is unstable
27: help_op(𝑖 )
28: goto Line 40

29: if 𝑎 = 𝑣 then ⊲ Step back one cell to locate 𝑣 in the lookahead slot

30: 𝑖 ← 𝑖 − 1

31: goto Line 40

32: if 𝑏 = 𝑣 then ⊲ Delete position found

33: if SC(𝐴[𝑖 ], ⟨𝑎, 𝑣,D⟩) then
34: propagate(ℎ (𝑣), 𝑖, {D})
35: return true
36: goto Line 21

37: 𝑖 ← 𝑖 + 1
38: if ¬first and 𝑖 = ℎ (𝑣) then return false

⊲ The loop iterated through all cells in the table

39: first← false
40: ⟨𝑎,𝑏,𝑀 ⟩ ← LL(𝐴[𝑖 ] )
41: until 𝑖 ≠ ℎ (𝑣) and 𝑣 >𝑝𝑖 𝑎

42: goto Line 21

Invariant 2 (Extended Ordering Invariant). For every 0 ≤ 𝑖 < 𝑚:
(a) If 𝐴[𝑖] .val = 𝑣 , then for any ℎ(𝑣) ≤ 𝑗 < 𝑖 , 𝐴[ 𝑗] .val ≥𝑝 𝑗

𝑣 .
(b) 𝐴[𝑖] .next ≥𝑝𝑖+1 𝐴[𝑖 + 1] .val or ℎ(𝐴[𝑖] .next) = 𝑖 + 1.
(c) Either 𝐴[𝑖] .val ≥𝑝𝑖 𝐴[𝑖] .next or ℎ(𝐴[𝑖] .next) = 𝑖 + 1 and

𝐴[𝑖] .next ≥𝑝𝑖+1 𝐴[𝑖 + 1] .val.

Algorithm 3 Pseudocode for lookup

lookup(𝑣) :
43: 𝑖 ← ℎ (𝑣) − 1

44: ⟨𝑎,𝑏,𝑀 ⟩ ← LL(𝐴[𝑖 ] )
45: first← true
46: repeat
47: if 𝑎 = 𝑣 or (𝑏 = 𝑣 and (𝑀 ≠ D or ℎ (𝑏 ) ≠ 𝑖 + 1)) then
48: return true ⊲ 𝑣 is in the table

49: if (𝑖 = ℎ (𝑣) and 𝑣 >𝑝𝑖 𝑎) or (𝑎 >𝑝𝑖 𝑣 >𝑝𝑖+1 𝑏

and (𝑀 = S or ℎ (𝑏 ) ≠ 𝑖 + 1)) then return false
⊲ 𝑣 is not in the table

50: if 𝑀 = I then ⊲ Check if the indication that 𝑣 is not in the table is

split across two cells

51: ⟨𝑐, ∗, ∗⟩ ← LL(𝐴[𝑖 + 1] )
52: if 𝑏 >𝑝𝑖 𝑣 >𝑝𝑖+1 𝑐 and ℎ (𝑏 ) ≠ 𝑖 + 1 and VL(𝐴[𝑖 ] ) then
53: return false
54: if 𝑀 ≠ S then help_op(𝑖 )
55: 𝑖 ← 𝑖 + 1
56: if ¬first and 𝑖 = ℎ (𝑣) then return false

⊲ The loop iterated through all cells in the table

57: first← false
58: ⟨𝑎,𝑏,𝑀 ⟩ ← LL(𝐴[𝑖 ] )
59: until 𝑖 ≠ ℎ (𝑣) and 𝑣 >𝑝𝑖 𝑎

60: goto Line 43

Invariant 2(a) is the ordering invariant for the value slots in a

table that can store multiple copies of the same element (recall

that deletions create duplications). It was shown that this ordering

invariant guarantees a unique canonical representation for every

multiset of elements [55]. Specifically, in Robin Hood hashing, du-

plicates of the same element are stored in consecutive cells in the

canonical representation. Invariant 2(b) and Invariant 2(c) ensure

that the “correct position” of the element in the lookahead slot is

the next cell, unless it has lower priority than the value slot in the

same cell and the next cell is its initial hash location, which indicate

the table is full. Invariant 2 allows us to use the properties of Robin

Hood described earlier.

First, we show that the propagation of operations follows a

pattern similar to hand-over-hand locking. Assuming that 𝐴[𝑖]
is locked (i.e., it contains an ongoing insert or delete operation), we
then lock 𝐴[𝑖 + 1], release 𝐴[𝑖], lock 𝐴[𝑖 + 2], release 𝐴[𝑖 + 1], and
so on. Then, relying on the correct propagation of operations, we

can show that Invariant 2 holds at all points during the execution

of the algorithm. In addition, we show that if a cell is stable (i.e.,

cell 𝑖 such that 𝐴[𝑖] .mark = S), then its lookahead slot is consistent

with the next cell, and there are no duplicate elements in this cell.

Linearizability. We order the insert and delete operations that
actually insert or delete elements from the table and change the

state of the dictionary according to the order of their initial writes.

In most cases, we can show that a lookup(𝑣) operation returns true
if and only if 𝑣 is present in the table 𝐴, either in a lookahead or

value slot, during its last read of 𝐴, and 𝑣 is present in the table

𝐴 if and only if 𝑣 is in the set by the order of operations defined

above. (This also applies for insert and delete operations that return
false.) The only exception is when the initial write by an insert(𝑣)
or delete(𝑣) operation has occurred, but the first propagation of the
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Algorithm 4 Pseudocode for help_op

help_op(𝑖 ) :
61: ⟨𝑎,𝑏,𝑀1 ⟩ ← LL(𝐴[𝑖 ] )
62: ⟨𝑐,𝑑,𝑀2 ⟩ ← LL(𝐴[𝑖 + 1] )
63: if 𝑀1 ≠ S then
64: while𝑀2 ≠ S and (𝑀1 ≠ D or𝑀2 ≠ D or 𝑏 = 𝑐) and

(𝑀1 ≠ I or 𝑏 ≠ 𝑐) and (𝑀1 ≠ D or 𝑐 ≠ ⊥) do
65: ⟨𝑎,𝑏,𝑀1 ⟩ ← ⟨𝑐,𝑑,𝑀2 ⟩
66: 𝑖 ← 𝑖 + 1
67: ⟨𝑐,𝑑,𝑀2 ⟩ ← LL(𝐴[𝑖 + 1] )

⊲ (𝑀1 ≠ S and𝑀2 = S) or (𝑀1 = 𝑀2 = D and 𝑏 ≠ 𝑐)

or (𝑀1 = I and 𝑏 = 𝑐) or (𝑀1 = D and 𝑐 = ⊥)
68: if 𝑀1 = I and VL(𝐴[𝑖 ] ) then
69: ⟨𝑥, 𝑦,𝑀3 ⟩ ← LL(𝐴[𝑖 − 1] )
70: if 𝑀3 = I and 𝑦 = 𝑎 and VL(𝐴[𝑖 ] ) then

⊲ Ensure 𝐴[𝑖 − 1] is unlocked
71: SC(𝐴[𝑖 − 1], ⟨𝑥, 𝑦, S⟩)
72: if 𝑐 >𝑝𝑖+1 𝑏 and not a lookup operation then abort()

⊲ Table is full

73: else if 𝑏 = 𝑐 then SC(𝐴[𝑖 ], ⟨𝑎,𝑏, S⟩)
⊲ 𝐴[𝑖 + 1] is already locked or propagation ended

74: else if 𝑐 = ⊥ then DSC(𝑖 + 1, ⟨𝑏,𝑑, S⟩, 𝑖, ⟨𝑎,𝑏, S⟩)
⊲ End of the propagation

75: else DSC(𝑖 + 1, ⟨𝑏, 𝑐, I ⟩, 𝑖, ⟨𝑎,𝑏, S⟩)
⊲ Propagate insert to 𝐴[𝑖 + 1] and unlock 𝐴[𝑖 ]

76: else if 𝑠1 = D and VL(𝐴[𝑖 ] ) then
77: ⟨𝑥, 𝑦,𝑀3 ⟩ ← LL(𝐴[𝑖 − 1] )
78: if 𝑀3 = D and 𝑦 ≠ 𝑎 and VL(𝐴[𝑖 ] ) then

⊲ Ensure 𝐴[𝑖 − 1] is unlocked
79: SC(𝐴[𝑖 − 1], ⟨𝑥, 𝑎, S⟩)
80: if 𝑐 = ⊥ or𝑀2 = D then SC(𝐴[𝑖 ], ⟨𝑎, 𝑐, S⟩)

⊲ 𝐴[𝑖 + 1] is already locked or propagation ended

81: else if 𝑀2 = S then
⊲ Propagate delete to 𝐴[𝑖 + 1] and unlock 𝐴[𝑖 ]

82: if 𝑑 ≠ ⊥ and ℎ (𝑑 ) ≠ 𝑖 + 2 then
83: DSC(𝑖 + 1, ⟨𝑑,𝑑,D⟩, 𝑖, ⟨𝑎,𝑑, S⟩)
84: else if not a lookup operation then
85: if DSC(𝑖 + 1, ⟨⊥, 𝑑, S⟩, 𝑖, ⟨𝑎,⊥, S⟩) then

⊲ End of the propagation

86: if 𝑑 ≠ ⊥ then propagate(𝑖 + 1, 𝑖 + 2, {I ,D})
⊲ Punctured a run

DSC(𝑖, tup
1
, 𝑗, tup

2
) :

⊲ Write tup
1
to 𝐴[𝑖 ] and if successful, write tup

2
to 𝐴[ 𝑗 ]

87: if SC(𝐴[𝑖 ], tup
1
) then

88: SC(𝐴[ 𝑗 ], tup
2
)

89: return true
90: else
91: tup← LL(𝐴[𝑖 ] )
92: if tup.val = tup

1
.val then SC(𝐴[ 𝑗 ], tup

2
)

operation has not yet completed. An operation on element 𝑣 which

starts before the initial write may be unaware of such insertion or

deletion. As a result, it can conclude that 𝑣 is not in the set (resp. in

the set) when it is present (resp. not present) in the table, before the

first propagation completes. However, since this operation must be

concurrent with the uncompleted insert or delete operation, we can
simply place this operation before the uncompleted operation in

the order, ensuring that the operation returns the correct response

according to the order of operations.

Algorithm 5 Pseudocode for propagate

propagate(𝑖, 𝑗, 𝐴) : ⊲ 𝐴 ⊆ {I ,D}
93: repeat
94: ⟨𝑎,𝑏,𝑀 ⟩, 𝑝𝑟𝑒𝑣 ← 𝐴[ 𝑗 ]
95: while ⟨𝑎,𝑏,𝑀 ⟩ = 𝑝𝑟𝑒𝑣 and𝑀 ∈ 𝐴 do ⊲ Continue while 𝐴[ 𝑗 ]

does not change and contains a delete or insert operation

96: help_op( 𝑗 )
97: 𝑝𝑟𝑒𝑣 ← ⟨𝑎,𝑏,𝑀 ⟩
98: ⟨𝑎,𝑏,𝑀 ⟩ ← 𝐴[ 𝑗 ]
99: 𝑗 ← 𝑗 + 1
100: until (𝑎 = ⊥ or (𝑀 = S and 𝑏 = ⊥)) or 𝑗 = 𝑖

⊲ Stop upon reaching an empty cell or back to the start

History independence. When all cells are stable, there are no

duplicate elements in the table, and the lookahead slot in each cell

is equal to the value slot of the next cell. Together with Invariant 2,

this implies that if no operation is propagating, the table is in the

canonical representation of the set of elements stored in the table,

as defined by Robin Hood hashing. As discussed in Section 3.2,

we show that when an operation returns, it either completes its

propagating, or a different ongoing insert or delete operation takes

over responsibility for finishing the propagation. This ensures that

when there are no ongoing insert or delete operations, the table is
in its canonical memory representation.

Lock-freedom. A failed SC operation indicates that there was

either a successful initial write by some operation or a successful

propagation of some operation. We show that an operation can

propagate to each cell at most once before it completes. Since there

is a finite number of processes, there can only be a finite number of

initial writes before an operation finishes propagating. Finally, we

show that eventually, some process must return; otherwise, after

some time, there will be no new initial writes, and all operations

must complete propagating. In this case, the table becomes constant

with only stable cells, and some process must eventually identify

this and return. The only exception is when only lookup operations

take steps. In this case, we show that even if operations cannot

finish propagating, since lookup operations do not puncture runs,

some operation can still find the element it is looking for or detect

its absence from the table.

Amortized step complexity. Consider a batch of𝑛 operations, each

invoked by a different process,
13

and let 𝑐 be an upper bound on

the number of operations that access the same element (whether

they be insertions, deletions or lookups). Assume that the ratio

between the number of insertions in the batch and the size of the

hash table is bounded by some constant 𝛼 ∈ (0, 1).14 We prove

that in expectation over the hash function, even under a worst-case
scheduler that knows the hash function, the total number of steps

required to complete all operations is𝑂 (𝑛 · 𝑐). We sketch the proof;

see the full version [8] for details.

Fix a process 𝑝 that invokes an operation 𝑜 on element 𝑥 (i.e.,

𝑜 ∈ {insert(𝑥), delete(𝑥), lookup(𝑥)}). Let 𝑁 be a random variable

representing the length of the run that containsℎ(𝑥), if we schedule
13
This assumption is made to simplify the modeling and analysis, but it is not essential.

14
Here, too, a more fine-grained analysis is possible, taking into consideration only

elements that are in the hash table at the same time, but for simplicity we take the

total number of insertions as an upper bound.
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all insertions from the batch prior to scheduling operation 𝑜 . This is

an upper bound on the distance from ℎ(𝑥) to the “correct location”

for element 𝑥 (the cell where 𝑥 is stored, or if 𝑥 is not in the set, the

cell where 𝑥 would be stored if it were in the set). Also, let 𝑃 ≤ 𝑁 ·𝑐
be the number of processes working on elements in the same run

as 𝑥 . We design a charging scheme that charges each step taken by

process 𝑝 to some operation — either its own operation 𝑜 , or an

operation working in the same run as element 𝑥 — in such a way

that the total charge for any operation is at most 𝑂 (𝑁 3 · 𝑐). We

then prove that if the load on the hash table is bounded away from

1, then E[𝑁 3] = 𝑂 (1), where the expectation is over the choice of

the hash function. By linearity of expectation, the expected number

of steps required for all operations to complete is 𝑂 (𝑛 · 𝑐).
The charging scheme assigns to each operation all successful

steps performed “on its behalf”, regardless of which process per-

formed them. Propagating an operation one position forward re-

quires only a constant number of successful steps, so the total

charge here is 𝑂 (𝑁 ). In contrast, failed steps are charged to the

operation whose successful SC caused the failure. For example, if

a process 𝑝 attempts to propagate an operation 𝑜 from position

𝑖 to position 𝑖 + 1, but some other process 𝑞 succeeds in doing

so faster than 𝑝 , then the 𝑂 (1) steps that process 𝑝 “wasted” are

charged to operation 𝑜 ; but if 𝑞’s failure is instead caused by some

operation 𝑜′ ≠ 𝑜 making its initial write into position 𝑖 + 1, then
the wasted steps are charged to operation 𝑜′. The largest charge
is for causing a process to restart its operation prior to its initial

write into the table; the process may have wasted up to 𝑁 steps,

and all are charged to the operation whose successful SC caused

the restart. Each operation is propagated at most once across each

position in the run (at most 𝑁 positions), and each propagation

step involves a constant number of successful SCs, which each fail

up to 𝑃 processes, possibly causing them to restart and costing 𝑁

wasted steps. Thus, the total charge to an operation is bounded by

𝑂 (𝑁 · 𝑁 · 𝑃) = 𝑂 (𝑁 3 · 𝑐).

5 Overview of the Lower Bound
We give a very brief overview of the impossibility result of Theo-

rem 2. The full details appear in [8]. The idea is to show that there

exists some element 𝑣 ∈ U for which both of the following hold:

(1) For every memory cell ℓ , there exist two sets 𝑆, 𝑆 ′ ⊆ U
where 𝑣 ∈ 𝑆 and 𝑣 ∉ 𝑆 ′, but in the canonical representation

of 𝑆 and 𝑆 ′, memory cell ℓ has the same value. Thus, by

reading location ℓ , a lookup cannot unambiguously decide

whether 𝑣 is in the set.

(2) For every memory cell ℓ , there exist two pairs of sets, 𝑆0, 𝑆
′
0
⊆

U and 𝑆1, 𝑆
′
1
⊆ U, such that 𝑣 ∉ 𝑆0, 𝑆

′
0
(resp. 𝑣 ∈ 𝑆1, 𝑆′

1
) but

cell ℓ has a different value in the canonical representation of

𝑆0 than it does in 𝑆 ′
0
(resp. in 𝑆1 and in 𝑆 ′

1
).

We then construct two executions 𝛼0, 𝛼1, such that in 𝛼0, element

𝑣 is not in the dictionary throughout, and in 𝛼1, element 𝑣 is in
the dictionary throughout; however, there is a lookup(𝑣) operation
that cannot distinguish 𝛼0 from 𝛼1, and therefore cannot return.

To “confuse” the lookup operation, every time it accesses a cell

ℓ using an operation whose behavior depends only on the cell’s

current value (such as read/write or compare-and-swap), we use

property (1) to extend executions 𝛼0, 𝛼1 in a way that the reader

cannot distinguish; and if the access is using VL or SC, we use

property (2) to first “overwrite” the value of cell ℓ , ensuring the VL
or SC returns false in both executions. We remark that property (1)

suffices to rule out implementations frommemory primitives whose

behavior depends only on the current value of the memory cell and

not the history, and if we use only such primitives, we do not need

to assume that the size of the dictionary matches the size of the

largest set it can store; the dictionary can have any size𝑚 < 𝑢.

We show that any natural assignment—which maps each set

to a canonical memory representation where each memory cell

can hold either an element currently in the set or ⊥ (indicating

vacancy), along with additional metadata bits — satisfies property 1,

subject to a restriction on the number of memory cells, which de-

pends on the universe size, maximal size of the set and number

of metadata bits. The definition of natural assignments allows for

multiple copies of the same element and ensures that every ele-

ment in the dictionary appears in at least one memory cell. For a

dictionary from𝑚 memory cell that can store at most𝑚 elements, a

natural assignment with any number of metadata bits that satisfies

property (1) also satisfies property (2) for the same element, which

implies Theorem 2.

6 Related Work
History-independent data structures. Efficient sequential history-

independent data structure constructions include fast HI con-

structions for cuckoo hash tables [45], linear-probing hash ta-

bles [17, 27], other hash tables [17, 46], trees [1, 42], memory alloca-

tors [27, 46], write-once memories [44], priority queues [18], union-

find data structures [46], external-memory dictionaries [14, 23–

25], file systems [9, 11, 12, 52], cache-oblivious dictionaries [14],

order-maintenance data structures [17], packed-memory arrays/list-

labeling data structures [14, 15], and geometric data structures [59].

Given the strong connection between history independence and

unique representability [28, 29], some earlier data structures can

also be made history independent, including hashing variants [2,

19], skip lists [49], treaps [5], and other less well-known determin-

istic data structures with canonical representations [3, 4, 50, 56, 58].

There is work on the time-space tradeoff for strongly history-

independent hash tables, see e.g., [38–40] and references therein.

The algorithmic work on history independence has found its way

into systems. There are now voting machines [16], file systems [9,

10, 12], databases [11, 48, 53], and other storage systems [20] that

support history independence as an essential feature.

History independence for concurrent data structures. To our knowl-
edge, the only work to study history independence in a fully concur-

rent setting is [7], which investigated several possible definitions

for history independence in a concurrent system that might never

quiesce. Several lower bounds and impossibility results are proven

in [7]. In particular, it is shown that if the observer is allowed to

examine the memory at any point in the execution, then in any

concurrent implementation that is obstruction free, for any two

logical states 𝑞, 𝑞′ of the ADT such that some operation can cause

a transition from 𝑞 to 𝑞′, the memory representations of 𝑞, 𝑞′ in the

implementation must differ by exactly one memory cell. This rules

out open-addressing hash tables, unless their size is |U|, because it
does not allow us to move elements around.
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Sequential hash tables. There are several popular design

paradigms for hash tables, including probing, both linear and other

probing patterns (e.g., [2, 19, 33, 36, 41]); cuckoo hashing [47];

and chained hashing [37]. These can all be made history indepen-

dent [17, 27, 45, 46], typically by imposing a canonical order on

the elements in the hash table. This involves moving elements

around, which can be challenging for concurrent implementations.

Notably, for sequential history-independent hash tables, history

independence does not come at the cost of increasing the width of

memory cells—it suffices to store one element per cell; our work

shows that in the concurrent setting, storing one element per cell

is not enough.

Concurrent hash tables. There is a wealth of literature on non-

history-independent concurrent hash tables; we discuss here only

the work directly related to ours, which includes concurrent im-

plementations of linear probing hash tables in general, and Robin

Hood hashing in particular. We note that while [7] gives a univer-

sal wait-free history-independent construction that can be used to

implement any abstract data type, including a dictionary, the con-

struction does not allow for true concurrency: processes compete

to perform operations, with only one operation going through at

a time. In addition, the universal construction of [7] uses memory

cells whose width is linear in the state of the data type (in the case

of a dictionary, the size of the set that it represents), and in the

number of processes.

There are several implementations of concurrent linear-probing

hash tables, e.g., [22, 57]. It is easier to implement a concurrent

linear-probing hash table if one is not concerned with history inde-

pendence: since the elements do not need to be stored in a canonical

order, we can simply place newly-inserted elements in the first

empty cell we find, and we do not need to move elements around.

Tombstones can be used to mark deleted elements, thus avoiding

the need to move elements once inserted.

As for Robin Hood hashing, which gained popularity due to its

use in the Rust programming language, there are not many concur-

rent implementations. Kelly et al. [35] present a lock-free concur-

rent Robin Hood hash table that is not history independent. Their

design is based on a 𝑘-CAS primitive, which is then replaced with

an optimized implementation from CAS [6]. This implementation

uses standard synchronization techniques that require large mem-

ory cells: timestamps, operation descriptors, and so on. Bolt [34] is

a concurrent resizable Robin Hood hash table, with a lock-free fast

path and a lock-based slow path. This implementation is not lock-

free, although it does avoid the use of locks in lightly-contended

cases (the fast path).

Shun and Blelloch [55] present a phase-concurrent deterministic

hash table based on linear probing, which supports one type of

operation within a synchronized phase. Different types of oper-

ations (inserts, deletes and lookups) may not overlap. The hash

table of [55] is based on the same history-independent scheme used

in [17, 46]. In this scheme, each memory cell stores a single element;

this does not contradict our impossibility result, because none of

these implementations support overlapping lookups and operations

that modify the hash table (inserts and/or deletes).
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